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ABSTRACT

Gene expression heterogeneity in the pluripotent state of mouse embryonic stem cells
(mESCs) has been increasingly well-characterized. In contrast, exit from pluripotency
and lineage commitment have not been studied systematically at the single-cell level.
Here we measured the gene expression dynamics of retinoic acid driven mESC
differentiation using an unbiased single-cell transcriptomics approach. We found that
the exit from pluripotency marks the start of a lineage bifurcation as well as a transient
phase of susceptibility to lineage specifying signals. Our study revealed several
transcriptional signatures of this phase, including a sharp increase of gene expression
variability. Importantly, we observed a handover between two classes of transcription
factors. The early-expressed class has potential roles in lineage biasing, the late-
expressed class in lineage commitment. In summary, we provide a comprehensive
analysis of lineage commitment at the single cell level, a potential stepping stone to

improved lineage control through timing of differentiation cues.

INTRODUCTION

In vitro differentiation is a key technology to enable the use of embryonic and induced
pluripotent stem cells as disease models and for therapeutic applications 12 Existing directed
differentiation protocols, which have been gleaned from in vivo development, are laborious
and produce heterogeneous cell populations ®. Protocol optimization typically requires costly
and time consuming trial-and-error experiments. To be able to design more efficient and
specific differentiation regimens in a systematic way we require a better understanding of the

decision-making process that underlies the generation of cell type diversity ‘
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Lineage decision-making is fundamentally a single-cell process ® and the response to
lineage specifying signals depends on the state of the individual cell. A substantial body of
work has revealed lineage biases related to, for example, cell cycle phase or pre-existing

subpopulations in the pluripotent state 6784

. The commitment of pluripotent cells to a
particular lineage, on the other hand, has not yet been studied systematically at the single-cell
level. We define a cell to be committed, if its state cannot be reverted by removal of the
lineage specifying signal. Here we set out to characterize the single-cell gene expression

dynamics of differentiation, from exit from pluripotency to lineage commitment.

RESULTS

As a well-characterized model system to study in vitro differentiation we used mouse
embryonic stem cells (MESCs). To drive cells quickly out of the pluripotent state, we used all-
trans retinoic acid (RA) as differentiation agent. E14 mESCs were grown feeder free in 2i
medium ° for several passages to minimize heterogeneity before differentiation in the basal
medium (N2B27 medium) and RA (Fig. 1a). Within only 96 h the cells underwent a profound
change in morphology from tight, round, homogeneous colonies to strongly adherent,
morphologically heterogeneous cells (Fig. 1a). To characterize the differentiation process at
the population level we measured gene expression by bulk RNA-seq at four early time points
(0, 6, 12 and 24 h) as well as 6 additional time points during 96 h of continuous RA exposure
(Supplementary Fig. 1a and b). Starting at 12 h the expression of most pluripotency markers
declined, indicating the exit from pluripotency at that time. This was supported phenotypically
by changes in morphology and cell cycle phase lengths (Supplementary Fig. 1c-e). Replating
cells at clonal density in 2i medium showed that 90% of the cells exited from pluripotency
between 12 h and 36 h of RA exposure (Supplementary Fig. 1f). Following exit from
pluripotency, established ectoderm and extraembryonic endoderm (XEN) markers were up-
regulated (Supplementary Fig. 1b), as to be expected from previous results on RA driven

differentiation ' '

. Up-regulation of ectoderm markers started after 24 h of RA exposure,
XEN markers were up-regulated only after 48 h. The more than 24 h delay between the exit
from pluripotency and the expression of XEN markers suggested that a sub-population of
cells went through a transitory phase between pluripotency and lineage commitment. We
hypothesized that in this transient phase lineage decisions could be influenced by changes in
signaling input.

To investigate this transition process in individual cells we used the recently
developed Single Cell RNA Barcoding and Sequencing method > (SCRB-seq). We quantified
the transcriptional profiles of over 2,000 single cells, sampled at 9 time points during
differentiation, typically spaced 12 h apart. We used t-distributed stochastic neighbor
embedding (t-SNE) to place individual cells with similar expression profiles in proximity to one
another (Fig. 1b, Supplementary Fig 2f). To assess the pluripotency status of individual cells
we used the expression level of the established pluripotency marker rex1 3 t-SNE showed

that gene expression changed homogeneously throughout the population for the first 12 h of
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RA exposure, while rex1 expression was overall high. Subsequently, the cells began to
diverge in their gene expression profiles. Quantification of single-cell variability of gene
expression confirmed a steep increase in variability between 12 h and 24 h (Fig. 1c).
Coincidentally, rex1 expression declined in the majority of cells after 12 h, indicating the cells’
exit from pluripotency. Subsequently, gene expression variability continued to increase until
the end of the experiment. The t-SNE map further showed that expression profiles started to
bifurcate after 24 h of RA exposure and by 96 h two separate subpopulations could be
discerned. We partitioned cells into clusters using k-means clustering and confirmed by
stability analysis ' that there were two robust clusters. Single-cell gene expression variability
within those two clusters at 96 hours was comparable to the pluripotent state (Fig. 1c). Gene
expression in the two clusters was thus regulated as tightly as in the pluripotent state. Hence,
we interpret the two observed clusters as two different cell types that emerged during RA
differentiation.

To quantify the divergence of expression profiles and identify the cell types
represented by the two clusters, we used principal component analysis (PCA, Fig. 2a). We
found that the first principal component (PC 1) was primarily composed of established
markers for the XEN lineage (sparc, col4at, lama1, dab2), while PC 2 comprised markers of
ectodermal (neural) development (prtg, mdk, fabp5, cd24) (Supplementary Fig. 3c-d).
Accordingly, we identified cell type 1 at 96 h as XEN-like and cell type 2 as ectoderm-like
(Fig. 1b). Next, we sought to apply these classifications to the transitory time points post-
pluripotency and pre-commitment. We classified cells at all time points as mESC-like,
ectoderm-like and XEN-like (Fig. 2 b), which revealed a bifurcation into XEN-like or ectoderm-
like expression profiles after around 24 h of RA exposure. This matched the
phenomenological bifurcation in the t-SNE mapping (Fig. 1b). However, the majority of cells
(roughly 60%) switched from an mESC-like, but no longer pluripotent state to a XEN- or
ectoderm-like transcriptional program between 36 h and 48 h (Fig. 2 b). We concluded that
cells first adopted lineage specific transcriptional programs 24 h to 36 h after the exit from
pluripotency at 12 h. This suggested that some cells were not stably committed during this
period. Interestingly, we found biases in the differentiation outcome depending on the timing
of exit from pluripotency. Cells that down-regulated the mESC expression profile early (before
36 h) were biased towards the ectoderm lineage, while cells that exited the pluripotent state
late (after 48h) adopted a XEN-like transcriptional program. This observation indicated that
commitment to the two lineages did not occur simultaneously and that the lineage decision
was initially biased towards ectoderm. We were further wondering whether the expression
profiles of early XEN- and ectoderm-like cells were initially similar and, if so, when they
diverged. We found that lineage specific expression profiles were established in a gradual,
non-linear fashion: average XEN- and ectoderm expression states moved in a similar
direction until 60 h after which they diverged more quickly (Fig. 2c-e). The similarity of the two

lineages at the beginning of the bifurcation suggested that the cells were not fully committed
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to either lineage during this phase. Consequently, they might still be susceptible to a change
in lineage cues during this phase.

