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ABSTRACT 

Integrating network theory approaches over longitudinal genome-wide gene expression data 

is a robust approach to understand the molecular underpinnings of a dynamic biological 

process. Here, we performed a network-based investigation of longitudinal gene expression 

changes during sporulation of a yeast strain, SK1. Using global network attributes, viz. 

clustering coefficient, degree distribution of a node, degree-degree mixing of the connected 

nodes and disassortativity, we observed dynamic changes in these parameters indicating a 

highly connected network with inter-module crosstalk. Analysis of local attributes, such as 

clustering coefficient, hierarchy, betweenness centrality and Granovetter’s weak ties showed 

that there was an inherent hierarchy under regulatory control that was determined by specific 

nodes. Biological annotation of these nodes indicated the role of specifically linked pairs of 

genes in meiosis. These genes act as crucial regulators of sporulation in the highly 

sporulating SK1 strain. An independent analysis of these network properties in a less efficient 

sporulating strain helped to understand the heterogeneity of network profiles. We show that 

comparison of network properties has the potential to identify candidate nodes contributing to 

the phenotypic diversity of developmental processes in natural populations. Therefore, 

studying these network parameters as described in this work for dynamic developmental 

processes, such as sporulation in yeast and eventually in disease progression in humans, can 

help in identifying candidate factors which are potential regulators of differences between 

normal and perturbed processes and can be causal targets for intervention.  
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INTRODUCTION 

Network theory has been used to understand the cellular organization and reprogramming of 

biological processes (Barabási and Oltvai 2004; Buganim et al. 2012; Gitter et al. 2012). 

Significant changes in network architecture determined from genome-wide expression 

studies have identified a few crucial genes such as transcription factors as hubs (Luscombe et 

al. 2004; Buganim et al. 2012). Transcript abundance of nodes (genes) in a biological 

network is under genetic control (Brem et al. 2002), and this has led to the understanding of 

how genetic variation is mechanistically associated with gene expression changes that 

underlie physiological differences (Ehrenreich et al. 2010; Cubillos et al. 2011). These 

studies have resulted in the development of exciting approaches aimed at predicting 

phenotypic consequences of genetic perturbations (Shen et al. 2010). The methods used in 

these studies perform comparative gene expression analysis such as clustering methods 

(Eisen et al. 1998), bootstrapping clustering (Kerr and Churchill 2001), four-stage Bayesian 

model (Wakefield et al. 2003), Gaussian mixture models with a modified Cholesky-

decomposed covariance structure (McNicholas and Murphy 2010), etc. However, these gene-

centric methods tend to overlook local patterns where these genes are similar based on only a 

subset (subspace) of attributes, for example, expression values. This led to an implementation 

of pattern similarity based bi-clustering approaches to gene expression data that could find 

bi-clusters among co-regulated genes under the different subset of experimental conditions 

(Roy et al. 2013).  

Sporulation in budding yeast, Saccharomyces cerevisiae, is a linear developmental process 

initiated under extreme nutrient starvation, involving meiotic cell divisions leading to spore 

formation (Neiman 2005; 2011). Several genetic, biochemical, and genome-wide 

transcriptome analyses have elucidated the cascade of transcriptional regulatory processes 

during sporulation (Fig. 1A). These analyses identified over 1,000 genes that change their 

expression during meiosis (Chu et al. 1998; Primig et al. 2000). These expression studies 

categorized the differentially expressed genes into clusters and elucidated their roles in 

meiosis and sporulation. These studies led to the identification of critical regulatory nodes 

that are responsible for cells transitioning between different developmental stages during 

sporulation, viz. IME1, initiator of meiosis and NDT80, a regulator of meiotic divisions (Chu 

et al. 1998; Primig et al. 2000). Several sporulation studies have attempted to determine its 

underlying network structure (Wang et al. 2005; Shen et al. 2010; Ding and Wang 2011). By 
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applying mechanistic models to transcriptional data, for a few crucial genes of sporulation 

network such as NDT80, regulatory mechanisms of this developmental program has been 

studied (Wang et al. 2005). Most these genome-wide expression studies are done in high 

sporulation efficiency SK1 strain (90% in 48h, Keeney 2009), while most molecular studies 

on sporulation are performed on the low sporulating S288c strain (5-10% in 48h; Fig. 1B, 

Deutschbauer and Davis 2005). 

The next step in interpreting gene expression profiles is to go beyond the gene-centric 

techniques and employ more global approaches for a more comprehensive understanding of 

how gene expression profiles are specifically related to the regulatory circuitry of the genome 

(Huang 1999). Network theory provides an efficient framework for capturing structural 

properties and dynamical behaviour of a range of systems spanning from society (Jalan et al. 

