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Abstract

The assembly of DNA sequences de novo is fundamental to genomics research. It
is the first of many steps towards elucidating and characterizing whole genomes.
Downstream applications, including analysis of genomic variation between species,
between or within individuals critically depends on robustly assembled sequences.
In the span of a single decade, the sequence throughput of leading DNA se-
quencing instruments has increased drastically, and coupled with established
and planned large-scale, personalized medicine initiatives to sequence genomes
in the thousands and even millions, the development of efficient, scalable and
accurate bioinformatics tools for producing high-quality reference draft genomes
is timely.

With ABySS 1.0, we originally showed that assembling the human genome using
short 50 bp sequencing reads was possible by aggregating the half terabyte of
compute memory needed over several computers using a standardized message-
passing system (MPI). We present here its re-design, which departs from MPI
and instead implements algorithms that employ a Bloom filter, a probabilistic
data structure, to represent a de Bruijn graph and reduce memory requirements.

We present assembly benchmarks of human Genome in a Bottle 250 bp Illumina
paired-end and 6 kbp mate-pair libraries from a single individual, yielding a
NG50 (NGA50) scaffold contiguity of 3.5 (3.0) Mbp using less than 35 GB of
RAM, a modest memory requirement by today’s standard that is often available
on a single computer. We also investigate the use of BioNano Genomics and
10x Genomics’ Chromium data to further improve the scaffold contiguity of this
assembly to 42 (15) Mbp.
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Introduction

De novo genome assembly remains a challenging problem, especially for large and
complex genomes. The problem refers to identifying partial and unambiguous
overlaps between sequencing reads (which are orders of magnitude shorter than
the target genome) to build longer, contiguous sequences (contigs) (Nagarajan
and Pop 2013). If further linkage information is available, such as in the form of
paired end reads or physical maps, these contigs may be ordered and oriented with
respect to each other and reported as scaffolds, where there may be undetermined
sequences (represented as ‘N’s) between contigs. It is practically accepted that
assembly algorithms almost never reconstruct genomes in their full chromosomes
(Paulino et al. 2015), and the quality of returned contigs and scaffolds are
conventionally measured by the contiguity of the assembled sequences. Often
assembly algorithms are also validated using data from resequencing experiments,
where assembled sequences are compared against a reference genome for their
correctness in addition to their contiguity (Gurevich et al. 2013).

Of particular interest in this study is resequencing data from human genome
studies. The unbiased approach of de novo assembly of data from these exper-
iments prior to comparison to a reference sequence is a valuable approach in
detecting structural variants between individuals or between tumor and normal
genomes (Li 2015; Mose et al. 2014). Even though it is substantially more
computationally intensive to analyze sequencing data by assembling the reads
first, gained specificity and the resulting savings in event verification efforts
may justify the choice, but its heavy resource use also points to an area for
improvement.

In this domain ABySS v1 was the first scalable de novo assembly tool that could
assemble a human genome, using short reads from a high-throughput sequencing
platform (Simpson et al. 2009). However, the feat required aggregating a large
amount of memory distributed across a number of compute nodes communicating
through a Message Passing Interface protocol. Although this enabling technology
found applications in many large cancer cohort studies (Yip et al. 2011; Roberts
et al. 2012; Pugh et al. 2013; Ley et al. 2013; Morin et al. 2013), its large
memory footprint constituted a substantial bottleneck.

Of course this large memory footprint issue was not unique to ABySS v1, with
many algorithms that can scale to assemble the human genome, including SOAP-
denovo (Luo et al. 2012), SGA (Simpson and Durbin 2011), ALLPATHS_LG
(Gnerre et al. 2010), MaSuRCA (Zimin et al. 2013) and DISCOVAR (Weisenfeld
et al. 2014) all requiring around 1 TB of RAM, if not more, to accomplish this.
To alleviate this bottleneck, Minia (Chikhi and Rizk 2013) and BCALM2 (Chikhi
et al. 2016) algorithms introduce probabilistic data structures using Bloom filters
(Bloom 1970) and minimizer hashing (Chikhi et al. 2014), respectively.

In ABySS v2, we follow the model of Minia, where sequence overlaps are inferred
from a de Bruijn graph (Pevzner et al. 2001) representing an implicit Bloom filter.
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As in ABySS v1, we catalogue all observed sequences of length k (k-mers, with k
less than the read length), and store them in a Bloom filter. This representation
of the k-mer spectrum of the input reads lends itself naturally to identify k-1
base pair overlaps, hence describe a de Bruijn graph.

Performance of sequence assembly algorithms is closely coupled with the se-
quencing technology used and the quality of the data they generate, with highly
accurate long reads always being desirable. However, the genomics research
landscape, especially cancer genomics studies, has been heavily dominated by the
high throughput sequencing platforms from Illumina (San Diego, CA). Although
longer (albeit noisier) sequences from Pacific Biosciences (Menlo Park, CA)
instruments are proven to yield high quality de novo human genome assemblies
(Chaisson et al. 2014; Pendleton et al. 2015), they come at a higher price relative
to Illumina reads. The newer long read instruments from Oxford Nanopore
Technologies (Oxford, UK) do not yet have the necessary throughput or data
quality to be of utility in human genomics studies. As a result, most large cohort
projects, as well as price-sensitive personalized medicine applications still use
the Illumina platforms.

Another new technology, Chromium from 10X Genomics (Pleasanton, CA), gen-
erates sequencing libraries that localize sequence information on DNA fragments
that are over 100 kb long. The technology employs microfluidics to isolate large
fragments, which are sheared and barcoded separately, and prepared to sequenc-
ing libraries compatible with Illumina paired end sequencing. The barcodes can
then be used to reconstruct the sequence of the long fragments from which they
originate, providing valuable linkage information for assembly and scaffolding
problems.

Further on the scaffolding problem, it was demonstrated in the original Human
Genome Project (Lander et al. 2001) and other pioneering de novo sequencing
projects that used Sanger sequencing data that linkage information from a
physical map is very valuable in building highly contiguous assemblies. Although
the approach is not favored in many studies, presumably for the additional cost
that it brings, new optical mapping technologies, such as that from BioNano
Genomics (San Diego, CA) represent intriguing opportunities.

In this paper we describe the details of the Bloom filter implementation in ABySS
v2, and compare its performance with respect to the latest version of ABySS v1,
as well as other scalable assembly pipelines, SOAPdenovo and SGA. We note
that there are other algorithms that can build contigs from high throughput
sequencing datasets, and we include comparison to DISCOVARdenovo, Minia
and BCALM2 in that category, further contiguating their results using third
party scaffolding algorithms, BESST (Sahlin et al. 2016), LINKS (Warren et
al. 2015) and the scaffolding algorithm within the ABySS package. We further
demonstrate how long range linkage information from Chromium reads and
BioNano maps may improve scaffold contiguity of draft assemblies.
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Results

ABySS 2.0.0 Assembly Algorithm

In ABySS 2.0.0, we have implemented a multi-stage de novo assembly pipeline
consisting of unitig, contig, and scaffold stages. In the unitig stage, we perform
the initial assembly of sequences according to the de Bruijn graph assembly
paradigm (Pevzner et al. 2001). In the contig stage, we align the paired-end reads
to the unitigs and use the pairing information to orient and merge overlapping
unitigs. In the scaffold stage, we align the mate-pair reads to the contigs to
orient and join them into scaffolds, inserting gaps of ‘N’ characters at gaps in
coverage and unresolved repeats.