To assay susceptibility directly, we next modulated the time of RA exposure during
the differentiation process. We applied a precisely defined pulse of RA by first exposing the
cells to RA for a defined period of time and then switching to a highly potent pan-RA receptor
antagonist '° (Fig. 3a). Cell type frequencies were quantified after 96 h using antibody
staining of established surface markers for ectoderm (cd24 16) and XEN (pdgfra 17)
(Supplementary Fig. 3a-b). These experiments showed that the RA pulse had to be applied
for more than 12 h for XEN-like cells to appear. Longer pulses resulted in a gradual increase
of the XEN-like fraction. A 36 h long pulse of RA resulted in 20% XEN-like cells at the 96 h
time point, roughly half of what we found after uninterrupted RA exposure (Fig. 3a). This
indicated that even after 36 h of RA exposure and significant downregulation of the
pluripotency network many cells were not yet stably committed and XEN specification
continued to depend on RA-signaling. We also wanted to establish when cells lost their ability
to respond to RA signaling. To this end we first differentiated the cells in basal (N2B27)
medium and started RA exposure after a defined time period. When RA exposure was
delayed by up to 12 h, we did not observe any difference in the lineage distribution at the 96 h
time point (Fig. 3b). Thereafter, for longer periods of RA-delay, we found that the fraction of
XEN-like cells declined. This observation demonstrated that the cells gradually lost their
susceptibility to RA after the exit from pluripotency. Taken together, the pulsed and delayed
RA exposure experiments revealed a transient phase of about 24 h — 36 h after the exit from
pluripotency, during which cells were maximally susceptible to external signaling cues to
inform their lineage decision.

To generalize these results beyond RA exposure we next focused on signaling
pathways that play pivotal roles in pluripotency and differentiation: we differentiated mESCs
with RA in the presence of a MEK inhibitor (MEKi, PD0325901), which abrogates MAPK/Erk
signaling; a GSK3 inhibitor, which effectively stimulates Wnt signaling (GSK3i, CHIR99021) or
LIF, which activates the JAK/Stat pathway (Supplementary Fig. 4c). These signaling
molecules are components of the defined 2i media and are known to prevent differentiation
while stabilizing the pluripotent state. The presence of GSK3i or LIF led to an overall
reduction of differentiated cells, consistent with their role in stabilizing pluripotency. Addition
of MEKi alone, however, led to a specific reduction of the XEN-like subpopulation, in
agreement with previous results 19 This effect was unlikely due to interference with RA
signaling since increasing RA concentration did not reverse the effect (Supplementary Fig.
4d). Timed abrogation of MAPK/Erk signaling by MEKi mirrored the RA pulse experiments in
terms of the effect on the lineage decision: at least 24 h of uninterrupted MAPK/Erk signaling
was necessary for XEN-like cells to occur. Longer durations of MAPK/Erk signaling resulted
in an increase in the XEN-like subpopulation (Fig. 3c). This effect plateaued after 48 h, which
suggested that XEN-like cells then became independent of MAPK/Erk signaling and thus

stably committed.
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In summary, the signaling experiments showed that cells acquired susceptibility to
lineage specifying cues immediately after the exit from pluripotency and remained susceptible
to a change in signaling input for about 24 h - 36 h (see schematic in Supplementary Fig. 4e).

The sudden increase in gene expression variability at the beginning of the
susceptible phase (Fig. 1c) led us to hypothesize that gene expression noise might have an
important impact on the dynamics of commitment °4 Since the strength of such noise is not
amenable to experimental manipulation we instead sought to develop a simple
phenomenological model that would explain the existence of a transient phase of
susceptibility. We were also wondering what might determine the length of this phase. Our
model is based on a minimal gene regulatory network (GRN) that has been used before to
describe lineage bifurcations '®*° (Fig. 3d, Supplementary Fig. 5a). Briefly, the GRN is
comprised of two lineage-specific, auto-activating expression programs that mutually repress
each other. This GRN can produce two stable attractors, corresponding to the two cell
lineages. Here, we added repression of both lineages by the pluripotency network to model
the pluripotent state. Consistent with our data, we assumed that the pluripotency program is
turned off after 12 h. Since RA exposure is necessary for the occurrence of XEN-like cells
(Fig. 3b), we modeled the effect of RA as increased auto-activation of the XEN program.
Stochastic simulations of this 3-state GRN reproduced a transient phase of susceptibility to
RA exposure (Fig. 3e). In this phase, both lineage specific programs are co-expressed in
individual cells and slight (stochastic) imbalances between the two programs can bias cells to
one or the other lineage (Supplementary Fig. 5b). In a subsequent phase, gene expression
profiles diverge and approach the stable attractor states. Consequently, cells lose
susceptibility to a change in RA signaling input. Importantly, increased gene expression noise
led to a longer phase of susceptibility: in the presence of high noise, cells that are already
close to one of the attractors can still escape to the other attractor, when the signaling input is
switched.

Based on our experimental observations as well the phenomenological model, we
now suggest a two-phase differentiation process. In the first phase, the lineage-biasing
phase, right after exit from pluripotency, XEN and ectoderm programs are co-expressed in
individual cells. In this phase, imbalances between the two programs can bias the lineage
decision and cells are susceptible to lineage cues. Subsequently, the cells enter the second
phase, the lineage-committing phase. In this phase the two lineage specific programs
become mutually exclusive and cell states become independent of the original lineage
specifying cue. We next set out to validate our model by finding transcription factors that
might constitute a mutually-repressive GRN. Consequently, we wanted to focused on
transcription factors that show lineage specific expression at the beginning of the lineage-
committing phase, around 48 h. Since transcription factors are typically lowly expressed, they
are not well-represented in the SCRB-seq data set. We collected another single-cell RNA-seq
data set using SMART-seq2 21 at four early RA differentiation time points (0 h, 12 h, 24 h and
48 h). After identification of XEN-like or ectoderm-like cells at the 48 h time point
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(Supplementary Fig. 6a) we found 55 transcription factors to be differentially expressed
between the two lineages, at that time point (Fig. 4a, Supplementary Fig. 6b). 16 of those
transcription factors (dubbed “early” transcription factors) were present throughout the
differentiation time course. Consistent with our model, early factors were broadly co-
expressed in individual cells at the beginning of the time course (Fig. 4b and Supplementary
Fig. 6¢). Compared to canonical pluripotency factors in the pluripotent state, early factors
showed a smaller level of co-expression with each other, in particular if they belonged to
different lineages (Fig. 4b, c). Individual cells thus expressed varying ratios of XEN and
ectoderm specific early factors during the lineage-biasing phase, as observed in our
simulations. Over time, co-expression of XEN and ectoderm specific early factors declined
but they never became completely mutually exclusive (Supplementary Fig. 6c). We
speculated that other transcription factors might be up-regulated in lineage biased cells and
take over lineage specification from the early factors. Indeed, 39 of the identified differentially
expressed transcription factors (dubbed “late” transcription factors) were not significantly
expressed at the beginning of the time course (Fig. 4b). These late factors were overall
positively correlated with early factors of the same lineage and anti-correlated with factors of
the opposing lineage (Fig. 4d and Supplementary Fig. 6¢). This correlation pattern suggested
that early factors have a role in lineage biasing, whereas late factors are involved in lineage
commitment.

