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ABSTRACT

Using network theory on an integrated time-resolved genome-wide gene expression data, we investigated intricate dynamic
regulatory relationships of transcription factors and target genes to unravel signatures that contribute to extreme phenotypic
differences in yeast, Saccharomyces cerevisiae. We performed comparative analysis of gene expression profiles of two yeast
strains SK1 and S288c, which lie at extreme ends of sporulation efficiency. The results based on various structural attributes
of the networks, such as clustering coefficient, degree-degree correlations and betweenness centrality suggested that a delay
in crosstalk between functional modules can be construed as one of the prime reasons behind low sporulation efficiency of
S288c strain. A more hierarchical structure in late phase of sporulation in S288c seemed to be an outcome of a delayed
response, resulting in initiation of modularity, which is a feature of early sporulation phase. Further, weak ties analysis
revealed meiosis-associated genes for the high sporulating SK1 strain, while for the low sporulating S288c strain it revealed
mitotic genes. This was a further indication of delay in regulatory activities essential to initiate sporulation in S288c strain.
Our results demonstrate the potential of this framework in identifying candidate nodes contributing to phenotypic diversity in
natural populations.

Introduction
Understanding the molecular role of genetic variation is the current frontier in modern genetics. Even in well-studied model
organism budding yeast (S. cerevisiae), we do not understand the mechanistic contribution of genetic variants in generating
phenotypic variation in population.1 The knowledge that transcript abundance is under genetic control2 has paved way for
multiple studies to investigate how genetic variation is mechanistically associated with gene expression changes that underlie
physiological differences.3, 4 Yeast strains isolated from diverse ecological niches represent a useful resource to address how
transcript abundance impacts phenotypic consequences.5 The high genetic divergence among these yeast strains correlates
well with high phenotypic variance observed when grown in multiple environments.6 Underlying these growth differences,
several molecular pathways have been identified by studying transcript abundance.7 Recently, we used gene expression
variation to study the effect of a genetic variant in the form of a single nucleotide polymorphism to elucidate its role in yeast
sporulation efficiency variation.8 While such studies have been useful, to gain even better insights into the molecular basis of
complex traits, interdisciplinary approaches are required that can ascertain how genetic variants interact amongst themselves
and with the environment to bring about phenotypic diversity in natural populations.9

Various methods have been proposed to perform comparative gene expression analysis such as clustering methods,10

bootstrapping clustering,11 four-stage Bayesian model,12 Gaussian mixture models with a modified Cholesky-decomposed
covariance structure,13 etc. However, all these gene-centric methods tend to overlook local patterns where these genes are
similar based on only a subset (subspace) of attributes, e.g. expression values. This led to implementation of pattern similarity
based bi-clustering approaches to gene expression data that could find bi-clusters among co-regulated genes under different
subset of experimental conditions.14 However, the next step in interpreting gene expression profiles is to go beyond the gene-
centric techniques by employing more global approaches to get a better understanding of how gene expression profiles are
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specifically related to the regulatory circuitry of the genome.15 Network theory provides an efficient framework for capturing
structural properties and dynamical behavior of a range of systems spanning from society16 to biology.17, 18 Furthermore, the
architecture of networks has provided fundamental understanding to randomness and complexity in various biological, social
and technological networks.16, 19–21 In this paper, we focus on understanding the behavior of complex systems in terms of
the structural and functional relationships between the molecular entities19, 22, 23 through various structural measures of the
network, viz. degree-degree correlations,24 hierarchy25 and weak ties analysis.26 The basic structural properties of networks
are dependent on how the networks evolve, the inherent interdependencies of the nodes as well on the architectural constraints.
While on one hand, these network measures help in identifying important nodes of the network, on the other hand, these
measurements also enable realization of the impact of interactions on the behavior of the underlying system. Hence, studying
network parameters have expanded our understanding of biological processes, for instance by identifying important genes for
diseases,17, 18 elucidating the mechanism behind human diseases by analyzing relationships between disease phenotypes and
genes,27 and deciphering the common genetic origin of multiple diseases.28