The main innovation of ABySS 2.0.0 is a Bloom filter-based implementation
of the de Bruijn graph assembly algorithm that reduces the overall memory
requirements of ABySS by an order of magnitude. While the original ABySS
publication (Simpson et al. 2009) introduced a novel distributed approach for
assembling large genomes on a cluster, the Bloom filter approach we describe
here enables large genome assemblies to be run on a single machine with modest
memory and achieves comparable results.

Effect of Bloom Filter False Positive Rate

While a Bloom filter can be used to implement a highly compact representation
of the de Bruijn graph, it comes with the caveat that it is a probabilistic data
structure. In particular, a Bloom filter may return false positives when queried
for the presence of particular k-mers in the graph. The false positive rate of
a Bloom filter is determined by the size of the Bloom filter m, the number of
elements inserted into the Bloom filter n, and the number of hash functions h,
as first derived in Bloom (1970):

FPR =
(

1 −
(

1 − 1
m

)hn
)h

In the context of de Bruijn graph assembly, Bloom filter false positives have the
effect of adding k-mers to the graph that are not present in the input sequencing
reads. To address this issue, we have implemented a look-ahead mechanism to
remove such k-mers from the graph. However, in order to confirm that Bloom
filter false positives do not cause assembly artifacts, and to better understand the
relationship between Bloom filter false positive rate, RAM usage, and running
time, we conducted the following experiment.

Using the C. elegans dataset DRR008444, we assessed the effect of Bloom filter
false positive rate on the NG50, number of misassemblies, run time, and peak
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memory usage of ABySS 2.0.0 (Fig. 1). As we increased the false positive rate
from 1.9% to 20.7%, the NG50 remained roughly the same at 9600 bp, decreasing
slightly as FPR reached 20% (Fig. 1A). Similarly, the number of misassemblies
(9) remained constant across FPR values (Fig. 1B). As FPR was increased, the
run time of ABySS 2.0.0 increased rapidly (Fig. 1C) while the peak memory
usage decreased rapidly (Fig. 1D). These plots demonstrate that for this dataset
we can trade off between memory usage and run time, with a FPR in the range
of 5% - 12% giving both good memory and time performance. It also indicates
that any FPR below 20% has no adverse effects on assembly quality in terms of
contiguity or correctness.

Assembler Comparison

To assess the performance of ABySS 2.0.0, we compared it with other leading
assemblers for large genomes: ABySS 1.9.0 (Simpson et al. 2009), BCALM2
(Chikhi et al. 2016), DISCOVAR de novo 52488 (Weisenfeld et al. 2014), Minia
3.0 beta (Chikhi and Rizk 2013), SGA 0.10.14 (Simpson and Durbin 2011) and
SOAPdenovo 2.04 (Luo et al. 2012). We conducted our comparison using a
recent, publicly available human short read data set provided by the Genome in
a Bottle (Zook et al. 2016) project. The Genome in a Bottle HG004 data was
chosen for its deep 70X coverage of current (paired-end 250 bp) Illumina short
read data and the availability of sequences from other platforms, including a
175X physical coverage jumping library (mate-pair) dataset (after trimming),
10X genomics Chromium data, and BioNano optical mapping data. Each of
the assemblers included in the comparison was chosen due to its significant
contributions towards the goal of scalable de novo assembly. ABySS facilitates
large genome assemblies by distributing the de Bruijn graph across cluster
nodes, and was the first software to assemble a human genome from short reads.
The BCALM2 assembler introduces a novel method for partitioning the de
Bruijn graph using minimizer hashing, which enables subsets of the graph to be
assembled iteratively or in parallel. DISCOVAR de novo is a recent de Bruijn
graph assembler for large genomes. Minia is the first assembler to employ a
Bloom filter representation of the de Bruijn graph and uses a novel algorithm
for eliminating Bloom filter false positives. SGA demonstrates the use of an
FM-index (Simpson and Durbin 2011) as the core data structure for assembly,
enabling detection of variable-length overlaps between reads with a low memory
footprint. In addition to the aforementioned assemblers, we also attempted
to include ALLPATHS-LG 52488 (Gnerre et al. 2010) and MaSuRCA 3.1.3
(Zimin et al. 2013) in our comparison. However, these assemblers did not run to
completion on the target data set. ALLPATHS-LG 52488 (Gnerre et al. 2010)
ran for one month and did not complete in that time. MaSuRCA 3.1.3 (Zimin et
al. 2013) ran for five days and failed with a segmentation fault in the program
gatekeeper.

We first compared the resource-efficiency of the assemblers by measuring their
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Figure 1: Effect of Bloom filter false positive rate (FPR) on ABySS 2.0.0
assemblies of the C. elegans DRR008444 dataset. (A) The assembly contiguity
(NG50) is stable up to an FPR of 20%. (B) The number of misassemblies reported
by QUAST (9) is stable with respect to FPR. (C) The assembly wallclock time
increases with FPR and rises quickly when FPR exceeds 12%. (D) Peak memory
usage drops quickly as FPR increases and levels out as FPR reaches 7.5%.
From these results we conclude that a Bloom filter FPR in the range of 5-12%
provides a good balance between assembly time and memory usage, without any
detrimental effect on assembly quality.
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peak RAM and wallclock time (Fig. 2D, Table 4). Memory usage and run time
varied wildly from 5 GB to 1.8 TB and 9 hours to 8 days. As expected given the
succinct representation of the de Bruijn graph using Bloom filters, both Minia
and ABySS 2.0.0 had memory footprints that were an order of magnitude smaller
than other assemblers, with the exception of BCALM2, which both achieved
the smallest memory footprint, by virtue of its novel partitioning strategy to
constructing the de Bruijn graph, and completed the assembly in 9 hours, 8 hours
of which was spent counting k-mers with DSK (Rizk et al. 2013). In contrast,
DISCOVAR de novo, which achieves the best sequence contiguity, required 1.8
TB of memory and 8 days to complete.

We next compared the assemblies in terms of their contiguity and correctness
(Fig. 2A-C, Tables 1-3). For contiguity assessment we calculated both NG50
and NGA50 using a genome size of 3,088,269,832 bp, whereas for correctness we
aligned the contigs to the primary chromosome sequences of the human reference
GRCh38 using BWA MEM 0.7.13 and counted the number of resulting break-
points using abyss-samtobreak -l500 -G3088269832. As some assemblers
such as BCALM2 and Minia only implement the first (de Bruijn graph) stage of
assembly, we included comparisons for both the contig (Fig. 2A) and scaffold
(Fig. 2B) stages, as applicable. To extract contig sequences from scaffolded
assemblies, we split the sequences at occurrences of one or more ‘N’ characters.
From the contig comparison, we observe that DISCOVAR achieves the highest
sequence contiguity by a factor of approximately two (DISCOVAR NG50 of 82
kbp vs. ABySS + Sealer NG50 of 38 kbp). However, we also note that this
result comes at the expense of an order of magnitude more time (8 days) and
memory (1.8 TB) than the other assemblers, as shown in Fig. 2D. The NG50 of
the ABySS 1.9.0 (30 kbp) and ABySS 2.0.0 (21 kbp) contigs noticeably exceeds
those of BCALM2 (1 kbp) and Minia (5 kbp), primarily due to the additional
use of paired-end information in ABySS. Comparing the contig results of the two
ABySS assemblies, we note that the ABySS 2.0.0 assembly has slightly lower
contiguity than ABySS 1.9.0 (21 kbp vs. 30 kbp). Upon investigation, we have
observed that the main cause of this difference is the handling of low coverage
regions. Whereas ABySS 1.9.0 retains all k-mers in the de Bruijn graph along
with their counts, ABySS 2.0.0 discards k-mers with counts below a user-specified
threshold, as discussed in Methods.