To further validate the notion of a handover between early and late factors, we next
focused on four transcription factors, chosen based on their reported function for the
specification of ectoderm (gbx2 2 (early), pax6 % (late)) and extraembryonic endoderm (tbx3
24 (early), gata6 % (late)). In agreement with their reported roles we found these factors to be
differentially expressed in ectoderm-like and XEN-like cells, respectively, in our SCRB-seq
data set (Supplementary Fig. 6d). To quantify correlation patterns with high precision we used
single-molecule FISH (smFISH 26) due to its superior performance compared to single-cell
RNA-seq (Supplementary Fig. 7a). We measured the expression of the early factors (Figs. 5
a,c) or the late factors (Figs. 5b,d) simultaneously and quantified co-expression at all time
points (Supplementary Fig. 7b-d). In agreement with the SMART-seq data, co-expression of
early factors was highest in the pluripotent state and declined after exit from pluripotency (Fig.
5c, Supplementary Fig. 7c). Importantly, mMESCs expressed the early factors at highly variable
ratios: 30% of mESCs did not express the early ectoderm factor gbx2 at a significant level,
while almost all cells expressed the early XEN marker tbx3 (Fig.5e). smFISH further
confirmed that late factors were only sporadically expressed before the exit from pluripotency
but strongly up-regulated in separate subpopulations thereafter. These subpopulations likely
corresponded to lineage-committed cell states (Fig. 5d and Supplementary Fig. 7d-e). A
simultaneous measurement of the early ectoderm factor gbx2 and and the late ectoderm
factor pax6 also provided direct support of the suggested handover between transcription
factor classes: the two factors were positively correlated throughout the time course, even

before the exit from pluripotency (Fig. 5f). We speculate that the cells with the highest
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expression of the early factor were biased towards the ectoderm lineage, and consequently
up-regulated the late ectoderm factor. All in all, the smFISH experiments clearly confirmed
differences in the expression dynamics of early and late factors, supporting their classification

and suggested functions.

DISCUSSION
In summary, we have leveraged a recently developed high-throughput single-cell
transcriptomics method to dissect the dynamics of lineage bifurcation and commitment in RA
driven differentiation of mESCs with high temporal resolution. A recently published study by
Klein et al. used single-cell RNA-seq to characterize mESC differentiation by LIF withdrawal
" Klein et al. also found a XEN-like subpopulation but due to the low temporal resolution of
their experiment (samples at 2d, 4d and 7d post LIF-withdrawal) detailed bifurcation dynamics
were not revealed. Concerning the susceptibility to lineage cues our results have interesting
parallels with an earlier report by Turner et al. 8 That study analyzed a lineage decision
between the neuroectoderm and primitive streak lineage in mESCs. Turner et al. showed that
the susceptibility to primitive streak inducing cues was strongly dynamic, albeit on a time
scale of several days. The authors interpreted their results in terms of a primary
neuroectodermal fate and a delayed acquisition of potency to adopt endomesodermal fates.
Similarly, here we observed transient susceptibility to RA signaling and the appearance of
ectoderm-like cells before XEN-like cells. However, we explain the gradual occurrence of
committed cells by the presence of gene expression noise. This model was inspired by the
observation of a sharp increase in gene expression variability at the exit from pluripotency.
This increase might result from a loss of tight gene regulation, which is necessary for
acquiring susceptibility to lineage cues. The impact of noise in the context of lineage
bifurcations was recently addressed in a publication by Marco et al. % In that study the
authors focused on the ability of noise to destabilize committed cell states. Here we extended
their considerations to the effects of noise on commitment dynamics by stochastic simulations
of a minimal GRN. A similar GRN had been used successfully before in a report by Schroter
et al., studying induction of the XEN lineage by exogenous gata4 expression ® The influence
of noise can be understood intuitively by examining our simulated gene expression
trajectories (Supplementary Fig. 5b). In the case of high gene expression noise, trajectories
could switch more easily between the basins of attraction of the two attractors. Consequently,
cells only became truly committed when they were very close to one of the attractors, towards
the end of the simulation period. Hence, tuning the strength of gene expression noise could
be a mechanism by which cells influence the length of the susceptible phase. Conversely, in
vitro differentiation protocols might benefit from eliminating sources of extrinsic noise (like
fluctuating culture environments, for example).

Our study also identified early-expressed lineage specific transcription factors that
are heterogeneously expressed in the pluripotent state and thus have a potential role in

biasing the lineage decision. Importantly, the two factors we studied in detail, gbx2 and tbx3,
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were previously determined to be part of an essential pluripotency network %It has been
suggested before that some pluripotency genes are also involved in lineage specification 3132,
Thomson et al. showed that sox2 and oct4 promote the neuroectodermal and
mesendodermal lineage, respectively *1. Future research will have to show whether gbx2 and
tbx3 have similar roles for the ectoderm and XEN lineage, respectively. In fact, for tbx3 there
is some evidence for a dual function in self-renewal and XEN specification # The observed
correlation between gbx2 and pax6 suggests a function of gbx2 in ectoderm specification.
The long-tail distribution of gbx2 hints at infrequent transcriptional bursting and possibly
distinct subpopulations % The causal relationship between gbx2 and pax6 and the functional
relevance of the gbx2 high subpopulations will be explored in a future study. Late-expressed
lineage specific transcription factors, like pax6 and gata6, which were not expressed in the
pluripotent state, have a potential role in lineage commitment. They can thus serve as bona
fide lineage markers.

Transient phases of susceptibility to lineage cues, such as the one characterized in
this study, might be valuable windows of opportunity for the control of lineage decisions. We
speculate that exit from a pluripotent cell state is necessarily followed by a phase of
instability, likely generalizing our findings to most differentiation systems. Based on our
results we would like to propose tentative transcriptional signatures of such phases: 1. down-
regulation of pluripotency factors (Supplementary Fig. 1b), 2. a sudden increase in single-cell
gene expression variability (Fig. 1c¢), 3. slowly diverging lineage specific expression patterns
(Fig. 2e), 4. co-expression of early-expressed (lineage-biasing) transcription factors (Fig. 5c,
Supplementary Fig. 7c) and 5. sporadic expression of late-expressed (lineage-committing)
transcription factors (Fig. 5d, Supplementary Fig. 7d). We hope that these results will be a

stepping stone towards finding more efficient ways to guide lineage decisions.
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MATERIALS & METHODS

Cell culture

E14 or V6.5 mouse embryonic stem cells were grown in modified 2i medium ° . DMEM/F12
(Life technologies) supplemented with 0.5x N2 supplement, 0.5x B27 supplement, 4mM L-
glutamine  (Gibco), 20 pupg/ml human insulin  (Sigma-Aldrich), 1x 100U/ml
penicillin/streptomycin (Gibco), 1x MEM Non-Essential Amino Acids (Gibco), 7 ul 2-
Mercaptoethanol (Sigma-Aldrich), 1 yM MEK inhibitor (PD0325901,Stemgent), 3 yM GSK3
inhibitor (CHIR99021, Stemgent), 1000 U/ml mouse LIF (ESGRO). Cells were passaged
every other day with Accutase (Life technologies) and replated on gelatin coated tissue

culture plates (Cellstar, Greiner bio-one).

Differentiation

Prior to differentiation cells were grown in 2i medium for at least 2 passages. Cells were
seeded at 2.5 x 10° per 10 cm dish and grown over night (12 h). Cells were then washed
twice with PBS and basal N2B27 medium (2i medium without the inhibitors, LIF and the
additional insulin) supplemented with all-trans retinoic acid (RA, Sigma-Aldrich). RA
concentration was 0.25 uM unless stated otherwise. Spent medium was exchanged with fresh
medium after 48 h.

For the RA pulse experiments (Fig. 3a) cells were first differentiated with 0.25 yM RA
for the indicated amounts of time, washed three times with PBS and cultured in basal medium
with 2.5 yM of the RA receptor antagonist AGN 193109 (sc-210768, Santa Cruz
Biotechnology). At this concentration this antagonist completely inhibits signaling through all-
trans retinoic acid '°.