2014) to biology (Rai et al. 2014; Shinde et al. 2015). Here we used the network theory 

approach to investigate how genome-wide transcriptional regulatory networks vary across 

time and how the determination of various network parameters can help in identifying crucial 

hubs in this dynamic process. By integrating time-resolved transcriptomics data with the 

known physical gene interaction network of yeast, we created discrete longitudinal networks 

of yeast sporulation at multiple time points for the SK1 strain. Using global and local 

network parameters during sporulation in SK1 strain, we understood its longitudinal 

networks and identified the nodes that get highly perturbed as this strain enters into the 

meiotic pathway. An independent longitudinal analysis of these network parameters in the 

S288c strain that sporulates less efficiently than SK1 was done to understand the 

heterogeneity of network profiles between these two strains. Identification of crucial nodes 

and genes helped us to understand how variation in the genetic background can lead to a 

variable phenotype, sporulation efficiency in this case.  

RESULTS AND DISCUSSION 

Global properties of longitudinal transcriptional regulatory networks of SK1 in 

sporulation medium 

We constructed discrete longitudinal transcriptional regulatory networks of SK1 strain in 

sporulation medium. This network is composed of 12 sub-networks for each time point during 

sporulation. Nodes in each sub-network consisted of genes that were differentially expressed 

with respect to the first-time point (i.e. t0 = 0h) by at least 2-fold. We first asked how do the 
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different sub-networks of SK1 strain interact with one-another and form functional modules 

during the sporulation process. For this, we calculated the clustering coefficient for all sub-

networks that measures the local cohesiveness between the nodes (Watts and Strogatz 1998). 

A high value of clustering coefficient of a node depicts high connectivity among its 

neighbours. We evaluated the average value of clustering coefficient, , for each time 

point. As expected for various biological networks (Albert and Barabási 2002), a high value 

of  was observed for the networks at all time points in SK1 as compared to the 

corresponding random networks (Fig. 2, Supplementary Table S1) as expected (Watts and 

Strogatz 1998). To follow these changes, we independently investigated the early (1-4h, as 

established for this strain previously (Chu et al. 1998; Primig et al. 2000)), middle (4-8h), and 

late phases of sporulation (later than 8h) in SK1 (Fig. 1B). By comparing  the time 

points, a sharp increase in its value was observed twice for SK1 (Fig. 2B). This increase was 

at 4h and 9h, signifying modularity in the SK1 network at these time points. Since these early 

(4h) and middle (9h) time-points are when major meiotic decisions such as those regarding 

entry into Meiosis I (MI) and Meiosis II (MII), respectively (Chu et al. 1998; Primig et al. 

2000) take place, a significant clustering coefficient  may play a role in decision making. 

Furthermore, keeping in view the manner in which we constructed these sporulation 

networks, a high  meant that many of the neighbour target genes of a transcription factor 

also acted as transcription factors for the other neighbour target genes of that same 

transcription factor.  

A closer look at the longitudinal network architecture of sporulation of SK1 revealed that it 

showed a heterogeneous degree distribution. Degree distribution is a network parameter 

defining the number of edges between various nodes. In this biological network, a 

heterogeneous degree distribution could mean that a few transcription factors dominate the 

entire network, as is observed in most real-world networks (Albert and Barabási 2002). The 

sub-networks exhibited a wide range of network sizes across different sporulation time points 

(Table 1). The larger and denser sub-networks were indicative of extensive regulatory 

changes in the SK1 strain. We found that there was a drastic increase in the number of genes 

having significantly high or low expression values in the consecutive time points at the onset 

of sporulation in the early phase (Table 1), which could be due to cells transitioning from 
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mitotic growth to initiate meiosis. The value of average degree distribution showed a 

sudden increase in first two points but remained constant across the remaining time points 

(Fig. 2A). This extensive reprogramming of gene expression early in sporulation as the cells 

prepare to enter meiotic cell division (Gupta et al. 2016) was revealed as an abrupt increase in 

the involvement of genes with sporulation progression in the early phase. However, as the 

sporulation progressed to later phases, the rate of change in network size reduced. 

Interestingly, despite changes in the early sporulation phase, the ratio of the number of 

differentially expressed transcription factors (NTF) and target genes remained almost constant 

across all the time points (Table 1). The proportion of regulatory genes remaining constant 

throughout sporulation indicated that it might be an intrinsic property of the sporulation 

process (Supplementary Fig. S1).  

A change in the number of connections modulates the intrinsic properties of a network (Albert 

and Barabási 2002). We investigated the impact of this change on SK1 during the three 

sporulation phases. Similar to the network size, the number of connections (Nc) increased 

drastically in the early phase. However, the rate of increase in the number of connections was 

high as compared to the rate of increase in their size, which could be attributed to the 

appearance of more number of high degree nodes in the second-time point (Table 1). The 

nodes having high degree refer to genes that regulate a large number of other genes. These 

highly interacting genes are known to be important in various cellular processes (Rai et al. 

2014). In the middle and late phase of sporulation, when processes involved in meiotic 

divisions occur (Chu et al. 1998), we observed that the number of connections did not show a 

considerable change since more than 75% of the genes remained same across different time 

points in this phase (see Supplementary Information).  