To further improve the contiguity of the ABySS contigs, we closed gaps in
the assembly scaffolds with Sealer (Paulino et al. 2015). Sealer fills gaps by
searching for a connecting path between gap flanks in the de Bruijn graph, and
uses multiple k-mer sizes to maximize the probability of successfully finding a
path. For the ABySS 1.9.0 assembly, Sealer closed 33,380 of 148,795 (22.4%) of
scaffold gaps and increased the contig NG50 from 30 kbp to 38 kbp. For the
ABySS 2.0.0 assembly, Sealer closed 33,533 of 213,480 (15.7%) scaffolds and
increased the contig NG50 from 21 kbp to 25 kbp.

Comparing the contiguity/correctness of the scaffolded assemblies (Fig. 2B), we
observe that the results of ABySS and DISCOVAR begin to converge, as do
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Figure 2: De novo assembly results for Genome in a Bottle HG004 human genome
short read data with ABySS 1.9.0, ABySS 2.0.0, BCALM2, DISCOVAR, Minia,
SOAPdenovo, and SGA. For panels A-C, on the Y axes we show the range of
NGA50 to NG50 to indicate uncertainty caused by real genomic variants between
individual HG004 and the reference genome (GRCh38). On the X axes, we show
the number of breakpoints that occurred when aligning the sequences to the
reference genome. Breakpoints are an indicator for the number of miassemblies
but are also subject to uncertainty due to genomic variation between HG004
and the reference genome. (A) Contiguity and correctness metrics for contig
sequences. For assemblies with scaffolding stages, the contigs were extracted
by splitting the sequences at ‘N’ characters. (B) Contiguity and correctness
metrics after scaffolding with mate pair (MPET) reads. The SOAPdenovo result
for this plot was excluded as an outlier with an NGA50 (NG50) value of 103
kbp (172 kbp) and 10,610 breakpoints (C) Contiguity and correctness metrics
after further scaffolding with BioNano optical mapping data, using BioNano’s
IrysSolve software. (D) Peak memory usage and wallclock time for the assemblers.
These wallclock times do not include the BioNano scaffolding stage, which was
approximately 2 hours and did not affect peak RAM usage. The DISCOVAR
wallclock time does not include the additional time for scaffolding with LINKS /
BESST / ABySS-Scaffold.
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the results between the two versions of ABySS compared. As DISCOVAR does
not provide its own mate-pair scaffolding algorithm, we augmented its assembly
with three third-party scaffolders, ABySS-Scaffold, LINKS (Warren et al. 2015)
and BESST (Sahlin et al. 2016), to enable a more direct comparison with
ABySS. We note that there are significant differences between NG50 and NGA50
metrics in the scaffold plot, particularly in the case of the DISCOVAR + BESST
assembly (3.9 Mbp vs. 6.9 Mbp). The NG50 is calculated under the assumption
that all sequences are correctly assembled, whereas the NGA50 metric penalizes
breakpoints when aligning the sequences to the reference genome. While on one
hand the NG50 is an overly optimistic metric, on the other hand the NGA50
is an overly pessimistic metric because certain breakpoints may be attributed
to real structural variation between the sequenced individual and the reference
genome. For this reason, we show contiguity of the assemblies as a range between
NGA50 and NG50, with the true unknown value lying somewhere in between.

After scaffolding the assemblies with Illumina mate-pair data, we performed an
additional round of scaffolding using the BioNano optical mapping data and
BioNano’s hybrid scaffolding tool hybridScaffold.pl. BioNano generates an
optical map of the genome by fluorescently tagging occurrences of a particular
endonuclease motif within long DNA molecules, resulting in a barcode-like
pattern for each molecule. To perform the scaffolding, BioNano generates an
analogous set of barcode patterns in silico for the sequences of the input assembly,
and then aligns the two sets of bar codes. Applying BioNano scaffolding to the
mate-pair-scaffolded sequences improves the NG50 and NGA50 contiguity metrics
by roughly a factor of five across all assemblies (Fig. 2C), with NG50 reaching
52 Mbp with DISCOVAR + ABySS-Scaffold + BioNano. The distance between
the NG50 and NGA50 values grows much larger at this stage of scaffolding,
which we surmise is caused by a greater likelihood of encountering real sequence
variation between the sequenced individual and the reference genome.

Our breakpoints metric of relative correctness between assemblies may be con-
founded by smaller real structural variations, especially as the assemblies become
more contiguous. To this end, we investigated large-scale misassemblies (>10MB)
and found only 2 major events within our ABySS 2.0.0 + BioNano scaffolds. One
of these large scale events between chromosome 1 and 16 was identified in every
assembly (Supplementary Fig. S1-S6), which indicates that the event may be real
structural variant. The other large scale event is between chromosome 6 and 8
and is interestingly also found in the DISCOVAR + BESST + BioNano assembly
(despite having fewer breakpoints and using an independent methodology), hence
the relative correctness of the ABySS2 + BioNano assembly is still on par with
the other assemblies.
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Table 1: The scaffold contiguity and number of breakpoints when
aligned to GRCh38 using BWA MEM 0.7.13 of the assemblies of
GIAB HG004 with BioNano scaffolding.

Assembly NG50 (Mbp) NGA50 (Mbp) Breakpoints
ABySS 1.9.0 + BioNano 32.5 15.3 3,051
ABySS 2.0.0 + BioNano 26.9 12.8 2,750
DISCOVAR + ABySS-Scaffold + Bionano 52.2 15.0 3,121
DISCOVAR + LINKS + BioNano 25.7 13.6 2,735
DISCOVAR + BESST + BioNano 37.8 9.3 2,672

Table 2: The scaffold contiguity and number of breakpoints when
aligned to GRCh38 using BWA MEM 0.7.13 of the assemblies of
GIAB HG004.

Assembly NG50 (Mbp) NGA50 (Mbp) Breakpoints
ABySS 1.9.0 4.82 4.36 2,975
ABySS 2.0.0 3.49 2.97 2,717
DISCOVAR + ABySS-Scaffold 10.42 6.32 3,085
DISCOVAR + LINKS 3.08 2.44 2,655
DISCOVAR + BESST 6.92 3.94 2,657
SOAPdenovo 2.04 0.17 0.10 11,219

Table 3: The sequence contiguity and number of breakpoints when
aligned to GRCh38 using BWA MEM 0.7.13 of the assemblies of
GIAB HG004.

Assembly NG50 (kbp) NGA50 (kbp) Breakpoints
ABySS 1.9.0 30.0 29.1 1,898
ABySS 1.9.0 + Sealer 38.0 36.3 2,268
ABySS 2.0.0 20.6 20.1 1,813
ABySS 2.0.0 + Sealer 24.5 23.7 2,089
DISCOVARdenovo 52488 82.1 76.6 1,947
BCALM 2.0.0 1.2 1.2 236
Minia 3.0-beta 4.8 4.7 949
SGA 0.10.14 7.9 7.8 859
SOAPdenovo 2.04 3.8 3.7 609
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Table 4: The peak memory usage and wall clock run time with 64
threads of the assemblies of GIAB HG004.