For the differentiation under perturbation of various signaling pathways
(Supplementary Fig. 4c) we used the MEK inhibitor PD0325901 (Stemgent, standard
concentration 1 uM or dilutions thereof), GSK3 inhibitor CHIR99021 (Stemgent, standard
concentration 3 pM or dilutions thereof) or mouse LIF (ESGRO, 1000 U/ml). For the
experiments with MEK inhibition shown in Fig. 3c and Supplementary Fig. 4d we used
PD0325901 at a concentration of 0.5 pM.

Long-term culture of differentiated cells

After sorting differentiated cells were replated on poly-D-lysine and laminin coated tissue
culture dishes in basal (N2B27) medium complemented with 20 ng/ml mouse EGF (E5160,
Sigma-Aldrich) and 10 ng/ml mouse FGF2 (SRP4038-50UG, Sigma-Aldrich). Ectoderm-like
cells were propagated by dissociation with accutase (Life Technoliges) and replating under
identical conditions every 3-4 days. Floating aggregates of XEN-like cells were propagated in
suspension in uncoated plastic petri dishes. Aggregates were not dissociated but the medium

was refreshed roughly every 4 days.
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Antibody staining

We used the following antibodies: APC Rat Anti-Mouse cd24 (BD Bioscience, 562349), PE
Rat Anti-Mouse cd24 (BD Bioscience, 553262), Anti-Mouse CD140a (PDGF Receptor a)
FITC (eBioscience,17-1407), Anti-Mouse CD140a (PDGF Receptor a) APC (eBioscience,17-
1401), all at a dilution of 1:1000. Cells growing in 6-well plates were washed once with PBS
and then incubated in a volume of 500 pl of basal (N2B27) medium with antibodies for 30 min
at 37 C, in the dark. Subsequently, cells were washed once with PBS, 300 pl Accutase (Life
Technologies) was added and cells were gently dissociated by pipetting up and down. After
adding 600 pl of basal medium the cell suspension was loaded on a flow cytometer (LSR I,
BD Bioscience). Cells growing in 10 cm dishes were first dissociated and incubated in 1 ml
medium with the same incubation conditions and antibody concentrations as for adherent
cells. After staining in solution, cells were spun down, the supernatant was removed and cells

were resuspended in 1 ml of basal medium before flow cytometry.

Colony formation assay

Cells were differentiated with or without RA as described above for various amounts of time
and then replated at a density of 5 x 10* cells/well in a gelatinized 6-well tissue culture plate
in 2i medium. Colonies were grown for 2 additional days, washed twice with PBS and then
imaged in PBS. Remaining colonies were counted automatically by a custom made image
analysis script written in MATLAB. The number of surviving colonies was normalized to the

first data point (replating of untreated cells growing in 2i).

Measurement of cell cycle phases

Cells growing on gelatinized tissue culture dishes were washed twice with PBS, detached
with Accutase (Life technologies) and resuspended in full medium. Formaldehyde was added
to the cell suspension to a final concentration of 4%. Cells were incubated for 12 min at room
temperature while being rotated and then spun down for 3 min at 1,000 rpm. Subsequently
cells were permeabilized at least over night in 70% ethanol. Cells were stained with Hoechst
33342 in PBS for 1 h and fluorescence measured on a flow cytometer (LSR II, BD
Biosciences). The Dean-Jet-Fox model * was fit to histograms of the fluorescence signal to

determine the relative lengths of the cell cycle phases reported in Supplementary Fig. 1e.

Single cell isolation for SCRB-seq

For each differentiation time point cells were harvested and medium removed by spinning for
5 min at 1000 rpm. RNA was stabilized by immediately resuspending the pelleted cells in
RNAprotect Cell Reagent (Qiagen) and RNaseOUT Recombinant Ribonuclease Inhibitor (Life
Technologies) at a 1:1000 dilution. Just prior to fluorescence-actived cell sorting (FACS), the
cells were diluted in PBS and stained for viability using Hoechst 33342 (Life Technologies).
384-well SBS capture plates were filled with 5ul of a 1:500 dilution of Phusion HF buffer (New

England Biolabs) in water and individual cells were then sorted into each well using a

10
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FACSAria Il flow cytometer (BD Biosciences) based on Hoechst DNA staining. After sorting,

the plates were immediately sealed, spun down, cooled on dry ice and then stored at -80°C.

SCRB-Seq of sorted single cells

Frozen cells were thawed for 5 minutes at room temperature and cell lysis was enhanced by
a treatment with proteinase K (200 ug/mL;Ambion) followed by RNA desiccation to inactivate
the proteinase K and simultaneously reduce the reaction volume (50 °C for 15 min in sealed
plate, then 95 °C for 10 min with seal removed ).

To start, diluted ERCC RNA Spike-In Mix (1 pl of 1:10"; Life Technologies) was
added to each well and the template switching reverse transcription reaction was carried out
using Maxima H Minus Reverse Transcriptase (Thermo Scientific), our universal adapter
E5VENEXT (1 pmol, Eurogentec):
5’-iCiGICACACTCTTTCCCTACACGACGCrGrGrG-3
where iC: iso-dC, iG: iso-dG, rG: RNA G, and our barcoded adapter E3VGNEXT (1 pmol,
Integrated DNA Technologies):
5'-/5Biosg/ACACTCTTTCCCTACACGACGCTCTTCCGATCT[BC6]N10T30VN-3'
where 5Biosg = 5 biotin, [BC6] = 6bp barcode specific to each cell/well, N10 = Unique
Molecular Identifiers. Following the template switching reaction, cDNA from 384 wells was
pooled together, and then purified and concentrated using a single DNA Clean &
Concentrator-5 column (Zymo Research). Pooled cDNAs were treated with Exonuclease |
(New England Biolabs) and then amplified by single primer PCR using the Advantage 2
Polymerase Mix (Clontech) and our SINGV6 primer (10 pmol, Integrated DNA Technologies):
5’-/5Biosg/ACACTCTTTCCCTACACGACGC-3
Full length cDNAs were purified with Agencourt AMPure XP magnetic beads (0.6x, Beckman
Coulter) and quantified on the Qubit 2.0 Flurometer using the dsDNA HS Assay (Life
Technologies). Full-length cDNA was then used as input to the Nextera XT library preparation
kit (Ilumina) according to the manufacturer’'s protocol, with the exception that the i5 primer
was replaced by our PSNEXTPTS5 primer (5uM, Integrated DNA Technologies):

5'-
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCG*A*T*C*
T*-3'

where * = phosphorothioate bonds.

The resulting sequencing library was purified with Agencourt AMPure XP magnetic beads
(0.6x, Beckman Coulter), size selected (300-800bp) on a E-Gel EX Gel, 2% (Life
Technologies), purified using the QIAquick Gel Extraction Kit (Qiagen) and quantified on the
Qubit 2.0 Flurometer using the dsDNA HS Assay (Life Technologies). Libraries were
sequenced on lllumina Hiseq paired-end flow cells with 17 cycles on the first read to decode
the well barcode and UMI, an 9 cycle index read to decode the i7 Nextera barcode and finally

a 46 cycle second read to sequence the cDNA.
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RNA-seq on bulk samples

Populations of sorted cells were collected in RNAprotect, lysed in QlAzol (Qiagen) and total
RNA was extracted and purified using Direct-zol RNA MiniPrep (Zymo Research). DGE
libraries were prepared from 10 ng of extracted total RNA, using the protocol previously
described for SCRB-seq with the exception of using more concentrated E3V6NEXT and
ES5VENEXT (10 pmol).