We next analysed how the interacting patterns impacted the overall structure of the underlying 

networks. We examined the degree-degree mixing of the connected nodes across the three 

phases of sporulation in SK1. Disassortativity is a parameter that measures the correlation in 

the degrees of the nodes in a network and provides an understanding of the dislikelihood in 

connectivity of the underlying systems (Newman 2002). In gene regulatory networks, highly 

connected nodes avoid linking directly to each other and instead connect to genes with only a 

few interactions, thus exhibiting disassortative topology (Yook et al. 2005). This behaviour of 

the nodes leads to a reduction in crosstalk between different functional modules and increase 

in the robustness of the networks by localising the effects of deleterious perturbations (Maslov 
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and Sneppen 2002). Pearson (degree-degree) correlation coefficient (r) was calculated for the 

sub-networks at all time points. As expected for gene regulatory networks, sporulation sub-

networks in SK1 exhibited disassortativity at all time points (Fig. 2C). A high negative value 

correlation (r = -0.45, Supplementary Table S1) was observed during the early phase of 

sporulation in SK1 suggesting that the strain was highly resilient to perturbations during early 

transcriptional events of sporulation (Maslov and Sneppen 2002). After the early phase, in 

SK1, disassortativity values reach a steady state at middle sporulation phase, suggesting an 

increase in inter-module crosstalk. 

Local properties of longitudinal regulatory networks of SK1 in sporulation medium 

Having analysed the global properties of the sporulation networks, we next studied the impact 

of the local architecture of SK1 network on the phenotypic profile of the strain. We were 

interested in investigating how the number of neighbours of nodes denoted by node degree 

was associated with their neighbour connectivities (interactions between the neighbours of the 

node of interest) evaluated regarding clustering coefficient. All the networks in SK1 exhibited 

negative degree-clustering coefficient correlation (Supplementary Fig. S2) as observed in 

various other real-world networks, indicating the existence of hierarchy in these underlying 

networks (Barabási and Oltvai 2004). A hierarchical architecture implies that sparsely 

connected nodes are part of highly clustered areas, with communication between the different 

highly clustered neighbourhoods maintained by a few hubs. We quantified this hierarchy (h), 

also termed as global reaching centrality in networks (Mones et al. 2012) and found that the 

networks were more hierarchical at the beginning of sporulation process (Fig. 2D). A high 

value of hierarchy is associated with modularity in the network. For instance, in case of 

metabolic networks, hierarchical structure indicates that the sets of genes sharing common 

neighbour are likely to belong to the same functional class (Ravasz et al. 2002). A low value 

of h indicates more random interactions in the underlying networks. SK1 showed the highest 

value of hierarchy at time point 1 (h = 0.5, around 1h, Supplementary Table S1). A decrease 

in the hierarchy was observed until the middle phase of sporulation which further diminished 

in the late phase in SK1, yet again emphasising on the importance of transcriptional 

regulatory activities in the early phase, on the sporulation process. This inference is in line 

with the earlier experimental investigations carried out to understand sporulation (Gupta et al. 

2015), thus demonstrating the success of this network-based approach in unravelling the 

underlying genetic basis.  
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For a network, betweenness centrality is a measure of network resilience (Newman 2001), and 

it estimates the number of shortest paths (the minimum number of edges traversed between 

each of the pairs of nodes) that increases if a node is removed from the network (Newman 

2006). Usually, nodes with a high degree have high betweenness centrality and are known to 

bridge different communities in the network. However, in a network, there exist some nodes, 

which despite having a low degree have relatively high betweenness centrality (Jalan et al. 

2014). In the case of gene regulatory networks, such nodes (genes or transcription factors) are 

involved in less number of regulatory interactions, but these interactions are with different 

signalling pathways. Thus, these nodes are expected to have particular significance in the 

underlying networks as their removal can result in a breakdown in the regulatory pathways. 

Furthermore, in very few cases, a target gene, known to have a low degree may also have 

relatively higher betweenness centrality than the other target genes if several transcription 

factors are simultaneously regulating it. For our longitudinal sporulation networks, we 

identified a few important sporulation-associated genes showing this property (Fig. 3A). 

These were known regulators of respiratory stress and starvation, namely STP2 (Merz and 

Westermann 2009), PMA1 (Ding et al. 2009) and RPL2B (Davey et al. 2012), processes 

involved in regulation of early phases of sporulation. These results show the importance of 

this network attribute in identifying nodes with regulatory roles in a dynamic biological 

process. 

