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ABSTRACT 25 

The ribosome is an ancient machine, performing the same function across organisms. 26 

Although functionally unitary, recent experiments suggest specialized roles for some 27 

ribosomal proteins. Our central thesis is that ribosomal proteins function in a modular fashion 28 
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to decode genetic information in a context dependent manner. We show through large data 29 

analyses that although many ribosomal proteins are essential with consistent effect on growth 30 

in different conditions in yeast and similar expression across cell and tissue types in mice and 31 

humans, some ribosomal proteins are used in an environment specific manner. The latter set 32 

of variable ribosomal proteins further function in a coordinated manner forming modules, 33 

which are adapted to different environmental cues in different organisms. We show that these 34 

environment specific modules of ribosomal proteins in yeast have differential genetic 35 

interactions with other pathways and their 5’UTRs show differential signatures of selection in 36 

yeast strains, presumably to facilitate adaptation. Similarly, we show that in higher metazoans 37 

such as mice and humans, different modules of ribosomal proteins are expressed in different 38 

cell types and tissues. A clear example is nervous tissue that uses a ribosomal protein module 39 

distinct from the rest of the tissues in both mice and humans. Our results suggest a novel 40 

stratification of ribosomal proteins that could have played a role in adaptation, presumably to 41 

optimize translation for adaptation to diverse ecological niches and tissue 42 

microenvironments. 43 

 44 

INTRODUCTION 45 

A single celled organism displays a range of phenotypes to survive in diverse environments. 46 

In complex multicellular organisms, in addition to the external environment, tissue specific 47 

cell types display specialized mechanisms to regulate phenotype in local tissue environments. 48 

Much of the research in biology has been directed towards understanding the basis of the 49 

information flow that gives rise to these diverse phenotypes. This has resulted in the 50 

identification of many regulatory processes [1,2] which fine-tune transcriptional expression 51 

and modulate the translation of mRNA into proteins [3,4] in response to external and 52 

environmental or tissue specific signaling cues. However, in spite of its essential role in this 53 

cellular information flow, the ribosome has always been regarded as an inert participant in 54 

the information flow that regulates cellular and tissue states. 55 

One may ask, “Why is it that, in spite of tantalizing clues to the contrary, this belief in an 56 

invariant, environment independent ribosome has not been significantly challenged?” A 57 

possible reason might be that the high degree of conservation of ribosomal proteins across the 58 

three domains of life, viz., Archaea, Bacteria and Eukarya, and the slow evolution rates of 59 
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ribosomal protein sequences [5] seem sufficient evidence for an essential, invariant ribosome, 60 

which plays no regulatory role in cells and tissues or in adaptation and speciation.  61 

However, thermophiles have ribosomes that function at extreme temperatures, suggesting 62 

that the ribosome has been adapting to the environment for over 3 billion years. There are 63 

different types of ribosomes in each domain of life, and additionally, the mitochondrial 64 

ribosome distinct in composition from the cytosolic ribosome [6]. It is therefore worth 65 

investigating whether the cytosolic ribosome has also evolved ways to optimize its 66 

composition in response to environmental cues. Testing the ribosomal composition at a 67 

protein level is technically challenging, but significant evidence has been accumulating from 68 

the study of ribosomal proteins that argues for a variability in the composition of the 69 

ribosome [7-9]. Deletion experiments in yeast show that different ribosomal proteins have a 70 

differential effect on replicative lifespan [8]. Transcriptional studies in mice [7] and humans 71 

[9] show tissue specific expression of ribosomal proteins. Specific ribosomal proteins are 72 

known to be associated with different types of cancers [10,11] and mutations in specific 73 

ribosomal proteins result in a class of disorders called ribosomopathies [12,13]. Whereas all 74 

these mutations have common effects across development, some cause developmental 75 

disorders in specific tissues [12,13], suggesting tissue specificity of the function of at least 76 

some ribosomal proteins.  77 

To date, most of these effects have been ascribed to extra-ribosomal functions of ribosomal 78 

proteins [14,15]. However, at least some specialized translation by the ribosome is controlled 79 

by specific ribosomal proteins [7,16,17], showing that the extra-ribosomal nature of such 80 

control is not generic. While preliminary, these studies suggest that ribosomes with variable 81 

components may exist to optimize translation, depending on environmental and signaling 82 

cues [18-20]. Analysis of the stoichiometry of ribosomal proteins in yeast and embryonic 83 

stem cells has demonstrated differential protein composition of ribosomes in different 84 

conditions [21], further substantiating the possibility of ribosomal variability at a protein 85 

level.  86 

In this paper, we question the unitary nature of the ribosome within an organism across 87 

environments by analyzing different properties of ribosomal proteins. Does the observed 88 

environment and tissue specific variation in ribosomal proteins represent regulation of the 89 

ribosome that is important in evolution and or adaptation? In a changing environment, do all 90 

ribosomal proteins have similar properties, or are specific ribosomal proteins used in an 91 
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environment dependent manner? In this paper we begin to address these questions by 92 

uncovering evidence from data analyses of yeast deletion [22] and interaction [23] datasets, 93 

and the ENCODE [24] and GTEx [25] expression datasets of mice and humans. 94 

 95 

MATERIALS AND METHODS 96 

Yeast Data 97 

Growth data and associated microarray files for a genome-wide yeast homozygous deletion 98 

collection [22] for all environments were downloaded from 99 

http://chemogenomics.stanford.edu/supplements/global/download.html. The normalized gene 100 

intensity values from the microarray data were used for analysis. The data of the replicates 101 

for each environment were collated using their median. The intensity values were scaled to 102 

zero mean and unit variance across all genes and then compared between the rich growth 103 

(YPD) and a stress condition, as well as between the pairs of stress conditions (S1 Table). A 104 

set of 68 non-essential structural ribosomal proteins with microarray tag intensity greater than 105 

2 standard deviations from the background intensity was used for the analysis. 106 

Thirty four yeast-specific pathways, known to be involved in growth and stress resistance, 107 

described in Wikipathways database [26] were downloaded from 108 

http://www.wikipathways.org/index.php/WikiPathways (S2 Table).  109 

Clustering of genetic interactions in yeast 110 

Phenotype data of pair-wise quantitative genetic interactions of 1,712 yeast genes derived 111 

from SGA [23] dataset was downloaded from http://drygin.ccbr.utoronto.ca/index.html along 112 

with their genetic interaction and P values. Genetic interactions of intermediate stringency (P 113 