In the current work, we used the network theory approach to investigate how transcriptional regulatory networks differ
between two genetic backgrounds leading to extreme phenotypes in terms of their sporulation efficiency in the same environ-
ment. Sporulation in yeast, a developmental process initiated under extreme nutrient starvation, involves meiotic cell division
followed by spore formation.29, 30 Several genome-wide transcriptome analyses have been performed to elucidate the cascade
of transcriptional regulation during sporulation.31, 32 This has led to identification of critical regulatory nodes during sporula-
tion that are responsible for cells transitioning between different stages in meiosis, viz. IME1, initiator of meiosis and NDT80,
regulator of meiotic divisions. In yeast, most information about sporulation has been obtained by studying the SK1 strain,
since it has high sporulation efficiency of 90% within 48h.33 The standard laboratory strain S288c, genetically divergent from
SK1, is generally not studied for sporulation as it has low sporulation efficiency (5-15% in 48h33). Both SK1 and another
closely related strain, W303, have approximately 60% of genes showing correlated expression patterns during sporulation,
with majority of these genes associated with gametogenesis.32 Moreover, genetic studies have screened for sporulation de-
fects in the deletion collection library constructed in S288c, and there is good agreement for the sporulation genes identified
in this collection and SK1.29, 34–36 However, gene deletions in a single strain fail to reflect the extent of phenotypic variation
observed in nature, which mostly arises from polymorphisms and gene duplications rather than gene loss.37 Multiple linkage
mapping studies have been performed between S288c and SK1 strains,38, 39 and also in natural isolates of yeast such as oak
and wine strains.40–42 They have collectively identified eleven genetic contributors of the sporulation efficiency variation,
including known sporulation genes - FKH2, IME1, PMS1, RAS2, RIM15, RIM101, RME1, RSF1 and SWS2, and a couple of
non-sporulation genes, MKT1 and TAO3. Interestingly the sporulation genes with causal variants are all known to affect the
initial regulatory events during sporulation.42 In this study, we propose to develop a framework using network analysis that
can be used to understand the effect of genetic background differences on the underlying molecular network of individuals
showing phenotypic variation. We use time-resolved transcriptomics data and integrate it with the known physical gene in-
teraction network of yeast to create a dynamic yeast network at multiple time points. Using network parameters, we identify
the molecular nodes that get highly perturbed during the sporulation process in two yeast strains showing extreme sporulation
efficiencies.

Results and Discussion
We constructed a dynamic transcriptional regulatory network of SK1 strain during sporulation (see Methods) and noted the
three phases of sporulation (Fig. 1a) by comparing the appearance of crucial meiosis regulators in the network (Fig. 1b) with
their expression profiles described previously.29, 32 These three phases in SK1 have been named as early, middle and late
phases of sporulation, respectively.32 NDT80 gets activated in the beginning of the middle phase of sporulation, around 2-3h
in sporulation medium.43 Concordantly, we observed increased expression of NDT80 appearing in the time span from T3 to
T12 (from 3h till 12h in sporulation) in the dynamic sporulation network of SK1 (Supplementary Fig. S1). Interactions of
NDT80 increased from T3, reaching a maximum in T7 and then decreased as time progressed in sporulation (Supplementary
Fig. S1). Based on the appearance of NDT80 in the dynamic sporulation network of SK1, we classified T1-T3 (1-3h in
sporulation) as the early phase, T4-T6 (4-6h in sporulation) as the middle sporulation phase and T7 onwards (7h onwards in
sporulation medium) as the late sporulation phase. The regulators of NDT80 constituted the high degree nodes in SK1 such as
MSN4, stress responsive transcriptional activator; AFT1, regulator of iron homeostasis; FHL1, regulator of ribosomal protein
transcription (Supplementary Fig. S1 and Table 1).

NDT80 is the prime initiator of sporulation in SK1, whereas, in S288c, the low sporulating strain, most of the cells do not
enter meiosis at all and remain arrested in the stationary phase (G1/G0 phase).8 This difference in the number of cells entering
meiosis ultimately leads to a difference in sporulation efficiency, for SK1 it being greater than 90% in 48h and for S288c
remaining very low at 10%. Interestingly, this low efficacy of S288c does not increase even when incubated in sporulation
medium for one week38 and therefore, it is unlikely to show distinct phases as observed in SK1. Thus, in order to determine
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the molecular differences that results in these two genetically divergent strains show sporulation efficiency variation, we chose
SK1 sporulation phases as the basis for comparing their dynamic temporal profiles. Furthermore, the density of expression
profiling time points varied between the two strains; linear time series with 1h gap in SK1 and log time series with denser time
points early in sporulation for S288c. Thus, in order to compare across these two temporal time profiles, for S288c, T1-T5 (30m
to 2h30m in sporulation medium), T6-T7 (3h50m to 5h40m) and T8 (8h30m) time points were considered as corresponding
time points of the early, middle and late phases of SK1, respectively. This comparison would allow us to determine differences
in expression profiles of genes that get misregulated in S288c. We began with constructing the networks and comparing the
general network properties of the two strains during sporulation (Fig. 2, Supplementary Tables S1, S2). The nodes of the
networks are the differentially expressed genes, which were identified at each time point by setting the threshold value on log2
fold differences as 1.0. Hence, genes that were considered overexpressed or repressed showed at least a 2-fold difference with
respect to at the first time point (i.e. t0 = 0h).8