The above analyses helped us to identify influential genes underlying initial transition from 

mitotic to meiotic cycle which is a significant change in transcriptional profile. We next 

identified a few interactions that might be instrumental in regulating the sporulation process 

by considering a significant proposition from sociology, Granovetter’s weak ties hypothesis 

(Granovetter 1973). This hypothesis states that the degree of overlap of two individuals’ 

friendship networks varies directly with the strength of their tie to one another. In the 

networks, the ties having low overlap in their neighbourhoods (i.e. less number of common 

neighbours) are termed as the weak ties (Onnela et al. 2007). The weak ties that have high 

link betweenness centrality are the ones known to bridge different communities (Szell and 

Thurner 2010). Such weak ties revealed through our analysis of different transcriptional 

regulatory networks are listed in Table 3. Interestingly, we found a repetitive occurrence of 

the same weak ties in consecutive time points for SK1 indicating their phase-specific 

importance in yeast sporulation. For instance, DAL81-ACE2 and CDC14-ACE2 were 

repetitive weak ties with high link betweenness centrality in consecutive sub-networks of 
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SK1. To assess the functional importance of these weak ties, we investigated the characteristic 

properties of the end nodes of these weak ties. Unlike social networks where the end nodes of 

weak ties are low degree nodes (Sarkar et al. 2016), in the sporulation networks of SK1, the 

nodes forming weak ties were high degree nodes. An example of this was BAS1, a Myb-

related transcription factor involved in amino acid metabolism and meiosis (Mieczkowski et 

al. 2006). In addition to BAS1, other significant sporulation regulatory genes identified in SK1 

were RIM101, a pH-responsive regulator of an initiator of meiosis (Su and Mitchell 1993); 

IME2, a serine-threonine kinase activator of NDT80 and meiosis (Honigberg and Purnapatre 

2003); CDC14, a protein phosphatase required for meiotic progression (McDonald et al. 

2005); HCM1, an activator of genes involved in respiration (Rodriguez-Colman et al. 2010) 

(see Table 3). These results showed that genes showing weak ties and high betweenness 

centrality are meiosis-associated genes that form essential bridges in SK1. Moreover, DAL81, 

a nitrogen starvation regulator (Marzluf 1997) and ACE2, a regulator of G1/S transition in the 

mitotic cell cycle (Spellman et al. 1998) were identified as end nodes of repetitive weak ties in 

SK1, suggesting their probable regulatory role in the sporulation process that requires further 

investigation (Table 3). 

Longitudinal transcriptional regulatory networks of S288c in sporulation medium 

SK1 is a strain that sporulates efficiently with 90-95% of all its cells entering sporulation 

within 8-10h in sporulation medium. However, a genetically divergent standard laboratory 

strain S288c is not an ideal strain to study sporulation as it has low sporulation efficiency (5-

10% in 48h; Deutschbauer and Davis 2005). Furthermore, several studies have provided 

evidence that S288c is not the ideal strain for studying the allelic spectrum in nature, 

constituting artificial combinations of alleles that have never together been exposed to natural 

selective pressure (Liti et al. 2009). Whole genome resequencing of 39 yeast isolates was 

performed to study the genetic variation in genome sequences of diverse strains of yeast, and 

amongst these strains, S288c diverged strongly by being a phenotypic extreme, across 

multiple environmental conditions including stresses (Warringer et al. 2011). We were 

interested in understanding how S288c responds to a stressful environment like sporulation 

induction, and if by studying global and local network properties, we could identify 

sporulation-specific differences between S288c and SK1. For this, similar to SK1, we 

constructed longitudinal transcriptional regulatory networks of S288c strain in sporulation 

medium that comprised of 8 sub-networks at each time point during sporulation (Gupta et al. 
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2015). To determine the interactions between these sub-networks and identify the time frame 

in which S288c forms functional modules, we calculated the average clustering coefficient, 

, for all sub-networks of S288c. While a sharp increase in  was observed two times 

for SK1 coinciding with the early and middle time points in sporulation medium, in S288c, 

this value was not found to show these characteristic increases (Fig. 4B). A low during 

middle sporulation in S288c might suggest a lack of interaction between crucial transcription 

factors and their target genes, leading to low sporulation in this strain. This inability of S288c 

to form functional modules indicates an inherent property of the strain in responding to stress 

environments. This inability could be due to a delay in relaying information between 

functional modules in a cell possibly affecting S288c stress tolerance.  

When we studied other global network properties of S288c strain, we observed that it 

exhibited a drastic increase in the number of significantly expressed genes in its early hours in 

sporulation medium (Table 3) that was similar to SK1. However, the rate of increase in the 

number of connections (Nc) was much higher in the case of SK1 as compared to S288c. For 

instance, in the early time points in sporulation medium, S288c had a two-fold increase in the 

number of connections, whereas, SK1 exhibited a four-fold increase (Tables 1 and 2, Fig. 

4A). Moreover, the average degree  for SK1 was higher in the first few time points 

compared to S288c with first two time points being significant in SK1 (  = 2.9 and 5.3) 

and only first time point in S288c ( = 3.0, see Figs. 1 and 3, Supplementary Tables S1 and 

S2).  

Since the same repository base network forms the basis for all the interactions for both the 

strains, a change in the number of connections is possible only if old nodes (genes) disappear 

or new nodes arise in the networks. Incidentally, as observed in SK1, S288c networks 

exhibited negative degree-clustering coefficient correlation (Supplementary Fig. S3), 

indicating the existence of hierarchy in these underlying networks (Barabási and Oltvai 2004). 