< 0.05) were selected for our analysis.  114 

In order to cluster the genes into different genetic clusters based on their double-deletion 115 

interactions, an adjacency matrix with the interaction scores for the genetic interactions was 116 

created from the above data. Pearson correlation among the genes was calculated based on 117 

their double deletion interaction scores. Genes with r2 > 0.2 were grouped in the same cluster 118 

(S2 Table). The Markov Cluster (MCL) algorithm [27] was applied, using R package 119 
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function mcl, to get highly connected clusters of genes, with an inflation factor of 1.4, as used 120 

by the original study Costanzo et al. [23]. 121 

Analysis of clusters and pathways in yeast 122 

MCL clusters with 5 or more genes were considered for further analyses (S2 Table). The F-123 

test statistic, BF-test statistic [28], P values and variances were computed on the standardized 124 

phenotype data derived from the above-standardized Hillenmeyer dataset. Genes in each 125 

cluster in each condition were compared to their respective YPD control condition. An 126 

identical analysis was carried out for each of the thirty-four pathways downloaded from 127 

Wikipathways [26]. Only pathways with 5 or more genes were used (S2 Table). A total of 90 128 

MCL clusters and pathways were considered further and they were associated with several 129 

functional categories relevant for growth in yeast, such as known biochemical pathways 130 

(TCA, glycolysis), signaling pathways (PKA, MAPK), protein complexes (ribosome, 131 

proteasome) and a large number of various other genetic networks (S2 Table).  132 

Hierarchical clustering of cytoplasmic ribosomal proteins in yeast 133 

The genes coding for cytoplasmic ribosomal proteins (n = 68) were considered in 26 134 

environments of the above-standardized Hillenmeyer dataset. A hierarchical clustering of 135 

both the environments and the genes were carried out using a Euclidean distance metric using 136 

the data, which was standard normalized (mean zero, variance unity) across the ribosomal 137 

protein genes.  138 

Enrichment of genetic interactions in Clusters A, B and C 139 

Enrichment of GO categories was carried out in the 121 genes identified to interact with at 140 

least 10 out of 65 ribosomal proteins (S3 Table). These 121 interactors interacted either 141 

positively or negatively with ribosomal proteins, with a few genes showing both positive and 142 

negative interactions (S3 Table). To identify genetic interactors specific to each Cluster, 143 

genes interacting with >10% of the ribosomal proteins in each cluster were identified.  144 

Phenotyping single deletions of yeast ribosomal proteins and their deletions with GCN5 145 

deletion in various environments 146 

Single ribosomal protein and regulatory gene deletions of S288c background (BY4741) were 147 

obtained from the haploid genome-wide deletion collection library [29] (GE Healthcare 148 
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Dharmacon Inc.). Additional double-gene deletions were generated using a previously 149 

described protocol [30]. SK1 wild type and deletion strains were obtained from Wilkening et 150 

al. [31]. Strains were phenotyped in YPD, YPD+Menadione (50µM) and YPD+CdCl2 151 

(10µM). Spot dilutions, ranging from 10-3 to 10-8 dilutions were incubated at 30ºC and 152 

phenotyped at 24, 36 and 48h. The strain and primer list is given in S4 Table. 153 

Sequence analysis of coding and 5’UTR regions in SGRP collection 154 

S. cerevisiae and S. paradoxus ribosomal protein and control gene sequences from the SGRP 155 

strains [32] were downloaded from http://www.moseslab.csb.utoronto.ca/sgrp/blast_original. 156 

Sequence alignments, estimation of the maximum likelihood tree (1,000 permutations) and 157 

nucleotide diversity were performed using MEGA 6.06 [33] with default parameters (S5 158 

Table).  159 

For the three gene clusters based on the interaction modules, the nucleotide diversity in the 160 

coding and promoter regions of the genes in each cluster was evaluated using Shannon 161 

Entropy function as a metric. The sequences of the 5’UTR and coding regions of each gene 162 

corresponding to the different strains were aligned separately using the software MUSCLE 163 

[34] with default parameters. In the aligned set of sequences for each gene, the mutated sites 164 

were identified, and corresponding to each kind of base at the given site, were assigned a 165 

value,  166 

pi =
Numberof sequenceswhichbaseof kind i present at given site

Total numberof sequencesinthealigned set
  167 

Here i = 1, 2, 3, 4 corresponds to A, T, G, C respectively. 168 

The Shannon Entropy at each mutation site was computed using the standard definition: 169 

  
H = − pi log2 pii∑   170 

Variations within a given sequence set can occur in two principal ways: (i) variations in the 171 

proportion of bases at any given mutation site, and (ii) variations in the number of sites of 172 

mutations. The simplest quantity that accounts for both these is the sum of the H values for 173 

all the mutation sites. A higher value for the sum would indicate greater nucleotide diversity 174 

in the corresponding 5’UTR or coding region respectively for each gene across the different 175 
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strains. To eliminate any length bias in the comparisons, the sum of the H values was 176 

normalized by the length of the aligned sequences for each 5’UTR or coding region (S5 177 

Table).  178 

Prediction of transcription factor binding sites 179 

The database YEASTRACT [35] was used to download known transcription factor (TF) 180 

binding sites of the various ribosomal proteins and to predict potential binding sites on UTR 181 

of ribosomal proteins of different SGRP strains. Of the 700 TFs reported in YEASTRACT, 182 

216 have been shown to experimentally bind to the promoter region of at least one ribosomal 183 

protein present in the three Clusters identified in our study (S6 Table). These 216 TFs were 184 

enriched for various signaling pathways and chromatin remodeling complexes (S6 Table), 185 

substantiating the enrichment of chromatin remodelers among the positive genetic interactors 186 

of ribosomal proteins. Of these 216, the TFs binding exclusively to ribosomal proteins in 187 