The gene regulatory networks investigated here showed a heterogeneous degree distribution with a few of the nodes
dominating the entire network, as observed in most real world networks.22 SK1 exhibited a wider range of network sizes
across different sporulation time points compared to S288c (Tables 1 and 2). The larger and denser networks were indicative
of more extensive regulatory changes in the SK1 compared to the S288c. In order to follow these changes, we investigated
the early, middle and late phases of sporulation in SK1 independently and compared them to the corresponding time points in
S288c.30 We found that there was a drastic increase in the number of genes having significantly high or low expression values
in the consecutive time points at the onset of sporulation in both the strains (Tables 1 and 2), which could be due to cells
transitioning from mitotic growth to initiate meiosis. This extensive reprogramming of gene expression early in sporulation
as the cells prepare to enter meiotic cell division,44 was revealed as an abrupt increase in the involvement of genes with
sporulation progression in the early phase in both the strains. However, as the sporulation progressed, in the later phases of
sporulation, the rate of change of network size reduced. Despite changes in the early sporulation phase in both the strains, the
ratio of number of differentially expressed transcription factors (NT F ) and target genes remained almost constant across all the
time points (Tables 1 and 2). The proportion of regulatory genes remaining constant throughout the sporulation indicated that
it might be an intrinsic property of the sporulation process.

A change in the number of connections modulates the intrinsic properties of a network.22 We investigated the impact of
this change for both the strains during various sporulation phases. Similar to the network size, the number of connections (Nc)
increased drastically in the early time points of sporulation in both the strains. However, this rate of increase in the number of
connections was much higher in the case of SK1 as compared to S288c. For instance, in the earlier phases during sporulation,
S288c had a two-fold increase in the number of connections, whereas, SK1 exhibited a four-fold increase (Tables 1 and
2). Since all interactions for both the strains are taken from the same repository base network, a change in the number of
connections will only be possible if old nodes (genes) disappear and or new nodes arise in the networks. A higher rate of
increase in the number of connections in SK1 as compared to the rate of increase in their size could be, therefore, attributed to
the appearance of more number of high degree nodes in the second time point (Table 1). The nodes having high degree refers
to genes that regulate a large number of genes. It is possible that there might also be a few feeble interactions of these highly
interacting genes with other genes that are not significant. These highly interacting genes or nodes are known to be important
in various cellular processes.17 In the middle phase of sporulation, associated with processes involved in meiotic divisions,31

the number of connections did not show considerable change for both the strains since we find that more than 75% of the genes
remain same across the different time points in this phase in each strain. However, in the late sporulation phase, there was a
change in the number of connections in S288c while for SK1, this number remained almost constant compared to the middle
phase. From middle to late phase, a fall in the number of connections in S288c was observed. Incidentally, this decrease in
the number of connections could be due to the disappearance of the high degree node BAS1, a Myb-related transcription factor
involved in amino acid metabolism and meiosis.45 Interestingly, BAS1 contributed to approximately 50% of the connections
in the early phase of S288c (Table 2) even though it is not one of the known regulators of sporulation,30 and its disappearance
in the middle phase was reflected in the number of connections. Furthermore, surprisingly, this gene was involved in the
regulatory processes only in the early phase of sporulation and disappeared during the middle phase in both the strains. On
one hand, this indicated the specific significance of this gene intrinsic to the early phase of sporulation; on the other hand it
reflected the drastic changes in the regulatory activities from the early to the middle phase. Furthermore, in the late sporulation
phase of S288c strain, the number of connections almost doubled and two known stress-responsive regulators, namely MSN4
and HSF146 with a large number of edges appeared in this phase. However, in SK1, MSN4 consistently appeared as one
of the high degree nodes in both the early and middle phases implicating that it might be one the crucial signatures of high
sporulation efficiency. It could be concluded that its absence in the early and late phases of S288c sporulation could be a reason
of the cells poor ability to sporulate, however, it would be difficult to speculate if it is a cause or a consequence. Appearance
of MSN4 later than early sporulation phase (with respect to SK1) in S288c might be an indication of the delayed sporulation
and indicating its important role in the regulation of sporulation.47 The differences in the number of connections between the
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strains in the three phases of sporulation, further motivated us to compare their general principles of regulatory interactions
during sporulation.