As time progresses, a fall in the number of connections was observed in S288c compared to 

SK1, with S288c consistently showing lower values for all time points (see Tables 1 and 2). 

Incidentally, this decrease in the number of connections can be attributed to the disappearance 

of the high degree node BAS1, a Myb-related transcription factor involved in amino acid 

metabolism and meiosis (Mieczkowski et al. 2006), discussed above as the high-degree end 
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node of weak ties in the SK1 network. Interestingly, in the early time points of S288c, BAS1 

contributed to approximately 50% of the connections (Table 2) even though it is not one of 

the known regulators of sporulation (Neiman 2011). Its disappearance as time progressed in 

sporulation medium in S288c was reflected in the number of connections. Furthermore, 

surprisingly, its involvement in early regulatory processes and disappearance as time 

progressed, was observed in both the strains. On the one hand, this indicated the specific 

significance of this gene intrinsic to the early phase of sporulation; on the other hand, it 

reflected the drastic changes in the regulatory activities as time progresses in sporulation 

medium. Furthermore, in the later time-points (approximately the time when all the SK1 cells 

have entered sporulation), the number of connections almost doubled for S288c, and two 

known stress-responsive regulators, namely MSN4 and HSF1 (Görner et al. 1998) with a large 

number of edges appeared in this phase (Table 2). MSN4, a known stress response regulator is 

one of the prime initiators of sporulation by regulating NDT80. While it is difficult to 

speculate whether it is a cause or a consequence – the absence of MSN4 in the early S288c 

sub-networks could be one of the reasons behind its poor sporulation ability. This aspect is 

further exemplified by disassortativity values, which in SK1 was significantly high (close to -

0.45) in the early phase of sporulation remaining resilient initially and then a steady increase 

in module crosstalk. However, in S288c, while the network remained resilient, but module 

crosstalk fluctuated until very late (Fig. 4C, Supplementary Table S2). This fluctuation 

implied that the necessary crosstalk between functional modules occurred early in SK1 but 

was still going on or was random and unstable until later time points for the S288c strain. 

Furthermore, we observed a significant increase in the hierarchy at around 8h in sporulation 

medium for S288c, which in comparison was high in early sporulation for SK1 (Fig. 4D). 

This late increase in hierarchy again suggested that there was a delay in increased modularity 

in S288c, which could adversely affect its sporulation process. Crucial regulatory molecular 

decisions are needed to be taken by a cell in a finite time-window, especially for phenotypes 

related to developmental processes and stress-related phenotypes. Since metabolic decisions 

are taking place very rapidly in the early time points of sporulation, if this early signal is 

relayed later in the S288c, then the finite time-frame is lost. Hence, delayed appearance of 

crucial regulatory events can be construed as a very critical factor affecting the sporulation 

process in S288c, and it is possible that the strain remains primarily in the quiescent state 

resulting in poor sporulation efficiency. 

Next, we were interested in identifying influential genes in the S288c longitudinal 
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transcriptional regulatory network in sporulation medium. Interestingly, genes showing the 

property of low degree and high betweenness centrality were sporulation-associated genes 

such as IME1 (Neiman 2011) and TOS4 (Horak et al. 2002) involved in the initiation of 

meiosis and DNA replication checkpoint response, respectively. These sporulation-associated 

genes showed this network property in the early phase in SK1, but in S288c this was only 

observed at later time points (Supplementary Tables S3, S4). These results again suggested 

that this late appearance of crucial early sporulation genes as bridges that could transfer 

information between regulatory modules during early sporulation might be the cause for 

sporulation not proceeding in S288c. We then examined if identifying instrumental node 

interactions occurring within 8h in sporulation medium could provide us with candidate 

molecular pathways that plausibly cause the delay in cross-talk between functional modules 

of the S288c strain. We observed the repeated occurrence of BAS1-RTT107, BAS1-TYE7, 

YAP6-BAS1 and ASK10-HMO1 in consecutive time-points of S288c sub-networks. We 

observed apart from BAS1 (discussed above), genes associated with mitotic functions as end 

nodes of these weak ties, such as RTT107 for DNA repair (Leung et al. 2011), TYE7 for 

glycolytic gene expression (Sato et al. 2000), YAP6 for carbohydrate metabolism (Hanlon et 

al. 2011), ASK10 for glycerol transport (Beese et al. 2009) and HMO1 for DNA structure 

modification (Murugesapillai et al. 2014) (Fig. 3B). While in SK1 meiosis-associated genes 

formed essential bridges (Fig. 3A), in S288c, genes involved in mitotic functions formed 

these bridges (Fig. 3B). It implies how differences in weak ties in regulatory networks can 

help us understand the dramatic differences observed in phenotypes between these strains. It 

is important to note that since the genome-wide expression data used in these analyses is a 

bulk expression of a large number of cells, a variation in the number of cells undergoing 

sporulation, which is the case between SK1 and S288c, can affect the genes identified in our 

network analyses. Further, it is possible that due to cascading consequences of early 

dysregulation observed in S288c, many of the following sporulation processes in S288c are 

dysregulated as well, resulting in changes in network properties compared to SK1. It is not 

possible to disentangle these two, but our results show that network property analyses were 

able to identify known differences between SK1 and S288c. Going ahead, it would be 

interesting to further investigate these genes and their influence on the robustness of the 

longitudinal network architectures in these strains. 
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CONCLUSION 