Cluster A, B and C were identified.  188 

Analysis of human and mouse ENCODE and GTEx data  189 

Tissue specific count (transcripts per million or TPM) data for human and mouse were 190 

downloaded from ENCODE (https://www.encodeproject.org/), and mapped to Entrez genes 191 

using annotation packages org.Hs.eg.db and org.Mm.eg.db in R. The genes that were not 192 

expressed in any replicate were discarded. Replicates in which an unusually high (as 193 

determined from sfigx_h and sfigx_m) fraction of Entrez genes were not expressed were 194 

discarded as well. In the remaining replicates, to reduce relative systematic error among 195 

replicates, the median for each gene was normalized to unity in each replicate by dividing the 196 

count for the gene by the median count in each replicate array. These median adjusted TPM 197 

values were log transformed to obtain the final expression X of each gene in each replicate as 198 

follows: 199 

  
X = log2 1+1023×medianadjusted TPM valueof the geneinthereplicate( )  200 

This normalization ensured that genes that were not expressed at all were mapped to X = 0, 201 

and the median of all genes in a replicate was mapped to X = 10. The mean and standard 202 

deviation (sd) of expression levels over replicates was computed for each gene-tissue pair to 203 

generate a distribution of 
  
x = log10 sd mean( )  for human and mouse data respectively (Fig 204 
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S1). Based on these distributions cutoffs xh and xm were established and the gene-tissue pair 205 

was excluded from further analysis if x was greater xh ~ -0.4 and xm ~ -0.6 for human and 206 

mouse data respectively. For the gene-tissue pairs that passed this check, the expression of a 207 

gene in a tissue was defined as the mean over replicates. If a gene had to be excluded in many 208 

tissues, then that gene was excluded altogether. Sixty-six ribosomal proteins in 110 tissues in 209 

humans (S7 Table), and 42 ribosomal proteins in 18 tissues in mice (S8 Table), passed this 210 

filter. The R package pvclust was used to perform bootstrapping [36] of hierarchical 211 

clustering of ribosomal proteins and tissues in mouse and humans. Similar filtering was 212 

performed for GTEx data. GTEx data consists of RNAseq data of 54 tissues from 544 donors 213 

amounting to a total of 8,555 samples. Gene-tissue pair with xg > 0.1 were excluded from the 214 

data. Seventy-nine ribosomal proteins in 54 tissues passed this filter (S9 Table).  215 

 216 

RESULTS 217 

Phenotypic variability of ribosomal proteins in yeast  218 

In all organisms, the ribosome is a ribonucleoprotein complex composed of two subunits 219 

each with an RNA core and large number of ribosomal proteins. In eukaryotes, the 60S large 220 

subunit consists of 46 proteins, and the 40S small subunit consists of 33 proteins [37]. In 221 

yeast that has undergone whole genome duplication [38], most of the ribosomal proteins 222 

(paralogs) are duplicated, as a result of which it contains 137 ribosomal proteins, of which 223 

107 are non-essential [22].  224 

Deletion collection in yeast allows testing of phenotypic effect of deletions of non-essential 225 

genes in yeast in diverse environments. In order to identify genes which show maximum 226 

phenotypic variability across environments, we reanalyzed deletion phenotypes for 4,769 227 

single gene deletions grown in 293 diverse environments using a previously published dataset 228 

[22] (S1 Table) for all genes, including ribosomal proteins. The surprising observation was 229 

that across all yeast genes, deletions of ribosomal proteins had the highest differential effect 230 

on growth in different environments i.e., no effect in some environments and strong effect in 231 

others. Among the 191 genes with variance  σ
2 > 0.8  across the 293 environments, 232 

components of the ribosome were significantly enriched (21/191, P < 0.01, S10 Table, Fig 233 

S2). Fourteen out of these 21 genes belonged to the large ribosomal subunit. These 21 genes 234 
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contain only one paralog of the ribosomal proteins, either A or B, indicating a possible but 235 

small differential role of paralogs in responding to environmental heterogeneity. Only 236 

ribosomal protein RPL34 was an exception to this where both paralogs - RPL34A and 237 

RPL34B showed high phenotypic variance.  238 

To test whether this phenotypic variability was a non-specific cellular effect or was specific 239 

to the ribosome, we compared phenotype variability in growth for deletions of genes in 90 240 

different pathways and protein complexes across 293 stress conditions versus growth in rich 241 

media (YPD). These 90 pathways and complexes were defined using both a biased 242 

(Wikipathways) [26] and an unbiased (SGA clustering) [23] approaches (see Methods) and 243 

included signaling pathways such as the MAPK and Ras/PKA pathway, protein complexes 244 

such as the proteasome and ribosome, cellular processes such as chromatin remodeling 245 

complexes and vesicular transport machinery, etc. (S2 Table). Differences in variance of a 246 

pathway or a complex between stress and YPD indicate variable roles of its constituents in 247 

different conditions. High correlation of constituents of a pathway between stress and YPD 248 

would indicate that independent of the essentiality of the pathway; different constituents have 249 

similar functions in both conditions. Moreover, a higher variance in YPD compared to stress 250 

would indicate that the constituents of the pathway show a more diverse response in YPD but 251 

show similar phenotype in stress (Fig 1A). Such a co-ordination of stress specific genes has 252 

previously been observed [39] in multiple stresses where the whole pathway is essential to 253 

respond to the stress. On the other hand, higher variance of the pathway in stress compared to 254 

YPD would indicate that different components of the pathway have differential roles in stress 255 

and therefore function in a different manner than in YPD (Fig 1B). Deletions of constituent 256 

proteins in 13 pathways showed a significant difference in variance in 3 or more stress 257 

environments compared to YPD (P < 0.01 by Brown Forsythe test, S2 Table, Fig S2), with 258 

the higher variance in YPD in most cases, showing that the pathway was essential in stress. 259 

Additionally, constituent of these pathways showed high correlation of phenotype across 260 

YPD and stress indicating that the functional hierarchy of the genes was conserved 261 

(functional homogeneity), but the phenotypic contribution of the module increased during 262 

stress, reducing phenotypic variance. In contrast, for the cytoplasmic ribosomal proteins, 263 

there was a significantly higher variance in 28 stress environments compared to YPD (Fig S2, 264 

S2 Table), suggesting that ribosomal proteins are differentially used in the stress condition. 265 

Unlike other pathways, poor correlation was observed between phenotype of ribosomal 266 

proteins across YPD and stress, indicating overall functional heterogeneity in stress and YPD 267 
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(Fig 1B). These results independently show that among different pathways, deletions of 268 

genes in the ribosomal pathway has the greatest effect on growth in stress versus rich media, 269 

suggesting a unique property of the ribosomal genes that they are the most variable proteins 270 

in the cell when comparing diverse environments. A heatmap of growth for single deletions 271 

of the 68 ribosomal proteins with consistent replicate data in 25 stress conditions and YPD 272 