So far, we focused only on the number of genes and the interactions in the networks. To understand how the interacting
patterns impacted the overall structure of the underlying networks, we investigated the degree-degree mixing of the connected
nodes across the three phases of sporulation in the two strains. Disassortativity is a parameter that measures the correlation
in the degrees of the nodes in a network and provides understanding of the dislikelihood in connectivity of the underlying
systems.48 In gene regulatory networks, highly connected nodes avoid linking directly to each other and instead connect to
proteins with only a few interactions, thus exhibiting disassortative topology.49 This behavior of the nodes leads to a reduction
in crosstalk between different functional modules and increase in the robustness of the networks by localizing the effects of
deleterious perturbations.50 The Pearson (degree-degree) correlation coefficient (r) was calculated for the networks at all time
points in each of the strains (see Methods). As expected for gene regulatory networks, sporulation networks in both SK1 and
S288c exhibited disassortativity at all time points (Fig. 2). A high value of this property was observed in both the strains
during the early phase of sporulation, suggesting that the strains were more resilient to perturbations while carrying out early
sporulation transcriptional events.50 After the early phase, in SK1, disassortativity values reached a steady state at middle
sporulation phase, while those of S288c still fluctuated (Fig. 2). Taken together, these observations implied that the necessary
crosstalk between functional modules occurred early and then stabilized in SK1, while they were still going on or were random
and unstable in the middle and late phases of S288c.

After analyzing the global properties of the sporulation networks, the local properties of the networks, which were expected
to reveal the impact of local architecture on the phenotypic profiles of the two strains, were investigated. Clustering coefficient
is one such local property that measures the local cohesiveness between the nodes.51 A high value of clustering coefficient
of a node depicts high connectivity among the neighbors of that node. For the two strains, we evaluated the average value of
clustering coefficient (⟨C⟩) for each time point (see Methods). As expected for various biological networks,22 a high value of
⟨C⟩ was observed for the networks at all time points in both the strains as compared to their corresponding random networks
(Fig. 2, Supplementary Tables S1, S2) as expected.51 Furthermore, keeping in view the manner in which we constructed
the sporulation networks, a high ⟨C⟩ meant that many of the neighbor target genes of a transcription factor also acted as
transcription factors for the other neighbor target genes of that same transcription factor. On comparing the average value
of clustering coefficient between the strains, a sharp increase in ⟨C⟩ was observed three times for SK1 coinciding with the
early, middle and late phases of sporulation, while for S288c only two such transitions were observed for this property (Fig. 2).
Moreover, while the transitions between the three peaks were rapid in the SK1, a slower transition between the first and second
peak was observed for S288c. High clustering in cellular networks is known to be associated with the emergence of isolated
functional modules.23 Our results of average clustering coefficient suggested that the increased time taken by S288c to form
functional modules could be due to a delay in relaying signaling information from early to middle phase of its sporulation.

In order to further unravel the differences of the sporulation process between the two strains, we investigated how number
of neighbors of nodes denoted by node degree was associated with their neighbor connectivities (interactions between the
neighbors of the node of interest) evaluated in terms of clustering coefficient (see Methods). All the networks in SK1 and
S288c exhibited negative degree-clustering coefficient correlation (Supplementary Figs. S2, S3) as observed in various other
real world networks, indicating the existence of hierarchy in these underlying networks.23 A hierarchical architecture implies
that sparsely connected nodes are part of highly clustered areas, with communication between the different highly clustered
neighborhoods being maintained by a few hubs. We quantified this hierarchy (h), also termed as global reaching centrality
in the networks25 (see Methods) and found that in both the strains, the networks were more hierarchical at the beginning of
sporulation (Fig. 2). A high value of hierarchy has been associated with modularity in the network. For instance, in case of
metabolic networks, hierarchical structure indicates that the sets of genes sharing common neighbor are likely to belong to
the same functional class.52 A low value of h indicates more random interactions in the underlying networks. A decrease in
hierarchy was observed until the middle phase of sporulation in both the strains. While SK1 continued to exhibit diminishing
hierarchy in the late phase, in S288c there was an increase in the hierarchy at the last time point, again suggesting an increase
in modularity in later phase of sporulation in S288c. These results implied that since both the strains showed high values of
disassortativity, average clustering coefficient ⟨C⟩ and h values early in sporulation, the nature of genes involved in transferring
information from the early to middle and late phases of sporulation would be important for us to understand the phenotypic
difference between them. Previous sporulation studies have shown that many causative sporulation-associated genetic variants
are present in genes regulating early sporulation processes.8, 42 Therefore, next we identified the genes that would directly or
indirectly be involved in bringing about the phenotypic differences in both the strains as sporulation progresses.