This study presents a novel framework for assessing the molecular underpinnings underlying 

a phenotype using time-resolved gene expression profile. This framework helped reveal the 

characteristic signatures of a phenotype and identified candidate genes contributing to and 

affecting the phenotype. Inferences drawn based on the comparative investigations of 

structural attributes of the longitudinal sporulation networks of the two strains revealed that 

late appearance of early regulators and delayed crosstalk between functional modules might 

be critical for progression of sporulation process in SK1 and the plausible reasons behind the 

low sporulation efficiency of S288c. This speculation is especially interesting since most 

causative genetic variants known to contribute to sporulation efficiency variation have been 

observed in genes either showing early role in sporulation or affecting genes with an early 

regulatory role in sporulation (Deutschbauer and Davis 2005; Ben-Ari et al. 2006; Gupta et al. 

2014; 2016). 

Application of genome-wide strategies to elucidate the molecular networks in multiple genetic 

backgrounds provides us with the opportunity to understand the impact of natural variation. 

Studying these network properties for variation in causal genes would further help in 

understanding specific molecular effects in the different temporal phases of the phenotype. 

The strategies adopted in this work can be extended to assess the impact of molecular 

perturbations in the already known core interaction network of an organism (Carter et al. 

2013; Gasch et al. 2016). Moreover, application of such network analyses on gene expression 

datasets for disease progression in complex diseases such as cancer and metabolic disorders 

can help identify specific nodes perturbing the underlying molecular pathways that can be the 

focus of personalised medicine and drug target discovery. 

METHODS 

Network construction 

For constructing the transcriptional regulatory sporulation network, the known static 

regulatory interactions were overlaid on the time-resolved transcriptomics data of the two 

strains. The overlaying of the regulatory network and temporal transcriptome data created the 

longitudinally integrated sporulation networks. The static network known for yeast contains 

all the known regulatory interactions between all the yeast transcription factors (TF) and their 

target genes (TG). These interactions were obtained from YEASTRACT database (Teixeira et 
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al. 2013), a curated repository of regulatory associations in S. cerevisiae, based on more than 

1,200 literature references. 

Gene expression data were obtained from previously published studies – for SK1 (Lardenois 

et al. 2011), and S288c (Gupta et al. 2015). These datasets contained gene expression of 6,926 

genes across 13 different time points in linear scale (0h to 12h with 1h intervals termed as T0 

to T12, respectively) in SK1 and 9 different time points in logarithmic scale (0h, 30m, 45m, 

1h10m, 1h40m, 2h30m, 3h50m, 5h40m, 8h30m termed as T0 to T8, respectively) in S288c. 

Gene expression analysis was performed as described previously (Gupta et al. 2015). In brief, 

all time points were normalized together using vsn (Huber et al. 2002) and the log2 

transformed expression values obtained after normalisation were smoothed using locfit. Fold 

differences in expression values were calculated for all the time-points relative to t = 0h (t0), 

as follows: 

   (1) 

   (2) 

such that Y is the expression value of a transcript for a strain (SK1 or S288c) at a specific time 

point n and Y′ is the transformed expression value. One of the reasons behind considering 

fold-change values is to mask the effect of any possible transcriptional noise arising in the 

system. 

At each time point, differentially expressed genes were identified by setting the threshold 

value on log2 fold differences as 1.0. Hence, genes that were considered over-expressed or 

repressed showed at least a 2-fold difference with respect to the first time point t0 (i.e. t = 0h) 

(Gupta et al. 2015). This step again reduces the possibility of picking up any gene that 

contributes to transcriptional noise. 

The longitudinal sporulation network was constructed by overlaying the experimentally 

determined yeast sporulation-specific gene expression values on the yeast static network. For 

each time point of each strain, only those TF-TG pairs were considered that both showed 

either overexpression or repression. These pairs were included in the subnetwork for that 

specific time point and thus, subnetworks for each time point were constructed for each strain. 

For comparison of the gene names obtained from YEASTRACT and the sporulation gene 

  
ʹYSK1(tn ) =YSK1(tn ) −YSK1(t0 )

  
ʹYS 288c(tn ) =YS 288c(tn ) −YS 288c(t0 )
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expression data, aliases were obtained from Saccharomyces Genome Database (Cherry et al. 

2012). This step again refines the interaction data. 

Data availability 

The codes, supplementary tables and figures, adjacency matrices of the networks constructed 

using longitudinal sporulation data drawn from SK1 and S288c strains, the corresponding 

gene indices and transcription factors are freely available online at figshare 

https://doi.org/10.6084/m9.figshare.3457508.v4.  