(Fig 1C) reinforces the above results and shows that a number of these ribosomal proteins 273 

have high phenotypic variability, i.e. that they are required for growth in some environments 274 

but expendable in others.  275 

We next asked whether these ribosomal proteins have different phenotypic profiles across 276 

environments i.e., whether they work independently, or whether they form modules, whose 277 

constituents show coordinated regulation across different environments. A clustering analysis 278 

of the Pearson correlation of these ribosomal proteins across environments showed functional 279 

modularity (Fig 2A) in the form of three distinct clusters (S11 Table). Ribosomal proteins in 280 

Cluster 1 were both highly correlated, enriched in large subunit proteins and had high 281 

phenotypic diversity across environments. On the other hand, proteins in Cluster 2, although 282 

highly correlated and important for growth across most environments, were enriched in small 283 

subunit and pre-ribosomal components (important for ribosomal assembly), which explains 284 

the constitutive growth defect when these proteins were deleted (S10 Table). Proteins in 285 

Cluster 3, however, showed low correlation amongst themselves and were important in 286 

different environments. The conclusion that emerges from this analysis is that subsets of 287 

ribosomal proteins in Cluster 1 act together in diverse environments, whereas proteins in 288 

Cluster 2 act together in most environments. Proteins in Cluster 3 on the other hand, seem to 289 

play specialized roles in specific environments.  290 

These results strongly suggest that the yeast ribosomal proteins do not function in a uniform 291 

manner when the environment is varied. While this environmental variability of deletions of 292 

ribosomal proteins has previously been observed, we have identified a novel underlying 293 

modularity among these ribosomal proteins, potentially to optimize yeast growth in different 294 

environments. This is the main finding of the present work that distinguishes it from previous 295 

studies. In summary, whereas a core set of ribosomal proteins are important in all 296 

environments, different combinations of a subset of variable ribosomal proteins are 297 

functional in different environments to optimize growth.  298 
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To test whether the deletion phenotype of ribosomal proteins is conserved among yeast 299 

strains, we compared growth of ribosomal protein deletions in a soil isolate, SK1, in an 300 

oxidative stress (Fig S3). While different ribosomal protein deletions show diverse 301 

phenotypic defects, indicating differential use of ribosomal proteins in SK1, the identity of 302 

the variable ribosomal proteins was different among the two strains, SK1 and S288c. This 303 

indicates that different strains functionally employ ribosomal proteins in different ways, 304 

potentially as a result of having adapted in different ways to strain specific selection 305 

pressures. 306 

Interactions among ribosomal proteins and genes in cellular pathways 307 

If this observed phenotypic modularity of ribosomal proteins is indeed real, then it should be 308 

reflected in their genetic interactions with both upstream and downstream pathways. This 309 

crosstalk between ribosomal proteins and genes in other pathways was captured by studying 310 

the genome-wide gene-gene interaction SGA dataset [23], to identify positive and negative 311 

genetic interactors of the ribosomal proteins. A positive or negative interaction is one where 312 

the double deletion is respectively better or worse for growth than the sum of the single 313 

deletions. A positive interaction indicates that the genes are in the same pathway, while a 314 

negative interaction indicates compensatory pathways [26].  315 

The interactions of a diverse set of genes with 65 ribosomal proteins, 57 of which overlapped 316 

with the ribosomal proteins in the deletion phenotype analysis, was analyzed using the SGA 317 

dataset [23]. While multiple genes showed double deletion genetic interactions with the 318 

ribosomal proteins, our aim was to identify genetic interactors that are common to the 319 

ribosome and not to a single ribosomal protein. Hence, only those genes that showed a 320 

significant interaction (P < 0.05) with at least 10 of the 65 ribosomal proteins were 321 

considered for further analysis. This identified a total of 121 genes, 23 ribosomal and 98 non-322 

ribosomal, which had a significantly positive or negative interaction  with at least 10 323 

ribosomal proteins (modified F-test, P < 0.05, S3 Table). Although the 65 ribosomal proteins 324 

had many interactions with other genes, only 12 ribosomal proteins interacted positively 325 

among themselves (i.e., were in the same pathway). The rest interacted either positively or 326 

negatively with non-ribosomal proteins. The ribosomal proteins form a separate cluster in the 327 

yeast gene-gene interaction dataset [23] due to an enrichment of interactions within the 328 

complex. Our results show that this enrichment is the result of only 12 ribosomal proteins 329 
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(enriched in small ribosomal subunit); the other ribosomal proteins show high interactions 330 

with different cellular pathways. 331 

If the ribosomal proteins indeed function in a coordinated and modular manner to regulate 332 

growth across environments, then this modularity should also be evident in their genetic 333 

interactions. A clustering analysis of the pairwise correlations of the positive or negative 334 

genetic interactions of the 65 ribosomal proteins (Fig 2B) identified three clusters, which had 335 

a highly significant overlap with the previous clustering based on phenotypic profiling (90% 336 

overlap between Clusters 1 and A and 89% between clusters 2 and B, Fisher Exact test, P = 337 

0.006, S4 Table). Ribosomal proteins in Cluster A interacted mainly with genes involved in 338 

mRNA processing, whereas those in Cluster B interacted with other ribosomal proteins. 339 

Ribosomal proteins in Cluster C interacted with genes involved in diverse pathways (S10 340 

Table). This strong overlap of corresponding clusters identified independently through 341 

phenotype association (Clusters 1, 2, 3) and double deletion analysis (Clusters A, B, C) 342 

further reinforces our claim of the modularity of ribosomal proteins wherein subsets of 343 

ribosomal proteins function in a coordinated manner and interact in diverse ways amongst 344 

themselves and with other non-ribosomal pathways.  345 

We observe that despite high sequence similarity, sometimes differing in only a few bases, 346 

ribosomal proteins and their paralogs show diverse genetic interactions. Only 4 out of 15 347 

paralog ribosomal proteins show similar genetic interactions i.e., fall in the same cluster. 348 

These are RPL6A and RPL6B, and RPL9A and RPL9B in Cluster A and RPS0A and RPS0B, 349 

and RPS29A and RPS29B in Cluster B (S11 Table). All the remaining paralogs fall into 350 

separate clusters or are in Cluster C, indicating that they have differential genetic interactions. 351 

Thus, in spite of sequence similarity amongst paralogs, the regulation of these modules in 352 

yeast seems to have evolved since the duplication event to create novel functions for these 353 

paralogs.  354 

Positive non-ribosomal interactors of the ribosomal proteins were enriched in chromatin 355 

regulators and remodelers (S10 Table). Under the prevailing unitary ribosome hypothesis, 356 

this association is believed to result from a general control of cellular proliferation by 357 

epigenetic regulators [40]. To test this, we experimentally studied the observed positive 358 

interaction between the chromatin histone deacetylase GCN5 and the ribosomal proteins 359 