For a network, betweenness centrality (see Methods) is a measure of network resilience53 and it estimates the number of
shortest paths (the minimum number of edges traversed between each of the pairs of nodes) that will increase if a node is
removed from the network.54 Usually nodes with high degree have high betweenness centrality16 and are known to bridge
different communities in the network. However, in a network, there exist some nodes, which despite having low degree have
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relatively high betweenness centrality.16 In the case of gene regulatory networks, such nodes (genes or transcription factors),
while are involved in less number of regulatory interactions but these interactions are with different signaling pathways.
Thus, these nodes are expected to have special significance in the underlying networks as their removal can result in a major
breakdown in the pathways controlling the sporulation process. Furthermore, in very few cases, a target gene, known to
have low degree may also have relatively higher betweenness centrality than the other target genes if it is simultaneously
being regulated by several transcription factors. We identified a few important sporulation genes showing this property of
low degree and high betweenness centrality in both SK1 and S288c (Fig. 3). In the SK1 networks, these genes were known
regulators of respiratory stress and starvation, namely STP2,55 PMA156 and RPL2B,57 while in S288c these were IME18 and
TOS4,58 genes involved in initiation of meiosis and DNA replication checkpoint response, respectively. Generally, sporulation
genes appeared to show this property in the early phase of SK1 but during the middle to late phase in S288c (Supplementary
Tables S3, S4). These results suggested that this late appearance of important early sporulation genes as bridges that could
transfer information between regulatory modules during early sporulation might be the cause for sporulation not proceeding
in S288c. Thus, above analyses helped us to identify influential genes underlying the differential sporulation process. We
next identified a few interactions that might be instrumental in regulating the sporulation process by considering an important
proposition from sociology, Granovetter’s Weak ties hypothesis.59 This hypothesis states that the degree of overlap of two
individuals’ friendship networks varies directly with the strength of their tie to one another. In the networks, the ties having
low overlap in their neighborhoods (i.e. less number of common neighbors) are termed as the weak ties.26 The weak ties
that have high link betweenness centrality (see Methods) are the ones known to bridge different communities.60 Such weak
ties revealed through our analysis of different sporulation networks are listed in Tables 3 and 4. Interestingly, we found
repetitive occurrence of the same weak ties in consecutive time points for both the strains indicating their phase-specific
importance in yeast sporulation. For instance, BAS1-RTT107, BAS1-TYE7, YAP6-BAS1 and ASK10-HMO1 were repetitive
weak ties with high link betweenness centrality in consecutive time points of S288c networks while in SK1 networks DAL81-
ACE2 and CDC14-ACE2 were such ties. In order to assess the functional importance of these weak ties, we investigated the
characteristic properties of the end nodes of these weak ties. Unlike social networks where the end nodes of weak ties are
low degree nodes,61 in the sporulation networks of both the strains, the nodes forming weak ties were high degree nodes.
An example of this was again BAS1, which as discussed above, is a Myb-related transcription factor involved in amino
acid metabolism and meiosis.45 In addition to BAS1, other important sporulation regulatory genes were identified in SK1,
such as RIM101, a pH-responsive regulator of an initiator of meiosis;62 IME2, a serine-threonine kinase activator of NDT80
and meiosis;63 CDC14, a protein phosphatase required for meiotic progression;64 HCM1, an activator of genes involved in
respiration.65 Whereas in S288c, apart from BAS1, genes associated with mitotic functions such as TYE7 for glycolytic gene
expression,66 YAP6 for carbohydrate metabolism,67 RTT107 for DNA repair,68 ASK10 for glycerol transport69 and HMO1
for DNA structure modification70 were identified. These results showed that while in SK1 meiosis-associated genes formed
important bridges, in S288c these bridges were formed by genes involved in mitotic functions. This implied how differences in
weak ties in regulatory networks can help us understand the dramatic differences observed in phenotypes. Moreover, DAL81,
a nitrogen starvation regulator71 and ACE2, a regulator of G1/S transition in the mitotic cell cycle72 were identified as end
nodes of repetitive weak ties in SK1, suggesting their probable regulatory role in the sporulation process that requires further
investigation.