Assembly Memory (GB) Time (h)
ABySS 1.9.0 418 14
ABySS 2.0.0 34 20
DISCOVARdenovo 52488 1,832 187
BCALM 2.0.0 5 9
Minia 3.0-beta 137 19
SGA 0.10.14 270 65
SOAPdenovo 2.04 659 35

Scaffolding with Chromium Data

As the final step of our ABySS 2.0.0 assembly, we used the 10X Genomics
Chromium data available for individual HG004 to further scaffold the Bionano
assembly. The Chromium sequencing platform augments existing short read
technologies by labeling reads that originate from the same long DNA molecule
with a shared barcode sequence, also referred to as a read index. This labeling is
achieved during library preparation by isolating long DNA molecules into droplets
alongside gel beads containing the barcoding oligos. The read indices added by
the Chromium protocol provide additional long-range grouping information for
the short reads, which can be leveraged for scaffolding and other bioinformatics
applications, such as phasing sequence variants.

To scaffold our assembly with the Chromium data, we aligned the Chromium
reads to the input BioNano scaffolds with BWA MEM 0.7.13 and recorded the
indices of the reads that aligned to each scaffold. As we were only interested in
the read indices that joined scaffolds, we reduced noise by masking the interior
portions of the input BioNano scaffolds with ‘N’ characters, preserving only the
first/last 30 kbp of sequence in each scaffold, prior to aligning the Chromium
reads. Using the information obtained from the read alignments, we constructed
a graph representation of the relationships between scaffolds, using nodes to
represent scaffolds and edge weights to represent the number of shared read
indices between scaffolds. Finally, we supplied this graph as input to the LINKS
(Warren et al. 2015) scaffolding algorithm to identify high-confidence paths
within the graph and to output the corresponding scaffolds.

The Chromium scaffolding increased the scaffold NG50 of our ABySS 2.0.0
assembly from 26.9 Mbp to 41.9 Mbp. At this scale of contiguity, the largest
scaffolds represent significant fractions of chromosome arms. In Fig. 3, we
show the positions on the chromosomes of the 90 scaffolds larger than 3.2 Mbp
that compose 90% of the genome. We note that many chromosome arms are
reconstructed by 1 to 4 large scaffolds.
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Figure 3: Contigs from the 90 scaffolds larger than 3.2 Mbp that compose 90%
of the genome are aligned to GRCh38 using BWA-MEM 0.7.13. Contigs from
the same scaffold are shown in the same shade of blue, and alternating shades
of blue are used to distinguish between contigs from different scaffolds. Two
translocations, t(1;16) and t(6;8), are shown in orange and pink. The segments
of the genome that are not covered by alignments of the largest 90 scaffolds are
shown in grey. Gaps in the reference genome, including centromeres and other
heterochromatin, are shown in red.
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Figure 4: A Circos (Krzywinski et al. 2009) Assembly Consistency Plot. Scaftigs
from the largest 89 scaffolds that compose 90% of the genome are aligned to
GRCh38 using BWA-MEM 0.7.13. GRCh38 chromosomes are displayed on the
left and the scaffolds on the right. Connections show the aligned regions between
the genome and scaffolds. Contigs are included as a part of the same region
if the are within 1Mbp of on either side of the connection, and regions shorter
than 100Kbp are not shown. The black regions on the chromosomes indicate
gaps in the reference and the circles indicate the centromere location on each
chromosome.
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Discussion

The idiogram of Fig. 3 demonstrates that correct and highly-contiguous de novo
assembly of human genomes is possible using current short read sequencing
technologies combined with long range scaffolding techniques. While each of the
scaffolding data types used here (mate-pair, BioNano, Chromium) are capable of
increasing assembly contiguity by orders of magnitude on their own, our results
demonstrate that these data are even more powerful when used in combination,
also demonstrated by Mostovoy et al. (2016). In the human assembly we
have described here, each scaffolding step feeds on the success of the previous
assembly stages. Longer contig sequences improve the results of mate-pair
scaffolding by allowing more mate-pairs to map to the contigs. Longer mate-pair
scaffolds improve the BioNano scaffolding by allowing the optical map to align
unambiguously to the mate-pair scaffolds; for this reason, BioNano recommends
that the input assembly contains sequences of at least 100 kbp. Finally, longer
BioNano scaffolds improve the Chromium scaffolding by resolving ambiguities
in ordering and orientation of the scaffolds that are difficult to resolve using
Chromium data alone.

Another observation that can be made from our assembler comparison is that,
in spite of more than a decade of research and development related to de
Bruijn graph assemblers, the memory and runtime efficiency of short read
assemblers can still be greatly improved. This issue is particularly important
for downstream studies that involve large numbers of de novo assemblies, such
as human population studies, cancer genome studies, and clinical applications.
The opportunity for improving the throughput of de novo assemblies is evident
when comparing novel de Bruijn graph implementations such as Minia and
BCALM2 against more mature assembly pipelines such as ABySS 1.9.0 and
DISCOVAR (Fig. 2D). For example, the Minia assembler used only 137 GB
RAM and required less than a day to run, whereas the equivalent DISCOVAR
assembly used nearly 2 TB RAM and required more than a week to run. While
Minia and BCALM2 did not match the results of ABySS and DISCOVAR in
terms of assembly contiguity (Fig. 2A), we posit that this is due to the limited
error removal of the implementations and not a fundamental limitation of the
algorithms themselves. In the case of Minia, this hypothesis is borne out by the
results of ABySS 2.0.0 (Fig. 2C), which employs a Bloom filter-based assembly
approach similar to Minia, but achieves contiguity results that are on par with
DISCOVAR and ABySS 1.9.0.

The assembly of long reads has yielded highly contiguous genome assemblies
of human (Pendleton et al. 2015; Chin et al. 2016) and other organisms with
sequence contiguity in the megabase range. Long read sequencing comes however
at a cost premium. For applications that are cost sensitive, such as sequencing
for diagnostic medicine, algorithms that exploit high-throughput short-read
sequencing are valuable. We show that megabase scaffolds are achievable using
short-read sequencing with one paired-end and one mate-pair library, and scaf-
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folds approaching the size of entire chromosome arms are possible with additional
BioNano scaffolding. A remaining challenge is to improve the sequence contiguity
of assemblies of short reads sequencing, which remain in the range of tens of
kilobases, significantly shorter than the megabases achieved with the assembly
of long read sequencing.

Methods

Bloom filter de Bruijn Graph Assembly

The first stage of the ABySS 2.0.0 assembly pipeline is a de Bruijn graph assembler
that uses a compact, Bloom filter-based representation of the graph. The use
of Bloom filters for de novo assembly was first demonstrated in Minia (Chikhi
and Rizk 2013), and ABySS 2.0.0 builds on many aspects of that approach. The
parts of our assembly algorithm that are novel with respect to Minia are: (i)
the use of perfect reads to seed contig traversals, (ii) the use of look-ahead for
error correction and elimination of Bloom filter false positives rather than a
separate data structure, and (iii) the use of a new hashing algorithm, ntHash
(Mohamadi et al. 2016), designed for processing DNA/RNA sequences efficiently.
We describe these aspects of the algorithm in the course of our overall description
below.