RPL11B (Cluster A), RPL6B (Cluster B), RPL38 (Cluster C) and RPL26B (Cluster C). GCN5 360 

regulates transcription of these ribosomal proteins, presumably to control cellular 361 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 16, 2016. ; https://doi.org/10.1101/068361doi: bioRxiv preprint 

https://doi.org/10.1101/068361
http://creativecommons.org/licenses/by-nd/4.0/


	
  
	
  

13 

proliferation [40]. If this were true, then deletion of gcn5∆ with deletion of any of these 362 

ribosomal proteins should have the same growth phenotype as single deletion of gcn5∆. 363 

Since ribosomal proteins showed diverse phenotypes in oxidative stresses (Fig 3), we tested 364 

the premise of these genetic interactions by phenotyping double deletions of GCN5 and 365 

ribosomal proteins in YPD, and oxidative stresses menadione and CdCl2. While gcn5∆ 366 

rpl38∆ behaved the same as gcn5∆ in menadione, indicating that GCN5 controls cellular 367 

proliferation using RPL38, double deletion gcn5∆ rps6b∆ resulted in a 20-fold reduced 368 

growth compared to either of the single deletions, indicating parallel or independent roles of 369 

both the genes in growth. Furthermore, deletion of the remaining ribosomal proteins (rpl11b∆ 370 

and rpl26b∆) rescued the growth phenotype of gcn5∆ (Fig 3). This observed antagonistic 371 

effect suggests that a more likely scenario is that these ribosomal proteins have a direct 372 

functional effect on pathways that are lost as a result of gcn5∆ deletion. This varied 373 

environmental dependence of genetic interactions of ribosomal protein and GCN5 indicates 374 

that some epigenetic regulators and signaling pathways that interact with the ribosome 375 

employ the flexibility of the ribosome to mediate phenotypic choice in diverse environments. 376 

Differential evolution of ribosomal proteins 377 

If different subsets of ribosomal proteins are under selection for adaptation to different 378 

environmental conditions, there should be a signature of this effect in yeast strains adapted to 379 

different environments. The yeast SGRP population [32] consists of 38 S. cerevisiae strains 380 

isolated from diverse ecological and geographical niches. To detect potential footprints of 381 

evolutionary selection, we compared the nucleotide diversity of ribosomal proteins and a 382 

control set of housekeeping genes in the SGRP population in their coding and 5’UTR 383 

sequences (S5 Table). While the coding sequence nucleotide diversity was similar for both 384 

sets, the diversity in the 5’UTR regions within ribosomal proteins was twice that of the 385 

control genes (P < 0.005, Fig S4A, S5 Table). Furthermore, in the YEASTRACT database 386 

[35], this variability altered the predicted transcription factor binding motifs on ribosomal 387 

proteins in diverse strains (S7 Table). Thus, while ribosomal proteins among the SGRP 388 

strains have similar coding sequences, their promoter regions have been significantly altered, 389 

presumably to adapt to different ecological niches.  390 

Coding and 5’UTR regions of ribosomal proteins in the three clusters in Fig 1C were 391 

compared using normalized Shannon entropy (S5 Table). All three clusters showed a 392 

significant difference in entropy between 5’UTR and coding regions (Fig S4B). Cluster A 393 
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showed significantly high entropy (diversity) for both 5’UTR and coding regions of 394 

ribosomal proteins compared to Clusters B and C (Fig S4B). This differential variability 395 

shows that the ribosomal proteins in the clusters are evolving at different rates across the 396 

SGRP population.  397 

Using the YEASTRACT database, we find that whereas most transcription factors (TFs) bind 398 

to ribosomal proteins in all three clusters, some are cluster specific. Transcription Factors 399 

regulating ribosomal proteins in Cluster A are enriched in the histone deacetylase complex 400 

while those that bind to ribosomal proteins in Cluster C are enriched in the HIR (Histone 401 

Regulatory) complex (Fig S5, S6 Table). This could be a possible explanation for the 402 

different rates of evolution of the 5’UTR regions of the proteins in these three clusters.  403 

Modular ribosomal proteins in higher eukaryotes  404 

Our above results establish modularity in both phenotype and genetic interactions of 405 

ribosomal proteins in yeast. It can be argued that this is merely a unique feature of the yeast 406 

ribosome, presumably because of the whole genome duplication event, which might have 407 

allowed differential adaptation of duplicated ribosomal proteins. To understand whether the 408 

ribosomal modularity observed in yeast extends to higher eukaryotes, we investigated 409 

expression levels of ribosomal proteins in mice and humans, which have a single copy of 410 

most ribosomal proteins.  411 

In complex eukaryotes, the analog of adaptation of unicellular organisms like yeast to 412 

different environments is adaptation to different cellular and tissue microenvironments. We 413 

therefore expect that if our thesis of the modularity of ribosomal proteins is valid beyond 414 

single celled eukaryotes, ribosomal proteins should be differentially used across cell types 415 

and tissues in mice and humans. In multicellular systems like humans and mice, ribosomal 416 

proteins are present in a single copy, whose deletion results in both cellular and organismal 417 

lethality. Our hypothesis for complex eukaryotes would then be that ribosomal proteins are 418 

expressed at significantly different levels in different tissue microenvironments in mice and 419 

humans. We tested this hypothesis by comparing the expression levels of ribosomal proteins 420 

in diverse cell types and tissues in human and mouse samples using RNASeq data for mRNA 421 

transcript levels from the ENCODE and the GTEx projects.  422 

A total of 66 ribosomal proteins with consistent transcript expression levels across replicates 423 

in the ENCODE data were identified in 110 cell types and tissues in humans (see Methods). 424 
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As previously observed [41], we found that while the majority of ribosomal protein 425 

transcripts are highly expressed across diverse tissues and cell types, a few showed low 426 

expression levels throughout. It has been shown that ribosomal proteins can show differential 427 

expression levels based on the proliferation or turnover rate of the cell type. To normalize 428 

such global differences, each ribosomal protein within each tissue was assigned a rank based 429 

on its expression level (rank 1 for lowest expression and rank 66 for highest expression, S7 430 