SCRB-seq and bulk RNA-seq read alignment

All second sequence reads were aligned to a reference database consisting of all mouse
RefSeq mRNA sequences (obtained from the UCSC Genome Browser mm10 reference set:
http://genome.ucsc.edu/), the mouse mm10 mitochondrial reference sequence and the ERCC
RNA spike-in reference sequences using bwa version 0.7.4 4 with non-default parameter “-|
24”. Read pairs for which the second read aligned to a mouse RefSeq gene were kept for
further analysis if 1) the initial six bases of the first read all had quality scores of at least 10
and corresponded exactly to a designed well-barcode and 2) the next ten bases of the first
read (the UMI) all had quality scores of at least 30. Digital gene expression (DGE) profiles
were then generated by counting, for each microplate well and RefSeq gene, the number of
unigue UMIs associated with that gene in that well. Python scripts implementing the

alignment and DGE derivation are available from the authors upon request.

SMART-seq sample preparation and read alignment

The single-cell SMART-seq?2 libraries were prepared according to the SMART-seq2 protocol
2135 with some modifications *°. Briefly, total RNA from single cells sorted in lysis buffer was
purified using RNA-SPRI beads. Poly(A)* mRNA from each single cell was converted to
cDNA which was then amplified. cDNA was subjected to transposon-based fragmentation
that used dual-indexing to barcode each fragment of each converted transcript with a
combination of barcodes specific to each single cell. Barcoded cDNA fragments were then
pooled prior to sequencing. Sequencing was carried out as paired-end 2x25bp with 8
additional cycles for each index. Alignment of the reads and calculation of gene expression
was done through the Tuxedo pipeline (Tophat, Cuffquand, Cuffnorm) ¥ Gene expression

was expressed as reads per kilobase exon model per million mapped reads (RPKM).

Computational analysis of the bulk RNA-seq experiments

The bulk RNA-seq results were normalized by the total amount of reads per time point. Only
those genes with non-zero mean were considered for further analysis. For k-means clustering
of the temporal profiles we first determined the number of robust clusters. Stability analysis '
indicated that there were 6 robust clusters (Supplementary Fig. 3a). We then performed gene

ontology enrichment analysis using the DAVID bioinformatics resource % the results of which
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are summarized in Supplementary Fig. 3b. Only the clusters of monotonically upregulated
genes showed significant enrichment for GO terms related to development, morphogenesis
and differentiation. The heat maps of bulk RNA-seq data depict expression relative to gapdh

expression (Supplementary Fig. 1a).

Computational analysis of the SCRB-seq experiments

A histogram of the total number of UMIs detected per cell is shown in Supplementary Fig. 2a.
To reduce the influence of technical noise we discarded cells with less than 2000 UMIs (red
vertical line in Supplementary Fig. 2). This cutoff nearly minimized the upper bound of the

counting error per gene (Supplementary Fig. 2b) estimated by

1 1
€= .
V< UMI > +#cells

while not significantly reducing the number of detected genes (13720, Supplementary Fig. 2c)
- defined as the number of genes, which had more than one UMI in more than one cell. Due
to this cutoff 2451 out of 3456 measured cells were used for further analysis (Supplementary
Fig. 2e). In individual cells with more than 2000 UMiIs in total on average 850 genes were
detected.

For all further analyses, except the calculation of Fano factors, the data was
normalized in the following way to account for differences in efficiency of transcript recovery
between wells: UMI counts were divided by the total number of UMI counts per cell and then
multiplied by the median of total UMI counts across all cells growing in 2i medium. For the
calculation of Fano factors (Fig. 1c) UMI counts were down-sampled to 2000 UMI counts per
cell. This down-sampling procedure ensured that the contribution of counting error to the
Fano factors was equal for all cells from all time points. To include only those genes, which
exhibited significant, biological variability, we plotted the coefficient of variation (CV) of
individual genes over all time points with respect to the mean expression level as well as the
CVs of ERCC spike-ins with known abundance (Supplementary Fig. 2f). The increase in
variability with decreased average expression reflected higher technical and counting noise
for lowly expressed genes. We used the 829 genes, which had the 5% highest ratios of CV
and the moving average of the CV for principal component analysis, k-means clustering and
t-SNE mapping (see below).

To further characterize the performance of SCRB-seq we first compared SCRB-seq
data averaged over cells for individual time points with bulk RNA-seq and found them to be
strongly correlated (Supplementary Fig. 2g, Pearson correlation p = 0.75). We compared 100
randomly selected pairs of cells growing in 2i medium and found that SCRB-seq
measurements of individual cells were strongly correlated (Supplementary Fig. 2h, Pearson
correlation p = 0.63). By analysis of UMI counts of ERCC spike-in RNA we determined that
UMI counts scaled approximately linearly with the spiked-in transcripts - the slope of a linear

fit to the log-log plot of spike ins versus UMI counts was 0.78. The efficiency of transcript

13


https://doi.org/10.1101/068288

bioRxiv preprint doi: https://doi.org/10.1101/068288; this version posted August 7, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

recovery as determined from the offset of that linear fit was about 0.9% (Supplementary Fig.
2i).

For principal component analysis (PCA) we considered genes, which belonged to the
upregulated clusters (clusters 5 and 6, Supplementary Fig. 3a) and were among the most
variable genes (Supplementary Fig. 2f). Prior to PCA expression profiles of individual genes
were converted to z-scores using the average expression over all time points and the moving
average of the coefficient of variation (Supplementary Fig. 2f) to preserve biological
variability. PCA was performed with all cells across all time points and expression profiles of
individual cells were then projected on the found principal components. The genes with the
highest loadings in the first two principal components are listed in Supplementary Fig. 3c and
their loadings are represented graphically in Supplementary Fig. 3d.

To discover clusters of cells we used k-means clustering including all 829 most
variable genes and using (1 - Pearson correlation) as the distance metric. Cluster-wise
assessment of stability ' was used to determine the robustness of clusters. In particular, we
calculated the Jaccard similarities between clusters found in bootstrapped samples.
Clusterings resulting in Jaccard similarities close to 0.5 were considered unstable. In this way
clusters were found for the 96 h time point. For earlier time point cells were classified
according to similarity with the clusters found at 96 h or mESCs at Oh. In particular, we first
calculated the mean expression profiles of mMESCs, as well as the XEN-like and ectoderm-like
subpopulations at 96 h. Then Pearson correlation was calculated between those average
profiles and expression profiles of individual cells at earlier time points. A cell was classified
as a particular cell type when the correlation with this particular cell type exceeded the
correlation with all other cell types.

Gene expression of individual genes was represented in color by normalizing to the
maximum expression per time point, linear histogram stretching (1 to 99" percentile) and
subsequent linear mapping to a custom colormap (Supplementary Fig. 6d).