In the first step of the assembly, we load k-mers from the sequencing reads
into a Bloom filter. These k-mers represent the set of nodes in a de Bruijn
graph, even though we do not explicitly store the edges connecting the nodes.
Instead, we discover edges at runtime by querying the Bloom filter for all four
possible predecessors/successors of the current k-mer during the course of a graph
traversal. Each possible successor (predecessor) corresponds to a single-base
extension of the current k-mer to the right (left) by “A”, “C”, “G”, or “T”. To
eliminate the majority of k-mers resulting from sequencing errors, we discard all
k-mers with an occurrence count that is less than a user-specified threshold. We
utilize a cascading Bloom filter to implement the filtering by k-mer count, as
described in our previous work on Konnector (Vandervalk et al. 2014). Briefly, a
cascading Bloom filter is a chained array of Bloom filters where each Bloom filter
stores k-mers with a count that is one higher than the preceding Bloom filter.
The procedure for inserting a k-mer into a cascading Bloom filter is to check
for the presence of the k-mer in each Bloom filter in succession and to add the
k-mer to the first Bloom filter where it is not already present. After all k-mers
from the reads have been inserted, the last Bloom filter in the chain is then kept
as the set of solid k-mers and the preceding Bloom filters are discarded.

In the second step of the assembly, we generate the unitig sequences by extending
perfect reads left and right within the Bloom filter de Bruijn graph, where a read
is considered to be perfect if it consists entirely of solid k-mers. The extension
of the sequence continues left and right within the graph until either a dead end
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or a branching point is encountered. One complication of this approach is that
Bloom filter false positives and recurrent sequencing errors will create branches
in the graph that cause the sequence extension to end prematurely. To address
this issue, we invoke an additional look-ahead step at each branching point, up
to a distance of k nodes (Fig. 5). If the look-ahead step reveals that a branch
is less than or equal to k nodes, it is considered to be a false branch and its
existence is ignored. If, on the other hand, the branch point has two or more
branches that are longer than k nodes then the extension is halted. The use of
look-ahead incurs an additional computational cost to the graph traversal, but
obviates the requirement for additional data structures to track false positives
and error k-mers.

In the above steps, we use ntHash algorithm while working with the Bloom
filter data structure. ntHash is an efficient hash method that computes the hash
values for all consecutive k-mers in a DNA sequence recursively, in which the
hash value for a k-mer is derived from the hash value of the previous k-mer. It is
an adapted version of cyclic polynomial hashing to compute normal or canonical
hash values for k-mers in DNA sequences efficiently. Further, ntHash provides a
fast way to compute multiple hash values for a given k-mer, without repeating
the whole hashing procedure for each value by few more operations. This is very
useful for certain bioinformatics applications such as ABySS 2.0.0 that employs
the Bloom filter data structure.

Figure 5: Extension of reads during Bloom filter de Bruijn graph assembly. A
“perfect” read consisting only of solid k-mers is extended left and right within
the de Bruijn graph until a branching point or dead-end is encountered. A
look-ahead algorithm is employed to detect and ignore short branches due to
Bloom filter false positives and/or recurrent read errors.

Effect of Bloom Filter False Positive Rate

To assess the effects of the Bloom filter false positive rate on ABySS 2.0.0
assemblies, we ran multiple assemblies of the C. elegans N2 strain DRR008444
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dataset (Illumina GA IIx sequencing of 2x100 bp reads of 300 bp fragments
to 75 fold coverage) while varying the Bloom filter size from 250M to 3G with
a step size of 250M. For example, the ABySS 2.0.0 assembly for a Bloom fil-
ter size of 250M was run with the command abyss-pe c=4 k=64 H=1 B=250M
in='DRR008444_1.fastq DRR008444_2.fastq', where c=4 specifies a mini-
mum k-mer count threshold of 4, k=64 specifies a k-mer size of 64, H=1 specifies
that the Bloom filter should use a single hash function. The runs for other Bloom
filter sizes used the same parameter values with the exception of B (Bloom filter
size).

For each assembly, we measured the wallclock time, peak memory usage, NG50,
and number of misassemblies (Fig. 1). Wallclock time was measured with
/usr/bin/time, while peak memory usage was determined by running the com-
mand ps -eo pid,rss,vsz,cmd --width 100 --sort -vsz | awk 'NR==2'
in the background every 10 seconds to sample the top virtual-memory-consuming
process. We used QUAST 3.2 (Gurevich et al. 2013) to calculate the NG50
length and number of major misassemblies, using the C. elegans Bristol N2 strain
as the reference genome (NCBI BioProject PRJNA158). The false positive rates
corresponding to each Bloom filter size were obtained from the ABySS log files.
All assemblies were run with 12 threads on an isolated machine with 48GB RAM
and two Xeon X5650 CPUs.

Assembler Comparison

Experimental Sequencing Data

The Genome in a Bottle (GIAB) project (Zook et al. 2016) sequenced seven
individuals using a large variety of sequencing technologies. We downloaded the
Illumina WGS 2x250 bp paired-end sequencing data and the Illumina 6 kbp
mate-pair sequencing data of the Ashkenazi mother (HG004).

We removed adapters from the mate-pair reads using NxTrim 0.4.0 (O’Connell
et al. 2014) with parameters --norc --joinreads --preserve-mp, which also
classifies the reads as mate-pair, paired-end, single-end or unknown. We discarded
the reads classified as either paired-end or single-end, and used the reads classified
as mate-pair and unknown for scaffolding, which are comprised primarily of
mate-pair reads originating from large fragments.

We corrected sequencing errors in the reads using the tool BFC (Li 2015) with
the parameter -s3G. We constructed the hash table of trusted k-mers using the
paired-end reads and used this hash table to correct both the paired-end and
mate-pair reads.
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Human Assemblies

We assembled the GIAB HG004 data set using ABySS 1.9.0 (Simpson et al. 2009),
ABySS 2.0.0, ALLPATHS-LG 52488 (Gnerre et al. 2010), BCALM 2.0.0 (Chikhi
et al. 2016), DISCOVARdenovo 52488 (Weisenfeld et al. 2014), MaSuRCA
3.1.3 (Zimin et al. 2013), Minia 3.0 beta (Chikhi and Rizk 2013), SGA 0.10.14
(Simpson and Durbin 2011), SOAPdenovo 2.0.4 (Luo et al. 2012). We assembled
with each tool the paired-end reads corrected by BFC. The mate-pair reads
categorized by NxTrim and corrected by BFC and were used for scaffolding when
applicable for that assembler. We scaffolded the DISCOVARdenovo assembly
using both BESST 2.2.4 (Sahlin et al. 2016) and LINKS 1.6.1 (Warren et al.
2015).

Most software used in these analyses was installed from the Homebrew-
Science software collection using Linuxbrew (Jackman and Birol 2016)
with the command brew install abyss allpaths-lg bcalm bfc bwa
discovardenovo masurca nxtrim samtools seqtk sga soapdenovo. The
development version of ABySS-2.0.0 used in the comparison was compiled
from the bloom-abyss-preview tag: https://github.com/bcgsc/abyss/tree/
bloom-abyss-preview. Minia 3.0 beta and LINKS 1.6.1 were installed manually,
as the versions currently available in Linuxbrew are 2.0.3 and 1.5.1 respectively.
The Python package besst was installed using pip install besst. The script
used to assemble and analyze the data is a Makefile script available online at
https://github.com/sjackman/giab/blob/1.0/Makefile.