Conclusion
This study presents a novel framework for assessing the molecular underpinnings of the phenotypic variation across strains due
to the genetic differences between them. We studied the combined effect of genetic variants on the dynamic yeast sporulation
network and used comparative analysis of various network parameters between two yeast strains showing extreme phenotypic
differences. This framework helped reveal the characteristic signatures of the phenotype of interest and identified candidate
genes contributing to phenotypic variation. Using this framework, we showed that the comparative analysis of parameters
measuring the network connectivity and degree-degree mixing were the best in identifying differences between two yeast
strains showing diverse sporulation efficiency. Comparing the basic structural attributes of the dynamic sporulation networks
of the two strains revealed that a delayed crosstalk between functional modules of the low sporulating S288c might be the
plausible reason behind its low sporulation efficiency. The end nodes of the repetitive weak ties, which are instrumental in
bridging communities, were meiosis-associated genes for SK1 while these nodes in S288c were involved in mitotic functions,
thus outlining the importance of this parameter in unraveling the molecular differences between the two strains.

The three sharp transitions in the average clustering coefficient in the SK1 indicating formation of functional modules
correlate very well with the known early, middle and late phases of sporulation.15 This three-tiered modularity was not
observed in the S288c with a delayed appearance of the second peak of average clustering coefficient. These observations in
S288c imply that a probable delay in cross talk between the early phase genes results in delayed formation of a functional
module in later phases. This speculation is especially interesting since most causative genetic variants known to contribute to
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sporulation efficiency variation have been observed in genes either showing early role in sporulation73 or affecting genes with
early regulatory role in sporulation.8, 44

Application of genome-wide strategies to elucidate the molecular networks in multiple genetic backgrounds provides us
with the opportunity to understand the impact of natural variation. Studying these network properties for variation in causal
genes would further help in understanding specific molecular effects in the different temporal phases of the phenotype. The
strategies adopted in this work can be extended to assess the impact of molecular perturbations in the already known core
interaction network of an organism.1, 74 Moreover, application of such a network analysis on gene expression datasets for
disease progression in complex diseases such as cancer and metabolic diseases can help identify specific nodes perturbing the
underlying molecular pathways that can be focus of personalized medicine and drug target discovery.

Methods
Network construction
For constructing the transcriptional regulatory sporulation network, the known static regulatory interactions were overlaid on
the time-resolved transcriptomics data of the two strains. This created the dynamic integrated sporulation network. The static
network known for yeast contains all the known regulatory interactions between all the yeast transcription factors (TF) and
their target genes (TG). These interactions were obtained from YEASTRACT database,75 a curated repository of regulatory
associations in S. cerevisiae, based on more than 1,200 literature references.

Gene expression data for yeast strains SK176 and S288c8 was obtained from previously published studies. These datasets
contained gene expression of 6,926 genes across 13 different time points in linear scale (0h to 12h with 1h intervals termed as
T0 to T12, respectively) in SK1 and 9 different time points in logarithmic scale (0h, 30m, 45m, 1h10m, 1h40m, 2h30m, 3h50m,
5h40m, 8h30m termed as T0 to T8, respectively) in S288c. Gene expression analysis was performed as described previously.8

In brief, all time points were normalized together using vsn77 and the log2 transformed expression values obtained after
normalization were smoothed using loc f it.78 Fold differences in expression values were calculated for all the time-points
relative to t = 0h (t0), as follows:

Y ′
SK1(tn) = YSK1(tn)−YSK1(t0) (1)

Y ′
S288c(tn) = YS288c(tn)−YS288c(t0) (2)

such that Y is the expression value of a transcript for a strain (SK1 or S288c) at a specific time point n and Y ′ is the transformed
expression value.