For t-distributed stochastic neighbor embedding (t-SNE) we considered genes, which
were among the most variable genes (Supplementary Fig. 2f). Prior to t-SNE mapping profiles
of individual genes were converted to z-scores using the average expression over all time
points and the moving average of the coefficient of variation (Supplementary Fig. 2f) to
preserve biological variability. One-dimensional t-SNE maps were computed using the
MATLAB Toolbox for Dimensionality Reduction (v0.8.1 - March 2013) (39, L.J.P. van der
Maaten, http://homepage.tudelft.nl/19j49/Matlab Toolbox for Dimensionality Reduction.html

). Expression of rex1 was represented in color by normalizing to the maximum expression,
linear histogram stretching (0th to 95" percentile) and subsequent linear mapping to a custom

colormap.
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Computational analysis of the SMART-seq experiments
Only cells with at least 200000 reads per cell were used. For all further analyses the data was
normalized in the following way to account for differences in the total number of reads
between samples: RPKM for individual genes were divided by the total number of RPKM per
cell and then multiplied by the median of total RPKM across all cells growing in 2i medium.
Cells with high expression of cd24 or pdgfra were classified as shown in Supplementary Fig.
6a. Out of the 82 cells measured by SMART-seq at 48 h, 10 were considered XEN-like (
pdgfra high) and 29 ectoderm-like (cd24 high). To compute significance levels for gene
expression in these subpopulations we used a null model that assumes that all cells were
essentially identical and gene expression differences were only due to biological and
technical noise. We repeatedly sampled 10 or 29 cells, respectively, from the pool of cells,
which did not express pdgfra or cd24 and counted for each gene the frequency of samples
which had equal or higher gene expression compared to the two subpopulations. To account
for multiple hypothesis testing we used the Benjamini-Hochberg procedure and set the
maximal false discovery rate to 0.05. Additionally, we required a minimal fold-change of 2 for
a gene to be accepted as differentially over-expressed. Finally, we considered only genes
which were defined as transcriptional regulators by gene ontology (GO) term annotation
(G0O:0003700, GO:0044212, GO:0045944, GO:0006355, GO: 0000981).

We combined the transcriptional regulators identified in this way with pluripotency
network factors *° to arrive at a set of transcription factors which are likely relevant for the
lineage decision studied here. For the calculation of co-expression (Fig. 4b-c) we considered

a gene to be expressed at normalized RPKM values over 1.

Single-molecule FISH
Cells growing in gelatinized tissue culture dishes were washed twice with PBS, detached with
Accutase (Life technologies) and resuspended in full medium. Formaldehyde was added to
the cell suspension to a final concentration of 4%. Cells were incubated for 12 min at room
temperature while being rotated and then spun down for 3 min at 1,000rpm. Subsequently
cells were permeabilized at least over night in 70% ethanol. For hybridization and imaging
cells were attached to chambered cover slides (Nunc Lab-Tek) coated with poly-I-lysine.
In the case of intact colonies, adherent cells were fixed for 15 min with 4% formaldehyde by
adding formaldehyde to the growth medium and subsequently permeabilized in 70% ethanol.
Oligonucleotide libraries with 20-nt probes for nanog, sox2, ki67, gbx2, tbx3, gata6
and pax6 were designed and fluorescently labeled as previously described®®. The
hybridization buffer used for smFISH contained 2 x SSC buffer, 25% or 40% formamide, 10%
Dextran Sulphate (Sigma), E. coli tRNA (Sigma), Bovine Serum Albumin (Ambion) and
Ribonucleoside Vanadyl Complex (New England biolabs). 50 ng - 75 ng of the desired probes
were used per 100 pl of hybridization buffer. (The mass refers only to pooled
oligonucleotides, excluding fluorophores, and is based on absorbance measurements at 260

nm). Probes were hybridized for 16 -18 h at 30 C, after which we washed cells twice for 30
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min at 30 ‘C in wash buffer (2 x SSC, 25% formamide (for all probes except gbx2 and tbx3) or
40% formamide (for gbx2 and tbx3)), supplemented with Hoechst 33342. For microscopy, we
filled the hybridization chamber with a mounting solution containing 1 x PBS, 0.4% Glucose,
100 pg/ml Catalase, 37 ug/ml Glucose Oxidase, and 2 mM Trolox. Imaging was done exactly
as described previously %% and home-made MATLAB scripts were used for image analysis.
Cells positive for one of the assayed genes were classified as shown in Supplementary Fig.
7b.

Quantification of the flow cytometry experiments

The distribution of cells in the space of cd24 and pdgfra expression was modeled by the sum
of 4 bivariate normal distributions. This model has in principle 19 free parameters (8 for the
means, 8 for the standard deviations and 3 for the size of the relative contributions). To
ensure robust fitting to the date we reduced the number of parameters to 9 by keeping the

standard deviations constant and only allowing 4 different values for the means.

high high
p(x'y;fl'f2ﬁf3'.u')lcowvﬂilow!“xg '#yg 10-x;0-y)

high high
=fi- N(x' Vi ‘u)lcow’ ”;ow’ Oy, ay) + 12 N(x' Vi ‘u)lcow’ ﬂylg » Ox O-y) +fs- N(x' Vi :uxlg '#;OW» Oy O-y)

3
high  high
+ (1 —Zﬁ)w(x,y: e 0" 1wy oy, 0y)

i=1
N(X,y,Ux My;0x,0y) is @ bivariate normal distribution in x and y (pdgfra and cd24 expression,
respectively) with mean (uyM,) and standard deviation (oy0,). This model was fit to a
reference data set (typically untreated control cells after 96 h of RA exposure) by maximizing
the log-likelihood -log(p). To subsequently calculate the size of the fractions f; for a particular
sample we first calculated the probabilities that the expression values (x,y) found in a
particular cell were drawn from one the 4 normal distributions N(x,y,ux,Hy,0x,0y). The cell was

then ascribed to the distribution from which it was most likely drawn.

Stochastic simulation of the bifurcation
We simulated the bifurcation process using a discretized version of the Langevin equation

describing the system (Euler method):

X" "
Yo

dx = ( kX)A ++vVDA N (0,1)

gy xn

n

E™ G o
dE = (a56n+En+ben+Xn—kE>A+ DA N (0,1)

X and E indicate the expression levels of the XEN and ectoderm programs respectively.

N(0,1) indicates a Wiener process with mean 0 and standard deviation 1. D sets the strength

of gene expression noise and A determines the size of the time step. After initializing X and E
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randomly between 0 and 0.1 we first equilibrated the system for 100 iterations. Subsequently,
we propagated the system for 200 additional iterations. To relate the simulation to
experimental time scales, the end point of the simulation was taken to be at 96 h. To model
the exit from pluripotency the degradation parameter k was switched from a high value (k=10)
to a low value (k=1) after 12 h (25 iterations), which allowed X and E to increase. To model
timed application of RA the auto-activation parameter for the XEN program ayx was switched
at various points in time (no RA: ax = 0; RA: ax = 0.4). For each condition we generated
10000 trajectories and counted the number of trajectories that ended at the XEN or ectoderm
attractor (see Supplementary Fig. 5b). The relative frequency of trajectories ending at the

XEN attractor is reported in Fig. 3e.

Used parameters

n=4
6=0.5
A =0.05

pluripotency: k = 10

differentiation: k = 1

ag = 0.5
no RA:;, ax=0
RA:ax =04

low noise: D = 0.01
high noise: D = 0.1
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Figure 1 | Single-cell RNA-seq revealed an RA driven bifurcation of mESCs after the exit from pluripotency

a, Scheme of the differentiation protocol with phase contrast images of cells growing in 2i medium (0 h) and after 96
h of exposure to 0.25 yM RA in N2B27 medium. b, t-SNE mapping of single-cell expression profiles. The single-cell
RNA-seq data (SCRB-seq) for all cells and time points were mapped on a one-dimensional t-SNE space, which
preserved local similarity between expression profiles, while reducing dimensionality. Each data point corresponds to
a single cell. Data points for individual time points are shown in violin plots to reflect relative frequency along the t-
SNE axis. The color of each data point indicates rex? expression (relative to maximum expression across all cells).
For the 96 h time point, two robust clusters (found by k-means clustering and stability analysis) are indicated with red
or blue edges, respectively. c, Single-cell gene expression variability quantified as the variance relative to the mean
(Fano factor). The Fano factor of individual genes was averaged over all significantly variable genes. Expression was
measured with SCRB-seq. Dashed lines indicate the average Fano factor calculated using only cells in one of the