We assembled the paired-end and mate-pair reads using ABySS 1.9.0 (Simpson
et al. 2009) with the command abyss-pe name=hsapiens np=64 k=144 q=15
v=-v l=40 s=1000 n=10 S=1000-10000 N=15 mp6k_de=--mean mp6k_n=1
lib=pe400 pe400=$(<pe400.in) mp=mp6k mp6k=$(mp6k+unknown.in) where
the files pe400.in and mp6k+unknown.in are lists of the locations of compressed
FASTQ files.

We assembled the paired-end and mate-pair reads using ABySS 2.0.0 with the
command abyss-pe name=hsapiens np=64 k=144 q=15 v=-v l=40 s=1000
n=10 S=1000-10000 N=15 B=26G H=4 c=3 mp6k_de=--mean mp6k_n=1
lib=pe400 pe400=$(<pe400.in) mp=mp6k mp6k=$(mp6k+unknown.in). The
parameters for ABySS-2.0.0 were identical to those for ABySS-1.9.0, with the
exception of the Bloom filter specific parameters B=26G H=4 c=3, which specify
the total memory allocated to the Bloom filters, the number of Bloom filter hash
functions, and the number of cascading Bloom filter levels, respectively. We
determined the values for total memory size (B) and number of hash functions
(H) by counting distinct 144-mers with KMC2 (Deorowicz et al. 2015) and
targeting a false positive rate of 5% for the first level of the cascading Bloom
filter. We deemed 5% to be a suitable upper bound for Bloom filter FPR
based on the results of our C. elegans experiment above, which indicated good
performance in the range of 5-12% FPR. We determined the optimal number of
cascading Bloom filter levels by running assemblies with c=2, c=3, and c=4, and
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choosing the assembly with highest NG50 and lowest number of breakpoints.

We assembled the paired-end and mate-pair reads using ALLPATHS-LG
52488 (Gnerre et al. 2010) with the command PrepareAllPathsInputs.pl
DATA_DIR=${PWD} PLOIDY=2 HOSTS=32; RunAllPathsLG PRE=. REFERENCE_NAME=.
DATA_SUBDIR=. RUN=allpaths SUBDIR=run and the configuration files
in_libs.csv and in_groups.csv shown in supplementary material and online
at https://github.com/sjackman/giab/tree/1.0/allpaths-lg.

We assembled the paired-end reads using BCALM 2.0.0 (Chikhi et al.
2016) with the commands bcalm -in pe400.in -out hsapiens-unitigs -k
63 -abundance 5 -nb-cores 64; bglue -in hsapiens-unitigs.h5 -out
hsapiens-unitigs -k 63. The largest value of k supported by BCALM 2.0.0
is 63.

We assembled the paired-end reads using DISCOVARdenovo 52488 (Weisen-
feld et al. 2014) with the command DiscovarDeNovo MAX_MEM_GB=2500
READS=@pe600.in OUT_DIR=./hsapiens and scaffolded this assembly using
three standalone scaffolding tools: ABySS-Scaffold 1.9.0 with the command
abyss-pe name=hsapiens mp=mp6k j=64 k=200 l=40 s=500 S=500-5000
N=15 mp6k_de=--mean mp6k_n=1 mp6k=$(mp6k+unknown.in) scaffolds,
BESST 2.2.4 (Sahlin et al. 2016) with the command runBESST --orientation
rf -c hsapiens-scaffolds.fa -f mp6k.bam -o ., and LINKS 1.6.1 (Warren
et al. 2015) with the command todo @rwarren.

We assembled the paired-end and mate-pair reads using MaSuRCA 3.1.3 (Zimin
et al. 2013) with the command ./masurca config.txt; ./assemble.sh and
the configuration file config.txt shown in supplementary material and online
at https://github.com/sjackman/giab/blob/1.0/masurca/config.txt. The script
assemble.sh is generated by masurca itself.

We assembled the paired-end reads using Minia 3.0 beta (Chikhi and Rizk
2013) with the command minia -in pe400.in -abundance-min "auto"
-kmer-size 128 -nb-cores 64. The largest value of k supported by this
pre-release version was 128.

We assembled the paired-end reads using SGA 0.10.14 (Simpson and Durbin
2011) with the commands sga preprocess --pe-mode=2 hsapiens.fa.gz
>hsapiens.preprocess.fa; sga index -t 64 -a ropebwt hsapiens.preprocess.fa;
sga filter -t 64 hsapiens.preprocess.fa; sga overlap -t 64 hsapiens.preprocess.filter.pass.fa
-m 125; sga assemble -o hsapiens hsapiens.preprocess.filter.pass.asqg.gz.

We assembled the paired-end and mate-pair reads using SOAPdenovo 2.0.4
(Luo et al. 2012) with the command SOAPdenovo-127mer all -K 95 -R -p
64 -s hsapiens.config and the configuration file hsapiens.config shown in
supplementary material and online at https://github.com/sjackman/giab/blob/
1.0/soapdenovo/hsapiens.config.

We used the BioNano optical map to scaffold the ABySS 1.9.0, ABySS 2.0.0 and
DISCOVARdenovo 52488 assemblies, scaffolded with ABySS-Scaffold, BESST

19

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 7, 2016. ; https://doi.org/10.1101/068338doi: bioRxiv preprint 

https://github.com/sjackman/giab/tree/1.0/allpaths-lg
https://github.com/sjackman/giab/blob/1.0/masurca/config.txt
https://github.com/sjackman/giab/blob/1.0/soapdenovo/hsapiens.config
https://github.com/sjackman/giab/blob/1.0/soapdenovo/hsapiens.config
https://doi.org/10.1101/068338
http://creativecommons.org/licenses/by/4.0/


and LINKS, using IrysSolve 2.1.5063 with the command line hybridScaffold.pl
-n hsapiens-scaffolds.fa -b EXP_REFINEFINAL1_q.cmap -c hybridScaffold_config_aggressive.xml
-B2 -N2 -o bionano -x -y -m all.bnx -q optArguments_human.xml -e
AJmother_autoNoise1.err according to the document “Theory Of Operation:
Hybrid Scaffolding” available online at http://bionanogenomics.com/wp-content/
uploads/2016/04/30073-Rev-A-Hybrid-Scaffolding-Theory-of-Operations.pdf.
The configuration files are used unmodified as distributed by BioNano Genomics
and available online at https://github.com/sjackman/giab/tree/1.0/bionano.

We used 10x Genomics Chromium data to scaffold the ABySS 2.0.0 +
BioNano scaffolds with ARCS (unpublished) and LINKS (Warren et al.
2015). The version of ARCS used in the paper is available from: https:
//github.com/bcgsc/arcs/tree/arcs-prerelease. First we aligned the Chromium
reads to the ABySS 2.0.0 + BioNano scaffolds using bwa mem with default set-
tings. Next we ran ARCS with the command arcs -f hsapiens-scaffolds.fa
-a human-alignments.fof -s 98 -g 50000 -c 5 -l 5 -m 50-1000
-d 0 -e 30000 -i 16 -v 1 where hsapiens-scaffolds.fa contained
the sequences to further scaffold and human-alignments.fof was a
file of alignment file filenames. Lastly we ran the commands python
makeTSVfile.py hsapiens-scaffolds.fa.scaff_s98_c5_original.gv
human_c5.tigpair_checkpoint.tsv hsapiens-scaffolds.fa; LINKS -f
hsapiens-scaffolds.fa -s empty.fof -b human_c5 -l 5 -a 0.3 to order
and orient the scaffolds. The script makeTSVfile.py can be found at
https://github.com/sarahyeo/giab.