Differentially expressed genes were identified at each time point by setting the threshold value on log2 fold differences as
1.0. Hence, genes that were considered overexpressed or repressed showed at least a 2-fold difference with respect to the first
time point t0 (i.e. t = 0h).8

The dynamic sporulation network was constructed by overlaying the experimentally determined yeast sporulation-specific
gene expression values on the yeast static network. For each time point of each strain, only those TF-TG pairs were considered
that both showed either overexpression or repression. These pairs were included in the subnetwork for that specific time point
and thus, subnetworks for each time point were constructed for each strain. For comparison of the gene names obtained from
YEASTRACT and the sporulation gene expression data, aliases were obtained from Saccharomyces Genome Database.79

Data availability
The adjacency matrices of the networks constructed using time-resolved sporulation data drawn from SK1 and S288c strains,
the corresponding gene indices and transcription factors are freely available online at Figshare.80

Structural parameters
Several statistical measures are proposed to understand specific features of the network.19, 22 The number of connections
possessed by a node is termed as its degree. The spread in the degrees is characterized by a distribution function P(k), which
gives the probability that a randomly selected node has exactly k edges. The degree distribution of a random graph is a Poisson
distribution with a peak at P(⟨k⟩). However, in most large networks such as the World Wide Web, the Internet or the metabolic
networks, the degree distribution significantly deviates from a Poisson distribution but has a power-law tail P(k) ∼ k−γ . The
inherent tendency of social networks to form clusters representing circles of friends or acquaintances in which every member
knows every other member, is quantified by the clustering coefficient.51 We categorize the nodes as high and low degree nodes
by arranging all the nodes in a network in descending order of degrees and keep assigning the nodes as high degree nodes
until the next lower degree node differs by nearly 1.5-fold from the former in terms of the degree. Clustering coefficient of a
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node i denoted as Ci, is defined as the ratio of the number of links existing between the neighbors of the node to the possible
number of links that could exist between the neighbors of that node81 and is given by

Ci =
2∑ki

j2=1 ∑ki
j1=1(Ai j1A j1 j2A j2i)

ki(ki −1)
(3)

where i is the node of interest and j1 and j2 are any two neighbors of the node i and ki is the degree of the node i. The average
clustering coefficient of a network corresponding to a particular condition (⟨C⟩) can be written as

⟨C⟩= 1
N

N

∑
i=1

Ci (4)

We define the betweenness centrality of a node i, as the fraction of shortest paths between node pairs that pass through the
said node of interest.54

xi = ∑
st

ni
st

gst
(5)

where ni
st is the number of geodesic paths from s to t that passes through i and gst is the total number of geodesic paths from

s to t. All the nodes were plotted and the top 5% of the nodes (genes) with high betweenness centrality but low degree were
identified.

We quantify the degree-degree correlations of a network by considering the Pearson (degree-degree) correlation coefficient,
given as48

r =
[M−1 ∑M

i=1 jiki]− [M−1 ∑M
i=1

1
2 ( ji + ki)

2]

[M−1 ∑M
i=1

1
2 ( j2

i + k2
i )]− [M−1 ∑M

i=1
1
2 ( ji + ki)2]

, (6)

where ji, ki are the degrees of nodes at both the ends of the ith connection and M represents the total connections in the
network.

Link betweenness centrality is defined for an undirected link as

βL = ∑
v∈Vs

∑
w∈V/v

σvw(e)/σvw (7)

where σvw(e) is the number of shortest paths between v and w that contain e, and σvw is the total number of shortest paths
between v and w.26

The overlap of the neighborhood of two connected nodes i and j is defined as26

Oi j =
ni j

(ki −1)+(k j −1)−ni j
(8)

where ni j is the number of neighbors common to both nodes i and j. Here ki and k j represent the degree of the ith and jth

nodes.
Hierarchy can be defined as the heterogeneous distribution of local reaching centrality of nodes in the network. The local

reaching centrality, (CR), of a node i is defined as25

CR(i) =
1

N −1 ∑
j:0<d(i, j)<∞

1
d(i, j)

, (9)

where d(i, j) is the length of the shortest path between any pair of nodes i and j. The measure of hierarchy (h), termed as
global reaching centrality is given by

h =
∑i∈V [Cmax

R −CR(i)]
N −1

(10)
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Figure 1. (a) Schematic diagram for the sporulation process. Upon nutrient starvation, the yeast cell exits mitosis (cell
division) and initiates meiosis and sporulation. This developmental process of meiosis and sporulation is divided in three
phases: early, middle and late, with each stage having distinct functions and crucial genes being activated. (Adapted from
Chu et al.31) (b) Heatmap of gene expression profiles of crucial meiosis and sporulation regulators in early, middle and late
phases of sporulation in SK1 and S288c. Early, middle and late phases with their corresponding time points, demarcated by
dashed lines, are defined based on SK1 profile. For SK1, early, middle and late regulators are indicated by orange, green and
gray bars, respectively.