Structural parameters 

Several statistical measures are proposed to understand specific features of the network 

(Albert and Barabási 2002; Boccaletti et al. 2006). The number of connections possessed by a 

node is termed as its degree. The spread in the degrees is characterised by a distribution 

function , which gives the probability that a randomly selected node has precisely k 

edges. The degree distribution of a random graph is a Poisson distribution with a peak at 

. However, in most large networks such as the World Wide Web, the Internet or the 

metabolic networks, the degree distribution significantly deviates from a Poisson distribution 

but has a power-law tail . The inherent tendency of social networks to form 

clusters representing circles of friends or acquaintances in which every member knows every 

other member is quantified by the clustering coefficient. We categorise the nodes as high and 

low degree nodes by arranging all the nodes in a network in descending order of degrees and 

keep assigning the nodes as high degree nodes until the next lower degree node differs by 

nearly 1.5-fold from the former in terms of the degree. The clustering coefficient of a node i 

denoted as Ci, is defined as the ratio of the number of links existing between the neighbours of 

the node to the possible number of links that could exist between the neighbours of that node 

(Newman et al. 2001) and is given by  

   (3) 

where i is the node of interest and j1, and j2 are any two neighbours of the node i and ki is the 

degree of the node i. The average clustering coefficient of a network corresponding to a 

 
P k( )

P k( )

P k( ) ~ k−γ

  
Ci =

2 Aij1Aj1 j2 Aj2i( )j1=1

ki∑j2=1

ki∑
ki ki −1( )
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particular condition  can be written as 

   (4) 

We define the betweenness centrality of node i, as the fraction of shortest paths between node 

pairs that pass through the said node of interest (Newman 2006). 

   (5) 

where ni is the number of geodesic paths from s to t that passes through i and gst is the total 

number of geodesic paths from s to t. All the nodes were plotted, and the top 5% of the nodes 

(genes) with high betweenness centrality but low degree were identified. 

We quantify the degree-degree correlations of a network by considering the Pearson (degree-

degree) correlation coefficient, given by Newman (2002) 

   (6) 

where ji, ki are the degrees of nodes at both the ends of the ith connection and M represents the 

total connections in the network. 

Link betweenness centrality is defined for an undirected link as 

   (7) 

where  is the number of shortest paths between v and w that contain e, and  is the 

total number of shortest paths between v and w (Onnela et al. 2007). 

The overlap of the neighbourhood of two connected nodes i and j is defined as (Onnela et al. 

2007) 

C

  
C =

1
N

Ci
i=1

N

∑

 
xi =

nst
i

gstst
∑

r =
M −1 jikii=1

M
∑⎡
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⎤
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− M −1 1

2
ji + ki( )

2

i=1
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   (8) 

where nij is the number of neighbours common to both nodes i and j. Here ki and kj represent 

the degree of the ith and jth nodes. 

The hierarchy can be defined as the heterogeneous distribution of local reaching centrality of 

nodes in the network. The local reaching centrality, (CR), of a node i is defined as (Mones et 

al. 2012) 

   (9) 

where d(i,j) is the length of the shortest path between any pair of nodes i and j. The measure 

of hierarchy (h), termed as global reaching centrality is given by 

   (10) 
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FIGURE LEGENDS 

Fig. 1. (A) Schematic diagram of the sporulation process. Upon nutrient starvation, the yeast 

cell exits mitosis (cell division) and initiates meiosis and sporulation. This developmental 

process of meiosis and sporulation is divided into three phases: early, middle, and late, with 

each stage having distinct functions and crucial genes activated, adapted from Chu et al. 

(1998) (B) Heatmap of gene expression profiles of crucial meiosis and sporulation regulators 

in early, middle and late phases of sporulation. Early, middle, and late phases with their 

corresponding time points, demarcated by dashed lines, are defined based on the SK1 profile. 

For SK1, early, middle, and late regulators are indicated by orange, green and grey bars, 

respectively. 

Fig. 2. Structural properties of the sporulation networks of SK1 across different time points. 

(A) Average degree ; (B) average clustering coefficient ; (C) Pearson degree-degree 

correlation coefficient or dis-assortativity (r); (D) global reaching centrality or hierarchy (h). 

The solid red line represents the average of 1000 randomised values of each structural 
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property with error bars representing standard deviation.  

Fig. 3. Plots of average degree  as a function of betweenness centrality ( ) in (A) SK1 

(red) and (B) S288c (blue) networks. Each dot represents a gene and genes with the low 

degree but higher betweenness centrality in their respective time points are marked as black 

and named. Supplementary Tables S3 and S4 gives the complete list of genes. 

Fig. 4. Structural properties of the sporulation networks of S288c across different time points. 

(A) Average degree ; (B) average clustering coefficient ; (C) Pearson degree-degree 

correlation coefficient or dis-assortativity (r); (D) global reaching centrality or hierarchy (h). 