two clusters, or cell types after 96 h of RA exposure (see b).
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Figure 2 | mESCs showed gradual adoption and divergence of lineage specific expression profiles after the
exit from pluripotency a, Principal component analysis of single-cell expression profiles of MESCs and after 96 h of
RA exposure. Principal components were calculated across all cells and time points. Cells were placed in the space
of the first two principal components (PC 1 and PC 2). Each data point corresponds to a single cell. Two robust
clusters identified by k-means clustering and stability analysis are shown in red (ectoderm) and blue (XEN),
respectively. mMESCs are shown in yellow. b, Relative frequencies of cells classified as mESC-like, ectoderm- or
XEN-like. Classification was based on Pearson correlation between expression profiles of individual cells and mean
expression profiles of MESCs at 0 h or ectoderm-like and XEN-like cells after 96 h of RA exposure. An individual cell
is identified with the cell type with which it is most strongly correlated. ¢, Principal component analysis of single-cell
expression profiles. Principal components were calculated across all cells and time points. Cells measured at the
indicated periods of RA exposure were placed in the space of the first two principal components. Each data point
corresponds to a single cell. Cells were classified as mMESC-like (orange), ectoderm-like (red) and XEN-like (blue) as
described in the legend of panel b. The areas enclosed by dashed rectangles are shown in d. d, Same data as in ¢
for three select time points (24h, 36h and 48h), zoomed in on the areas indicated by dashed rectangles in c. e,
Average movement of ectoderm- and XEN-like cells in the principal component space during RA differentiation. The

positions of cells of the same type were averaged at the indicated time points.
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Figure 3 | Susceptibility to signaling inputs was highly dynamic around the exit from pluripotency.
a,b,c Fractions of cells classified as XEN-like, ectoderm-like, double positive and double negative after 96 h, based
on cd24 and pdgfra expression. Expression of the two markers was measured by antibody staining and flow
cytometry. a, Cells were pulsed with 0.25 uM RA for x h and subsequently differentiated in basal medium (N2B27)
complemented with an RA receptor antagonist. b, Cells were first incubated with basal medium (N2B27) for x h and
then exposed to 0.25 yM RA for the remainder of the time course. ¢, Cells were incubated with 0.25 uM RA for x h
after which 0.5 yM PD0325901 (MEK inhibitor) was added for the remainder of the time course. d, Schematic
representation of a minimal gene regulatory network that can produce a lineage bifurcation 2, Pointy arrows indicate
(auto-)activation; blunted arrows indicate repression. E and X represent expression of ectoderm-like and XEN-like
transcriptional programs, respectively. P stands for the pluripotency network. RA increases the auto-activation of the
XEN program. e, Results of the stochastic simulations of the network shown in d. The relative frequency of XEN-like
cells after 96 h is shown versus the length of an RA pulse or the length of the delay before RA exposure is started. In
all cases the pluripotency network is turned off after 12 h. Simulations were run with low gene expression noise (solid

lines) or high gene expression noise (dashed lines). See Supplementary Fig. 6b for exemplary trajectories.
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Figure 4 | Distinct co-expression and correlation patterns identified two classes of lineage specific
transcriptional regulators. a, Expression of transcriptional regulators in ectoderm-like and XEN-like cells identified
in the SMART-seq data set. Genes that were significantly differentially expressed after 48 h of RA exposure are
shown in red or pink (overexpressed in ectoderm-like cells) and blue or cyan (overexpressed in XEN-like cells),
respectively. The two panels contain genes, which are present in the pluripotent state (early, left panel) or absent in
the pluripotent state (late, right panel) A list of all identified factors is given in Supplementary Fig. 8b. b, Network of
transcription factor co-expression in the pluripotent state. The gene set comprised the differentially expressed
transcriptional regulators identified here (see a), as well as pluripotency related transcription factors listed in % (see
Supplementary Fig. 8b). Co-expression was calculated using gene expression measured by SMART-seq. Co-
expression of two genes was quantified as the fraction of cells in which the expression of both genes exceeded a
certain threshold value (see Methods). ¢, Co-expression network in the pluripotent state. Two factors are connected
by an edge if their co-expression exceeds 0.8. The gene set comprised XEN specific factors (cyan nodes) and
ectoderm specific factors (pink nodes) that are expressed in the pluripotent state (early factors), as well as
pluripotency factors listed in *° (black nodes). The radius of solid nodes is proportional to the number of connections
to other nodes. Nodes without any connections are depicted as open nodes. d, Pearson correlation between a set of
core transcriptional regulators after 48 h of RA exposure. The gene set is the same as in b. Pearson correlation was
calculated using gene expression measured by SMART-seq. Pearson correlation coefficients exceeding the range [-

0.1,0.2] are shown in the same color as the respective extreme values of that range.
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Figure 5 | smFISH confirmed distinct expression patterns of exemplary transcription factors

a, Fluorescence images of smFISH for gbx2 and tbx3 in mESCs (0 h) and after 72 h RA exposure. Each diffraction
limited dot corresponds to a single mMRNA molecule. Hoechst staining of nuclei is shown in blue. b, Fluorescence
images of smFISH for pax6 and gata6 in mESCs (0 h) and after 96 h RA exposure. Each diffraction limited dot
corresponds to a single mRNA molecule. Hoechst staining of nuclei is shown in blue. ¢, Scatter plots of the number
of gbx2 and tbx3 mRNAs per cell measured by smFISH. Each data point is a single cell. Color indicates the local
density of data points. The number of shown cells measured at a certain time point ranges between 224 and 983. d,
Scatter plots of the number of pax6 and gata6 mRNAs per cell measured by smFISH. Each data point is a single cell.
Color indicates the local density of data points. The number of shown cells measured at a certain time point ranges
between 293 and 570. e, Distribution of the tbx3 and gbx2 transcripts in individual mMESCs as measured by smFISH.
Both data sets are fit by a Gamma distribution (tbx3, R* = 0.94, solid blue line; ghx2, R* = 0.99, solid red line). f,
Scatter plots of the number of MRNAs per cell for gbx2 and tbx3 vs pax6 measured by smFISH. Each data point is a
single cell. Cells were exposed to RA for 12 h, 24 h, 48 h and 72 h, respectively, as indicated above each column of

panels. The number in each panel is the Pearson correlation between the genes plotted in the respective panel.
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Supplementary figure 1 | Bulk RNA-seq and phenotypic assays showed that mESCs exited from pluripotency
after 12 h of RA exposure a, Gene expression of marker genes for pluripotency and the three germ layers
measured by bulk RNA-seq. Expression was normalized to gapdh expression at each time point. b, Average
expression profiles (relative to gapdh) of marker genes shown in a. ¢, Cell morphology throughout the differentiation
time course. Cells were continuously exposed to 0.25 uM RA. Shown are representative phase contrast images. d,
Histograms of the relative DNA content measured by Hoechst 33342 staining and flow cytometry (blue symbols) after
the indicated periods of exposure to RA. The red solid lines are fits of the Dean-Jet-Fox model * to the data for
individual time points. e, Relative lengths of cell cycle phases throughout the time course as determined from fits of
the Dean-Jet-Fox model to the measured DNA content. f, Clonogenicity after exposure to RA (red data points) or
N2B27 basal medium (black data points). After differentiation for the indicated amounts of time cells were replated at
a defined, clonal density in 2i medium. After culture for two additional days in 2i medium colonies were counted. The
reported values are relative to the number of colonies obtained without differentiation prior to culture in 2i. The inset