Table). Despite being a part of the ribosome, it is known that not all ribosomal proteins are 431 

equally expressed in a given tissue. In complex eukaryotes, just as in yeast, some of the 432 

ribosomal proteins are involved in ribosomal assembly. However, since this is true for all 433 

tissues and cell types, their rank normalized expression levels should be consistent across 434 

tissues.  435 

Hierarchical clustering of all ribosomal proteins expression ranks across all tissues resulted in 436 

a single highly correlated cluster (Fig S6). However, our results from yeast show that while 437 

some ribosomal proteins are essential and behave similarly across environments, others show 438 

high variability. To identify these highly variable ribosomal proteins, the 66 ribosomal 439 

proteins were filtered based on their ranks. In each tissue, the expression level ranks of the 440 

proteins were stratified into 4 classes: class I (rank 1-17), II (17-34), III (35-51) and IV (51-441 

66) (see Methods). This showed that across tissues, 46 out of 66 ribosomal proteins were 442 

classified into the same or adjacent classes, while the remaining 20 were classified into 3 443 

classes for 11 or more tissues types per class (S7 Table). These 20 were termed as variable 444 

ribosomal proteins and analyzed further. Note that had the rank assignments merely amplified 445 

small differences in expression levels (noise) for a given protein across tissues, such 446 

stratification would not have been observed. Instead, we would have seen a random 447 

assignment of ranks across tissues, which is not what was observed.  448 

The 20 variable ribosomal proteins spanned mostly classes II, III and IV i.e., their transcripts 449 

were both highly expressed and highly variable across tissues, thereby eliminating technical 450 

noise as the cause of the observed variability in ranks (S7 Table). Hierarchical clustering of 451 

the ranks of these 20 proteins across cell types and tissues showed that these proteins assort 452 

into distinct groups (Fig 4A). An identical clustering can also be observed in a heat map of 453 

Pearson rank correlations (Fig 4B, correlation P < 0.05). In the hierarchical clustering, 454 

distinct sets of ribosomal proteins were associated with two discrete clusters of epithelial 455 

cells, a cluster of the nervous tissue (tissue from different sections of the brain and spinal 456 
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cord) and a cluster of human cell lines (Fig 4A). We note that cell lines cluster separately, 457 

indicating that similar to modification of their signaling pathways [42], expression patterns of 458 

ribosomal proteins are also rewired in these cell lines compared to other human cells and 459 

tissues. To investigate this tissue specific ribosomal modularity further, we separately 460 

analyzed the 20 ribosomal proteins in the clusters associated with epithelial and nervous 461 

tissues. This again showed that the nervous tissue cluster is quite distinct in its use of variable 462 

ribosomal proteins compared to epithelial cells (Fig 5A, 5B). Even though the nervous tissues 463 

are known to have a reduced expression of ribosomal proteins compared to other more 464 

proliferating tissues, our results show that the ribosomal protein module in the nervous tissue 465 

is distinct from that in the epithelial cells. These results show that, analogous to yeast, 466 

ribosomes in humans show expression modularity across tissues.  467 

While the different cell types separated into different clusters based on the expression of 468 

variable ribosomal proteins in ENCODE data, they did not show a significant tissue bias 469 

except for nervous tissue. For example, the two clusters of epithelial cells did not segregate 470 

on the basis of organ of origin, suggesting that modularity of ribosomal proteins plays a role 471 

at the resolution of cell types instead of whole organs. To validate our result of modularity of 472 

ribosomal proteins in humans and to understand whether this modularity was a property of 473 

cell types or is also visible in bulk tissue, we compared the expression patterns of ribosomal 474 

proteins using the GTEx dataset. The GTEx data consists of RNAseq analysis of 54 different 475 

tissues (S9 Table). We extracted expression values of ribosomal proteins from these samples 476 

and performed the same analysis as for the ENCODE data (see Methods). Seventy nine 477 

ribosomal proteins passed our filtering criteria and were classified into ranks ranging from 1 478 

for the least expression and 79 for the highest expression in each tissue. These were further 479 

stratified into 4 classes: class I (rank 1-20), II (21-40), III (41-60) and IV (61-79). We found 480 

that ribosomal proteins from the GTEx data showed less variability in classes across tissues 481 

compared to the ENCODE data (S9 Table). Consequently, ribosomal proteins that fell into 482 

two or more classes with at least 10 tissues per class were identified as variable ribosomal 483 

proteins. A total of 18 ribosomal proteins were identified to be variable, of which 7 were the 484 

same as those identified in the ENCODE data, showing a significant overlap (Fisher’s Exact 485 

test, P < 0.1) between variable ribosomal proteins identified using ENCODE and GTEx data 486 

(Fig 6A). The variable ribosomal proteins in the GTEx data separated into two modules 487 

(Pearson correlation, P < 0.01, Fig 6A). Similar to the ENCODE data, the nervous tissues 488 

(brain and spinal cord) formed a separate cluster, validating our previous observation that a 489 
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different module of ribosomal proteins is used in the nervous system compared to other 490 

tissues (Fig 6B). However, bulk tissues did not cluster separately on the basis of variable 491 

ribosomal proteins (Fig 6B). The lack of modularity of ribosomal proteins at the level of 492 

tissues indicates that cell specific differences in ribosomal protein expression levels are lost 493 

when dealing with data from bulk tissue, because cell specific identity is lost in the GTEx 494 

data.  495 

A similar analysis was carried out for expression levels of ribosomal proteins in various 496 

tissues in mice from the ENCODE data. We note that the signal to noise ratio in the mouse 497 

data in ENCODE was significantly higher than in the human data. Consequently, only 42 498 

ribosomal proteins in 18 different tissues passed our filtering criteria and were stratified into 499 

four classes (S8 Table for details of classes). As in the human data, while the majority of 500 

mice ribosomal proteins showed high expression and invariant classification, 14 of these 42 501 

ribosomal proteins were as variable across tissues (spanning 3 classes in more than 2 tissues). 502 

As in ENCODE and GTEx data from humans, mouse brain tissues also formed a unique 503 

cluster, indicating that nervous tissue in general uses a distinct module of ribosomal proteins 504 

compared to other tissues (Fig S7A, 7B).  505 

We identified RPL38 as a variable protein in ENCODE and GTEx data in humans as well as 506 

ENCODE data in mice (Fig 5, 6, S7B). RPL38 is the most extensively studied ribosomal 507 

protein associated with ribosomal heterogeneity. This heterogeneity is due to its specialized 508 

translation of only the hox mRNA, without affecting translation of other mRNA [19]. 509 