Data Access

The accession number of the Ashkenazi mother is NIST HG004 NA24143
SRS823307.

The Illumina WGS 2x250 bp paired-end sequencing data may be downloaded
from https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/
AshkenazimTrio/sequence.index.AJtrio_Illumina_2x250bps_06012016. The 35
experiment accession numbers are SRX1726894 through SRX1726928, and the
35 sequencing run accession numbers are SRR3440461 through SRR3440495.

The Illumina 6 kbp mate-pair sequencing data may be downloaded from
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/
AshkenazimTrio/sequence.index.AJtrio_Illumina_6kb_matepair_wgs_
08032015. The two experiment accession numbers are SRX1388736 and
SRX1388737, and the two sequencing run accession numbers are SRR2832452
and SRR2832453.

The BioNano optical map EXP_REFINEFINAL1_q.cmap may be downloaded
from https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/
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AshkenazimTrio/alignment.index.AJtrio_BioNano_xmap_cmap_GRC37_
10012015.

The 10x Genomics Chromium data may be downloaded from https://github.
com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/
alignment.index.AJtrio_10Xgenomics_ChromiumGenome_GRCh37_
GRCh38_06202016.

Acknowledgements

The research presented here was funded by the National Human Genome Re-
search Institute of the National Institutes of Health (under award number
R01HG007182), with additional support provided by Intel, Genome Canada,
Genome British Columbia, and the British Columbia Cancer Foundation. The
content is solely the responsibility of the authors and does not necessarily rep-
resent the official views of the National Institutes of Health or other funding
organizations. We would also like to thank Martin Krzywinski for his help with
the data visualization in the idiogram and Circos figures.

Disclosure Declaration

The authors declare that they have no conflicts of interest with respect to this
work.

References

Bloom BH. 1970. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM 13: 422–426.

Chaisson MJP, Huddleston J, Dennis MY, Sudmant PH, Malig M, Hormozdiari
F, Antonacci F, Surti U, Sandstrom R, Boitano M, et al. 2014. Resolving the
complexity of the human genome using single-molecule sequencing. Nature 517:
608–611. http://dx.doi.org/10.1038/nature13907.

Chikhi R, Limasset A, Jackman S, Simpson JT, Medvedev P. 2014. On the
representation of de bruijn graphs. Research in Computational Molecular Biology
35–55. http://dx.doi.org/10.1007/978-3-319-05269-4_4.

Chikhi R, Limasset A, Medvedev P. 2016. Compacting de bruijn graphs from
sequencing data quickly and in low memory. Bioinformatics 32: i201–i208.

21

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 7, 2016. ; https://doi.org/10.1101/068338doi: bioRxiv preprint 

https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/alignment.index.AJtrio_BioNano_xmap_cmap_GRC37_10012015
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/alignment.index.AJtrio_BioNano_xmap_cmap_GRC37_10012015
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/alignment.index.AJtrio_10Xgenomics_ChromiumGenome_GRCh37_GRCh38_06202016
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/alignment.index.AJtrio_10Xgenomics_ChromiumGenome_GRCh37_GRCh38_06202016
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/alignment.index.AJtrio_10Xgenomics_ChromiumGenome_GRCh37_GRCh38_06202016
https://github.com/genome-in-a-bottle/giab_data_indexes/blob/master/AshkenazimTrio/alignment.index.AJtrio_10Xgenomics_ChromiumGenome_GRCh37_GRCh38_06202016
http://dx.doi.org/10.1038/nature13907
http://dx.doi.org/10.1007/978-3-319-05269-4_4
https://doi.org/10.1101/068338
http://creativecommons.org/licenses/by/4.0/


http://dx.doi.org/10.1093/bioinformatics/btw279.

Chikhi R, Rizk G. 2013. Space-efficient and exact de bruijn graph representation
based on a bloom filter. Algorithms for Molecular Biology 8: 1.

Chin C-S, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, Dunn
C, O’Malley R, Figueroa-Balderas R, Morales-Cruz A, et al. 2016. Phased
diploid genome assembly with single molecule real-time sequencing. http://dx.
doi.org/10.1101/056887.

Deorowicz S, Kokot M, Grabowski S, Debudaj-Grabysz A. 2015. KMC 2: Fast
and resource-frugal k-mer counting. Bioinformatics 31: 1569–1576.

Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ,
Sharpe T, Hall G, Shea TP, Sykes S, et al. 2010. High-quality draft assemblies
of mammalian genomes from massively parallel sequence data. Proceedings of
the National Academy of Sciences 108: 1513–1518. http://dx.doi.org/10.1073/
pnas.1017351108.

Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: Quality assessment
tool for genome assemblies. Bioinformatics 29: 1072–1075. http://dx.doi.org/
10.1093/bioinformatics/btt086.

Jackman SD, Birol I. 2016. Linuxbrew and homebrew for cross-platform package
management [v1; not peer reviewed]. F1000Research 5(ISCB Comm J): 1795
(poster). http://dx.doi.org/10.7490/f1000research.1112681.1.

Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ,
Marra MA. 2009. Circos: An information aesthetic for comparative genomics.
Genome research 19: 1639–1645.

Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K,
Dewar K, Doyle M, FitzHugh W, et al. 2001. Initial sequencing and analysis of
the human genome. Nature 409: 860–921. http://dx.doi.org/10.1038/35057062.

Ley T, Miller C, Ding L, Raphael B, Mungall A, Robertson A, Hoadley K,
Triche TJ, Laird P, Baty J, et al. 2013. Genomic and epigenomic landscapes
of adult de novo acute myeloid leukemia. N Engl J Med 368: 2059–2074.
http://dx.doi.org/10.1056/NEJMoa1301689.

Li H. 2015. BFC: Correcting illumina sequencing errors. Bioinformatics 32:
2885–2887. http://dx.doi.org/10.1093/bioinformatics/btv290.

Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, et
al. 2012. SOAPdenovo2: An empirically improved memory-efficient short-read
de novo assembler. GigaSci 1. http://dx.doi.org/10.1186/2047-217X-1-18.

Mohamadi H, Chu J, Vandervalk BP, Birol I. 2016. NtHash: Recursive nucleotide
hashing. Bioinformatics. http://dx.doi.org/10.1093/bioinformatics/btw397.

Morin RD, Mungall K, Pleasance E, Mungall AJ, Goya R, Huff RD, Scott DW,
Ding J, Roth A, Chiu R, et al. 2013. Mutational and structural analysis of diffuse

22

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 7, 2016. ; https://doi.org/10.1101/068338doi: bioRxiv preprint 

http://dx.doi.org/10.1093/bioinformatics/btw279
http://dx.doi.org/10.1101/056887
http://dx.doi.org/10.1101/056887
http://dx.doi.org/10.1073/pnas.1017351108
http://dx.doi.org/10.1073/pnas.1017351108
http://dx.doi.org/10.1093/bioinformatics/btt086
http://dx.doi.org/10.1093/bioinformatics/btt086
http://dx.doi.org/10.7490/f1000research.1112681.1
http://dx.doi.org/10.1038/35057062
http://dx.doi.org/10.1056/NEJMoa1301689
http://dx.doi.org/10.1093/bioinformatics/btv290
http://dx.doi.org/10.1186/2047-217X-1-18
http://dx.doi.org/10.1093/bioinformatics/btw397
https://doi.org/10.1101/068338
http://creativecommons.org/licenses/by/4.0/


large b-cell lymphoma using whole-genome sequencing. Blood 122: 1256–1265.
http://dx.doi.org/10.1182/blood-2013-02-483727.