The solid red line represents the average of 1000 randomised values of each structural 

property with error bars representing standard deviation. Supplementary Table S4 gives the 

complete list of genes.   
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TABLES 

Table 1. Structural attributes of SK1 networks 

N, Nc and NTF respectively denote the network size, number of connections and number of 

transcription factors at a particular time point. Catalogue of high degree nodes (degree 

mentioned in brackets) and degree of NDT80 gene are given for each time point of SK1 

networks. 

Time 
points 

N Nc NTF High degree nodes Degree of 
NDT80 

T1 360 529 13 BAS1 (283), RIM101 (39) - 

T2 791 2107 34 BAS1 (480), MSN4 (300), KAR4 
(132), FKH1 (109), AFT2 (75) 

- 

T3 1096 4033 46 ASH1 (612), BAS1 (560), MSN4 
(363), HMS1 (168) 

47 

T4 1495 6540 63 ACE2 (1250), ASH1 (770), MSN4 
(428), AFT1 (369), HMS1 (209) 

69 

T5 1640 7720 73 ASH1 (926), MSN4 (499), AFT1 
(437), GCR1 (399), HMO1 (248) 

87 

T6 1900 8978 77 ASH1 (1074), MSN4 (580), AFT1 
(486), ISW2 (292) 

101 

T7 1928 8012 75 ASH1 (1118), AFT1 (504), ISW2 
(309) 

102 

T8 1886 8281 76 ASH1 (1094), AFT1 (484), STE12 
(432), FHL1 (392), ISW2 (299), 
HMO1 (289) 

95 

T9 2024 9213 74 ACE2 (1700), ASH1 (1039), AFT1 
(461), STE12 (421), FHL1 (362), 
ISW2 (266) 

87 

T10 1880 8410 69 ACE2 (1579), ASH1 (955), AFT1 
(435), STE12 (402), FHL1 (322), 
ISW2 (243) 

79 
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T11 1711 7188 66 ACE2 (1429), ASH1 (870), AFT1 
(428), STE12 (386), FHL1 (291), 
HMS1 (222) 

69 

T12 1745 7206 61 ACE2 (1472), ASH1 (886), AFT1 
(481), GAL4 (299), HMS1 (246), 
SIN4 (216), INO4 (177) 

77 
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Table 2. Structural attributes of S288c networks 

N, Nc and NTF respectively denote the network size, number of connections and number of 

transcription factors at a particular time point. Catalogue of high degree nodes (degree 

mentioned in brackets) and degree of IME1 gene are given for each time point of S288c 

networks. 

Time 
points 

N Nc NTF High degree nodes Degree of 
IME1 

T1 434 605 15 BAS1 (356), HAP4 (92), TUP1 (48) 10 

T2 706 1327 24 BAS1 (523), STE12 (158), HAP4 
(134), CUP2 (117), TUP1 (72) 

14 

T3 691 1280 26 BAS1 (524), HAP4 (136), CUP2 
(114), TUP1 (76), PUT3 (70) 

13 

T4 569 1025 25 BAS1 (442), HAP4 (108), RLM1 (93) 13 

T5 582 1049 24 BAS1 (455), HAP4 (112), SWI5 (92) 15 

T6 415 733 23 HMO1 (138), HAP4 (125), SWI5 
(98) 

16 

T7 409 686 18 HMO1 (131), HAP4 (124), SWI5 
(97) 

19 

T8 513 1195 23 MSN4 (261), HSF1 (246), HMO1 
(129), SWI5 (95), INO4 (75) 

21 
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Table 3. Pairs of interacting genes that have low overlap ( ) and high link betweenness 

centrality ( ) in SK1 networks 

The interacting gene pairs in bold are mentioned in the main text. Their corresponding indices 

as given in Supplementary Fig. S4. 

Time points Node pairs with low O high  

T1 STP2-BAS1, HCM1-BAS1, BAS1-RIM101 

T9 ACE2-MGA1, ACE2-SIR2, DAL81-ACE2, CDC14-ACE2 

T10 CDC14-ACE2, ACE2-ARG82, DAL81-ACE2 

T11 DAL81-ACE2, ACE2-MGA1, CDC14-ACE2 

T12 YPL056C-ARG82, DAL80-ACE2, RIF1-TPK1 
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Table 4. Pairs of interacting genes that have low overlap ( ) and high link betweenness 

centrality ( ) in S288c networks 

The interacting gene pairs in bold are mentioned in the main text. Their corresponding indices 

as given in Supplementary Figure S5. 

Time points Node pairs with low O high   

T1 BAS1-RTT107, BAS1-TYE7 

T2 BAS1-RTT107, BAS1-TYE7 

T3 BAS1-RTT107, BAS1-RPH1, YAP6-BAS1 

T4 YAP6-BAS1 

T6 ASK10-HMO1, HMO1-XBP1 

T7 ASK10-HMO1, YAP6-HMO1 

T8 HSF1-IME1, ASK10-HMO1 
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