Identification of RPL38 as a variable ribosomal protein in our study serves as an independent 510 

validation of our analyses. While different sets of ribosomal proteins were found to be 511 

variable in mice and humans, 6 out of 18 ribosomal proteins variable in mice were also 512 

variable in humans (4 in ENCODE data and 5 in GTEx data, Fig S7B). Furthermore, 4 of 513 

these 6 conserved variable ribosomal proteins fell in one cluster in mouse indicating a partial 514 

conservation of variability of ribosomal proteins across the two species (Fig S7B). 515 

 516 

DISCUSSION  517 

Our study provides several arguments and multiple evidences for the existence of modularity 518 

of ribosomal proteins across eukaryota, presumably to facilitate optimized translation 519 

efficiency in different environments. We show that, at least in yeast, we see evidence that the 520 
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5’UTRs of ribosomal proteins that form the modules seem to be under selection pressure, 521 

which suggests that they play a role in evolutionary adaptation. We interpret our results as 522 

evidence for a hitherto unrecognized ribosomal code, wherein specific ribosomal proteins are 523 

used in an environment specific manner in yeast and in cell and tissue specific ways in mice 524 

and humans. The existence of such a dynamic modularity of ribosomal proteins is the main 525 

finding of this paper. The mechanisms that regulate these modules remain to be elucidated 526 

and are outside the scope of this paper.  527 

Our study also uncovered some general, conserved properties of ribosomal proteins. We find 528 

that a subset of variable ribosomal proteins contribute to the plasticity of the ribosome by 529 

functioning independently or in concert across different environments by forming modules, 530 

defined as sets of proteins functioning in a coordinated manner. This modularity indicates 531 

that they have been optimized over the course of evolution based on the need for functional 532 

adaptation. We note that only a subset of ribosomal proteins vary among cell types and 533 

tissues, with the core ribosome remaining unaffected. Hence cell type specific structural 534 

changes resulting from such variation may be difficult to detect.  535 

Our findings would argue that, in spite of high sequence conservation [43], the inability of 536 

human ribosomal genes to substitute for yeast ribosomal genes [44] is probably because of 537 

species specific functioning of ribosomal modules. This, along with differential expression 538 

variability of ribosomal proteins in mice and humans, indicates that each species optimizes 539 

the composition of its ribosome to adapt to species specific selection pressures, not by 540 

substantially altering the sequence of the ribosomal proteins but by regulating their 541 

expression in an environment dependent manner using mechanisms yet to be discovered.  542 

Our results from two independent expression datasets (ENCODE and GTEx) show that the 543 

nervous tissues use a unique ribosomal code compared to the rest of the tissues in both mice 544 

and humans. While an overall reduced expression of ribosomal proteins in the brain has been 545 

observed previously, it has been attributed to the reduced proliferation of nervous cell types. 546 

Here, we show that along with a reduced expression, a unique composition of ribosomal 547 

proteins is utilized by nervous tissue. These may play a role in the fundamental physiological 548 

differences observed between the brain and the rest of the body.  549 

In mice and humans, recently evolved paralogs RPL27L, RPL22L1, RPL7L1, and RPL39L, 550 

showed poor but highly tissue specific expression compared to core ribosomal proteins. This 551 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 16, 2016. ; https://doi.org/10.1101/068361doi: bioRxiv preprint 

https://doi.org/10.1101/068361
http://creativecommons.org/licenses/by-nd/4.0/


	
  
	
  

19 

suggests that there is an ongoing process of adaptation driving modular ribosomes, with 552 

recent paralog proteins still evolving in response to selection pressures on them and on other, 553 

more ancient ribosomal proteins and pathways. 554 

Our results show that ribosome modularity is a dynamic, evolving process which seems to be 555 

involved in the evolution of species specific ribosomal proteins, the diversification of their 556 

sequences and functions and the creation of novel, species specific ribosomal proteins [45,46] 557 

leading to diverse phenotypic adaptations.  558 

 559 
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FIGURE LEGENDS 695 

Fig 1: Phenotypic variability of yeast ribosomal proteins 696 

(A) Growth of deletions of DNA repair cluster genes (black dots) in rich medium YPD (x-697 

axis) versus a DNA damaging agent, cisplatin (y-axis). (B) Growth of deletions of ribosomal 698 

proteins (black dots) in rich medium, YPD (x-axis) versus an oxidizing stress, Cadmium 699 

chloride (CdCl2) (y-axis). (C) Hierarchical clustering heat map of normalized growth of yeast 700 

strains for 68 single deletions of ribosomal proteins in 26 environments. The red arrow 701 

indicates YPD (rich medium).  702 

Fig 2: Differential modules of ribosomal proteins in yeast 703 

Hierarchical clustering of Pearson correlations among ribosomal proteins for (B) normalized 704 

growth from single deletion of ribosomal proteins in 26 environments, (C) double deletion 705 

interactions with 121 genes. Ribosomal proteins within each cluster are significantly 706 

correlated with P < 0.05 for each pair.  707 

Fig 3: Genetic interactions of ribosomal proteins with GCN5 708 

10-fold spot dilutions series (starting with 108 cells/ml) of wild type, single and double 709 

deletions of GCN5 with RPS6B, RPL38, RPS26B and RPL11B phenotyped in YPD (rich 710 

medium) and an oxidative stress, Cadmium chloride (CdCl2, 10µM).  711 

Fig 4: Clustering of human cell types and tissues based on rank order expression of 712 

variable ribosomal proteins in ENCODE data 713 

(A) A hierarchical clustered tree of 110 human cell types and tissues (1,000 bootstraps) based 714 

on rank order expression of 20 ribosomal proteins in ENCODE data. (B) Pearson correlation 715 

(P < 0.05) heatmap based on rank order expression of 20 variable ribosomal proteins results 716 

in distinct clusters and sub-clusters.  717 

Fig 5: Modules within the 20 variable ribosomal proteins in human tissues 718 

(A) The modular organization derived from hierarchical clustering of ribosomal proteins rank 719 

order expression in 110 cell types and tissues (1,000 bootstraps). (B) Heatmap showing 720 

different modules of 20 variable ribosomal proteins active in epithelial cells and the nervous 721 

tissue.  722 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 16, 2016. ; https://doi.org/10.1101/068361doi: bioRxiv preprint 

https://doi.org/10.1101/068361
http://creativecommons.org/licenses/by-nd/4.0/


	
  