shows a schematic of this experiment.
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Supplementary figure 2 | Characterization of the SCRB-seq method

a, Frequency of total number of UMIs detected per cell. The red line indicates the cutoff (total UMIs > 2000) above
which cells were used for further analysis. b, Estimated upper bound for the relative counting error of UMIs with
respect to the UMI cutoff. ¢, Number of genes detected across all cells (UMI > 1 in more than 1 cells) with respect to
total UMI cutoff. d, Distribution of number of detected genes (UMI > 1) per cell for cells with at least 2000 UMIs in
total. The average is 850. e, Number of cells used for further analysis with respect to total UMI cutoff f, Coefficient of
variation (CV) of individual genes with respect to mean expression level across all time points. The solid line is a
moving average. Indicated in red are the genes, which are considered the 5% most variable taking into consideration
the general trend. For comparison, the CVs of spiked in ERCC transcripts are shown in green and a linear fit to these
data points is shown as a dashed, black line. g, Comparison of bulk RNA-seq measurements and SCRB-seq
measurements averaged over cells for individual time points. Pearson correlation p = 0.75. h, Comparison of
expression levels measured by SCRB-seq in 100 randomly selected pairs of single cells in 2i conditions. Pearson
correlation p = 0.63. i, Number of spiked in ERCC transcripts with respect to sequenced spike-in UMIs. The blue
symbols show the measurements while red symbols indicate the mean; whiskers indicate standard deviations. From
a linear fit of the data the recovery efficiency is determined to be 0.9%. The slope of the linear fit is 0.78.
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Supplementary figure 3 | Principal component analysis of the differentiation dynamics

a, Expression profiles measured by bulk RNA-seq were clustered by k-means clustering and 6 robust clusters were
identified. The median of the expression profiles in each cluster is shown. Clusters were ordered by the position of
the expression maximum. b, GO terms which were significantly enriched in clusters 5 and 6 (g-value < 5%). c,
Loadings of the 25 genes with the highest loadings in the first two principal components (PC 1 and PC 2). d,
Graphical representation of the data in e. Each arrow represents the loading of a gene. The elements of the vector

defining the arrow are the gene’s loadings.
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Supplementary figure 4 | Cell type quantification by antibody staining and timed lineage cue experiments

a, Flow cytometry measurement of cells stained with cd24 and pdgfra antibodies after 96 h of RA exposure. The
heatmap represents the relative density of cells. b, Frequency of XEN-like and ectoderm-like cells after 96 h
exposure to RA. Cells were classified based on cd24 and pdgfra expression measured by antibody staining and flow
cytometry. Shown are results for 3 biological replicates with E14 mESCs as well as V6.5 mESCs. ¢, Frequency of
XEN-like and ectoderm-like cells after 96 h exposure to RA and MEK inhibitor PD0325901 (MEKi), RA and GSK3
inhibitor CHIR99021 (CHIR) or RA and LIF relative to the control (RA only). Cells were classified based on cd24 and
pdgfra expression measured by antibody staining and flow cytometry. d, Frequency of XEN-like and ectoderm-like
cells after 96 h exposure to various concentrations of RA and 0.5 yM MEK inhibitor PD0325901 (MEK:i) relative to the
control (0.25 uM RA only). Cells were classified based on cd24 and pdgfra expression measured by antibody staining
and flow cytometry. e, Schematic overview of experiments and qualitative results. ‘mESC’ : pluripotent cells growing
in 2i medium, ‘ecto’ : ectoderm-like cells, ‘XEN’ : XEN-like cells, ‘jam’ : undifferentiated jammed cells, ‘MEKi : MEK
inhibitor, ‘RA’ : retinoic acid, ‘2i’ : 2i medium
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Supplementary figure 5 | Stochastic simulation of the bifurcation process

a, Schematic representation and equations defining a minimal gene regulatory network that can produce a lineage
bifurcation %. Pointy arrows indicate (auto)activation; blunted arrows indicate repression. E and X represent
expression of ectoderm-like and XEN-like transcriptional programs, respectively. P stands for the pluripotency
network. Parameters which are changed between conditions are shown in yellow. All other parameters are fixed. b,
Exemplary trajectories for the case of an RA pulse. Each panel shows 10 trajectories simulated under the condition
indicated at each row and column. All trajectories start at the pluripotency attractor and end either at the XEN or
ectoderm attractor. Dashed arrows indicate their overall direction. Trajectories are colored according to their endpoint
and the presence of RA. Red-violet trajectories end at the ectoderm attractor, cyan-blue trajectories end at the XEN
attractor. During the red and blue parts of trajectories RA is present, during the violet and cyan parts of the
trajectories there is no RA. The number in each panel gives the relative frequency of trajectories ending at the XEN
attractor, where 10000 trajectories were simulated.
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Supplementary figure 6 | Identification of differentially expressed transcription factors with SMART-seq
a, Single-cell expression of cd24 and pdgfra after 12 h and 48 h exposure to RA, measured by SMART-seq. The red
dashed line indicates the expression level that defines cd24 or pdgfra high cells. b, List of transcriptional regulators
over-expressed after 48 h of RA exposure in pdgfra or cd24 high cells. The transcription factors shown in color were
picked for further analysis. ¢, Co-expression and Pearson correlation between a set of core transcriptional regulators
after 0 h, 12 h, 24 h and 48 h of RA exposure. The gene set comprised the differentially expressed transcriptional
regulators identified here (see Fig. 4 a), as well as pluripotency related transcription factors listed in ** (see b). Co-
expression and Pearson correlation were calculated using gene expression measured by SMART-seq. Co-
expression of two genes was quantified as the fraction of cells with significant expression of both genes. Correlation
coefficients exceeding the range [-0.1,0.2] are shown in the same color as the respective extreme values of that
range. d, Single-cell gene expression of pax6, gata6, gbx2 and tbx3 after 72 h and 96 h of RA exposure, measured
with SCRB-seq. The position of each data point represents the expression profile of a cell in the space of the first two
principal components (PCxen and PCeq). The color of a data point reflects the expression of the indicated gene,
relative to the maximal expression across all cells and the two time points. Cells belonging to the ectoderm-like and

an XEN-like cluster after 96 h of RA exposure are indicated by red or blue edges, respectively.
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Supplementary figure 7 | Expression dynamics of transcription factors measured by smFISH

a, Sensitivity of smFISH compared to SCRB-seq. Each data point is the single-cell expression level of the indicated
gene (at the indicated time point) averaged over all measured cells. The solid lines are linear fits, where the red
model had an arbitrary intercept and the green model was forced to go through the origin. smFISH detected
approximately 40 times more transcripts than SCRB-seq. b, Abundances of pax6, gata6, gbx2 and tbx3 mRNAs after
0 h and 48 h of RA exposure measured with smFISH. The red dashed line indicates the expression levels that
demarcates cells, which are considered positive (“+”) for the indicated gene. ¢, Fractions of cells which
(co)expressed gbx2 and tbx3 throughout the differentiation time course, based on the smFISH measurements shown
in Fig. 5¢ Thresholds for significant expression are indicated in Supplementary Fig. 9b. d, Fractions of cells which
(co)expressed pax6 and gata6 throughout the differentiation time course, based on the smFISH measurements
shown in Fig. 5d. Thresholds for significant expression are indicated in Supplementary Fig. 9b. e, Number of pax6 or
gata6 transcripts per cell averaged over cells that have at least one pax6 or one gata6 transcript, respectively.

Transcript abundance was measured by smFISH. Cells were exposed to RA acid for the indicated periods of time.
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