Mose LE, Wilkerson MD, Hayes DN, Perou CM, Parker JS. 2014. ABRA:
Improved coding indel detection via assembly-based realignment. Bioinformatics
30: 2813–2815. http://dx.doi.org/10.1093/bioinformatics/btu376.

Mostovoy Y, Levy-Sakin M, Lam J, Lam ET, Hastie AR, Marks P, Lee J, Chu
C, Lin C, Džakula Ž, et al. 2016. A hybrid approach for de novo human genome
sequence assembly and phasing. Nat Meth 13: 587–590. http://dx.doi.org/10.
1038/nmeth.3865.

Nagarajan N, Pop M. 2013. Sequence assembly demystified. Nature Reviews
Genetics 14: 157–167. http://dx.doi.org/10.1038/nrg3367.

O’Connell J, Schulz-Trieglaff O, Carlson E, Hims MM, Gormley NA, Cox AJ.
2014. NxTrim: Optimized trimming of illumina mate pair reads. http://dx.doi.
org/10.1101/007666.

Paulino D, Warren RL, Vandervalk BP, Raymond A, Jackman SD, Birol I. 2015.
Sealer: A scalable gap-closing application for finishing draft genomes. BMC
bioinformatics 16: 230.

Pendleton M, Sebra R, Pang AWC, Ummat A, Franzen O, Rausch T, Stütz AM,
Stedman W, Anantharaman T, Hastie A, et al. 2015. Assembly and diploid
architecture of an individual human genome via single-molecule technologies.
Nat Meth 12: 780–786. http://dx.doi.org/10.1038/nmeth.3454.

Pevzner PA, Tang H, Waterman MS. 2001. An eulerian path approach to
dna fragment assembly. Proceedings of the National Academy of Sciences 98:
9748–9753.

Pugh TJ, Morozova O, Attiyeh EF, Asgharzadeh S, Wei JS, Auclair D, Carter SL,
Cibulskis K, Hanna M, Kiezun A, et al. 2013. The genetic landscape of high-risk
neuroblastoma. Nat Genet 45: 279–284. http://dx.doi.org/10.1038/ng.2529.

Rizk G, Lavenier D, Chikhi R. 2013. DSK: K-mer counting with very low memory
usage. Bioinformatics 29: 652–653. http://dx.doi.org/10.1093/bioinformatics/
btt020.

Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y, Su X, Chen S-C, Payne-
Turner D, Churchman ML, Harvey RC, et al. 2012. Genetic alterations activating
kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia.
Cancer Cell 22: 153–166. http://dx.doi.org/10.1016/j.ccr.2012.06.005.

Sahlin K, Chikhi R, Arvestad L. 2016. Assembly scaffolding with
pe-contaminated mate-pair libraries. Bioinformatics 32: 1925–1932.
http://dx.doi.org/10.1093/bioinformatics/btw064.

Simpson JT, Durbin R. 2011. Efficient de novo assembly of large genomes using
compressed data structures. Genome Research 22: 549–556. http://dx.doi.org/

23

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 7, 2016. ; https://doi.org/10.1101/068338doi: bioRxiv preprint 

http://dx.doi.org/10.1182/blood-2013-02-483727
http://dx.doi.org/10.1093/bioinformatics/btu376
http://dx.doi.org/10.1038/nmeth.3865
http://dx.doi.org/10.1038/nmeth.3865
http://dx.doi.org/10.1038/nrg3367
http://dx.doi.org/10.1101/007666
http://dx.doi.org/10.1101/007666
http://dx.doi.org/10.1038/nmeth.3454
http://dx.doi.org/10.1038/ng.2529
http://dx.doi.org/10.1093/bioinformatics/btt020
http://dx.doi.org/10.1093/bioinformatics/btt020
http://dx.doi.org/10.1016/j.ccr.2012.06.005
http://dx.doi.org/10.1093/bioinformatics/btw064
http://dx.doi.org/10.1101/gr.126953.111
https://doi.org/10.1101/068338
http://creativecommons.org/licenses/by/4.0/


10.1101/gr.126953.111.

Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. 2009. ABySS: A
parallel assembler for short read sequence data. Genome Research 19: 1117–1123.
http://dx.doi.org/10.1101/gr.089532.108.

Vandervalk BP, Jackman SD, Raymond A, Mohamadi H, Yang C, Attali DA,
Chu J, Warren RL, Birol I. 2014. Konnector: Connecting paired-end reads using
a bloom filter de bruijn graph. Bioinformatics and Biomedicine (BIBM), 2014
IEEE International Conference on 51–58.

Warren RL, Yang C, Vandervalk BP, Behsaz B, Lagman A, Jones SJM, Birol I.
2015. LINKS: Scalable, alignment-free scaffolding of draft genomes with long
reads. GigaSci 4. http://dx.doi.org/10.1186/s13742-015-0076-3.

Weisenfeld NI, Yin S, Sharpe T, Lau B, Hegarty R, Holmes L, Sogoloff B, Tabbaa
D, Williams L, Russ C, et al. 2014. Comprehensive variation discovery in single
human genomes. Nat Genet 46: 1350–1355. http://dx.doi.org/10.1038/ng.3121.

Yip S, Butterfield YS, Morozova O, Chittaranjan S, Blough MD, An J, Birol
I, Chesnelong C, Chiu R, Chuah E, et al. 2011. Concurrent cic mutations, idh
mutations, and 1p/19q loss distinguish oligodendrogliomas from other cancers.
The Journal of Pathology 226: 7–16. http://dx.doi.org/10.1002/path.2995.

Zimin AV, Marcais G, Puiu D, Roberts M, Salzberg SL, Yorke JA. 2013. The
masurca genome assembler. Bioinformatics 29: 2669–2677. http://dx.doi.org/
10.1093/bioinformatics/btt476.

Zook JM, Catoe D, McDaniel J, Vang L, Spies N, Sidow A, Weng Z, Liu Y,
Mason CE, Alexander N, et al. 2016. Extensive sequencing of seven human
genomes to characterize benchmark reference materials. Sci Data 3: 160025.
http://dx.doi.org/10.1038/sdata.2016.25.

24

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 7, 2016. ; https://doi.org/10.1101/068338doi: bioRxiv preprint 

http://dx.doi.org/10.1101/gr.126953.111
http://dx.doi.org/10.1101/gr.089532.108
http://dx.doi.org/10.1186/s13742-015-0076-3
http://dx.doi.org/10.1038/ng.3121
http://dx.doi.org/10.1002/path.2995
http://dx.doi.org/10.1093/bioinformatics/btt476
http://dx.doi.org/10.1093/bioinformatics/btt476
http://dx.doi.org/10.1038/sdata.2016.25
https://doi.org/10.1101/068338
http://creativecommons.org/licenses/by/4.0/

	Abstract
	Introduction
	Results
	ABySS 2.0.0 Assembly Algorithm
	Effect of Bloom Filter False Positive Rate
	Assembler Comparison
	Scaffolding with Chromium Data

	Discussion
	Methods
	Bloom filter de Bruijn Graph Assembly
	Effect of Bloom Filter False Positive Rate
	Assembler Comparison
	Experimental Sequencing Data
	Human Assemblies


	Data Access
	Acknowledgements
	Disclosure Declaration
	References