	
  

24 

Fig 6: Clustering of human tissues and variable ribosomal proteins in GTEx data 723 

(A) Pearson correlation (P < 0.01) heatmap of 18 variable ribosomal proteins based on their 724 

rank order expression in 54 different tissues in GTEx data. Ribosomal proteins marked in red 725 

are also variable in ENCODE data. (B) Pearson correlation (P < 0.01) heatmap of 54 726 

different tissues based on rank order expression of 18 variable ribosomal proteins. Nervous 727 

tissue (brain and spinal cord) form a distinct cluster and are marked red.  728 

 729 

SUPPLEMENTARY INFORMATION 730 

Fig S1: Distribution of signal to noise in human and mouse data from ENCODE.  731 

ENCODE data was normalized by median subtraction per array and then log transformed 732 

(see Methods). The mean and standard deviation (sd) over replicates was computed to obtain 733 

  
x = log10 sd mean( ) . The distribution of x for human (A) and mouse (B) ENCODE data and 734 

(C) human GTEx data was used to determine the cutoffs xh, xm and xg for reliability of the 735 

ENCODE data for human, mouse and GTEx data for humans, respectively. Gene-tissue pairs 736 

for which xh > -0.4, xm > -0.6 and xg > 0.1 were excluded from the analysis.  737 

Fig S2: Phenotypic variation of yeast ribosomal proteins. 738 

(A) Distribution of variance of normalized growth of all non-essential genes in yeast (4,769) 739 

in 293 different environments. The genes are on the x-axis, arranged in increasing order of 740 

the variance of normalized growth in 293 environments (y-axis) due to their deletion. The 741 

191 genes to the right of the red line have variance greater than 0.8. (B) Stacked histogram 742 

showing the number of cases when the variance of growth from deletion of genes in various 743 

pathways was greater or smaller in stress compared to YPD. Gene deletions in the 744 

cytoplasmic ribosome and mitochondrial tRNA synthesis pathways had the highest variance 745 

in stress compared to YPD. However in mitochondrial tRNA synthesis pathway genes, the 746 

variance is greater or smaller in stress compared to YPD for equal numbers of genes. Only in 747 

the ribosomal pathway is the variance in stress conditions greater than YPD for all genes. (C) 748 

This figure shows the same data as in B but with the genes stratified into clusters based on 749 

their double deletion interactions (see Methods). The ribosomal cluster has the highest 750 

variance in stress compared to YPD. 751 
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Fig S3: Phenotype of ribosomal protein deletions in SK1 strain 752 

Ten-fold spot dilutions series (starting with 108 cells/ml) of wild type and ribosomal protein 753 

deletion strains of SK1 background phenotyped in rich medium YPD and an oxidative stress, 754 

Cadmium chloride (CdCl2 500 µM) 755 

Fig S4: Nucleotide diversity of ribosomal proteins across the SGRP strains:  756 

(A) Nucleotide diversity of coding and promoter sequences of ribosomal proteins and a 757 

control set of genes using Tukey’s multiple comparisons’ test (P < 0.05). The bars with the 758 

same letter code do not differ significantly.  759 

(B) Normalized Shannon Entropy of coding region and 5’UTRs of Cluster A, B and C from 760 

Fig 2B. Bars with the same letter code do not differ significantly (Tukey’s multiple 761 

comparisons’ test, P < 0.05). The figure shows that: (i) The 5’UTR regions of the ribosomal 762 

protein sequences are most variable compared to their coding region as well as the 5’UTR 763 

and coding regions of the control set of genes; (ii) The 5’UTRs of all the ribosomal proteins 764 

in the three clusters are significantly more variable (P < 0.01) than their coding regions; (iii). 765 

Proteins in Cluster A have significantly more variable coding regions than clusters B and C 766 

(P < 0.05 and P < 0.01 respectively); (iv). Proteins in Cluster A have significantly more 767 

variable 5’UTR than Clusters B and C (P < 0.05 and P < 0.01 respectively).  768 

Fig S5: Networks of transcription factors that bind uniquely to ribosomal proteins in 769 

Cluster A, B and C (see Fig 2B).  770 

These network clusters were identified using the STRING database (http://string-db.org). The 771 

thickness of blue lines connecting two transcription factors indicates the strength of 772 

experimental evidence for their interaction. Gene enrichment (P < 0.001) of transcription 773 

factors in Cluster A is for Histone Deacetylase Complex and in Cluster C for the HIR 774 

Complex. 775 

Fig S6: Pearson correlation heatmap (P < 0.05) of 110 human cell types and tissues 776 

based on rank order expression of 66 ribosomal proteins in ENCODE data. 777 

Fig S7: Variable ribosomal proteins across tissues in mouse 778 
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(A) Hierarchical clustering of 18 tissues in mice based on expression rank orders of 14 779 

variable ribosomal proteins (1,000 bootstraps).  780 

(B) Hierarchical clustering of the 14 variable ribosomal proteins based on their expression 781 

rank orders in 18 tissues in mice (1,000 bootstraps). The ribosomal proteins form three 782 

distinct clusters indicated in different colors. The red arrows indicate ribosomal proteins that 783 

are also variable in human ENCODE and GTEx data. 784 

 785 

S1 Table: Yeast deletion collection phenotyped in 293 environments. 786 

S2 Table: Variance analysis of various pathways and genetic  787 

S3 Table: Double deletion genetic interactions of the 65 ribosomal proteins with 121 788 

ribosomal and non-ribosomal proteins. 789 

S4 Table: Strains used in this study and Primer sequences 790 

S5 Table: Nucleotide diversity and Shannon Entropy comparisons of ribosomal proteins in 791 

Clusters A, B and C. 792 

S6 Table: Transcription Factors binding to ribosomal proteins in Clusters A, B and C 793 

downloaded from YEASTRACT 794 

S7 Table: Expression ranks and classes of 66 ribosomal proteins in 110 human cell types and 795 

tissues downloaded from ENCODE 796 

S8 Table: Expression ranks and classes of 42 ribosomal proteins in 18 mouse tissues 797 

downloaded from ENCODE 798 

S9 Table: Expression ranks and classes of 79 ribosomal proteins in 54 human tissues 799 

downloaded from GTEx portal. 800 

S10 Table: Gene Ontology Enrichment for various groups and clusters 801 

S11 Table: ribosomal proteins in Clusters 1, 2, 3 and Clusters A, B, C 802 
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