Figure 2. Comparison of temporal profiles structural properties of the sporulation networks of SK1 (red circles) and S288c
(blue squares) across early, middle and late phases of sporulation. Early, middle and late phases, demarcated by dashed lines,
are defined based on SK1 profile. (a) Average degree (⟨k⟩), (b) average clustering coefficient (⟨C⟩), (c) Pearson
degree-degree correlation coefficient (r), (d) global reaching centrality (h).

Figure 3. Plots of degree (k) as a function of betweenness centrality (βC) in (a) SK1 (red) and (b) S288c (blue) networks.
Each dot represents a gene and genes with low degree but higher betweenness centrality in their respective time points are
marked as black and named.

Table 1. Structural attributes of SK1 sporulation networks. N, Nc and NT F respectively denote the network size, number of
connections and number of transcription factors in a particular time point. Catalog of high degree nodes (degree mentioned
in brackets) and degree of NDT80 gene are provided for each time point of SK1 sporulation networks.

Time points N Nc NT F High degree nodes Degree of NDT80
T1 360 529 13 BAS1 (283), RIM101 (39) -
T2 791 2107 34 BAS1 (480), MSN4 (300), KAR4 (132), FKH1 (109), AFT2 (75) -
T3 1096 4033 46 ASH1 (612), BAS1 (560), MSN4 (363), HMS1 (168) 47
T4 1495 6540 63 ACE2 (1250), ASH1 (770), MSN4 (428), AFT1 (369), HMS1 (209) 69
T5 1640 7720 73 ASH1 (926), MSN4 (499), AFT1 (437), GCR1 (399), HMO1 (248) 87
T6 1900 8978 77 ASH1 (1074), MSN4 (580), AFT1 (486), ISW2 (292) 101
T7 1928 8012 75 ASH1 (1118), AFT1 (504), ISW2 (309) 102
T8 1886 8281 76 ASH1 (1094), AFT1 (484), STE12 (432), FHL1 (392), ISW2 (299), HMO1 (289) 95
T9 2024 9213 74 ACE2 (1700), ASH1 (1039), AFT1 (461), STE12 (421), FHL1 (362), ISW2 (266) 87
T10 1880 8410 69 ACE2 (1579), ASH1 (955), AFT1 (435), STE12 (402), FHL1 (322), ISW2 (243) 79
T11 1711 7188 66 ACE2 (1429), ASH1 (870), AFT1 (428), STE12 (386), FHL1 (291), HMS1 (222) 69
T12 1745 7206 61 ACE2 (1472), ASH1 (886), AFT1 (481), GAL4 (299), HMS1 (246), SIN4 (216), INO4 (177) 77

Table 2. Structural attributes of S288c sporulation networks. N, Nc and NT F respectively denote the network size, number of
connections and number of transcription factors in a particular time point. Catalog of high degree nodes (degree mentioned
in brackets) and degree of IME1 gene are provided for each time point of S288c sporulation networks.

Time points N Nc NT F High degree nodes Degree of IME1
T1 434 605 15 BAS1 (356), HAP4 (92), TUP1 (48) 10
T2 706 1327 24 BAS1 (523), STE12 (158), HAP4 (134), CUP2 (117), TUP1 (72) 14
T3 691 1280 26 BAS1 (524), HAP4 (136), CUP2 (114), TUP1 (76), PUT3 (70) 13
T4 569 1025 25 BAS1 (442), HAP4 (108), RLM1 (93) 13
T5 582 1049 24 BAS1 (455), HAP4 (112), SWI5 (92) 15
T6 415 733 23 HMO1 (138), HAP4 (125), SWI5 (98) 16
T7 409 686 18 HMO1 (131), HAP4 (124), SWI5 (97) 19
T8 513 1195 23 MSN4 (261), HSF1 (246), HMO1 (129), SWI5 (95), INO4 (75) 21

12/13

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 30, 2016. ; https://doi.org/10.1101/068270doi: bioRxiv preprint 

https://doi.org/10.1101/068270
http://creativecommons.org/licenses/by-nd/4.0/


Table 3. Pairs of interacting genes which have low overlap (O) and high link betweenness centrality (βL) in SK1 networks.
Their corresponding indices as given in Supplementary Fig. S4.

Time points Gene pair
T1 STP2-BAS1, HCM1-BAS1, BAS1-RIM101
T9 ACE2-MGA1, ACE2-SIR2, DAL81-ACE2, CDC14-ACE2
T10 CDC14-ACE2, ACE2-ARG82, DAL81-ACE2
T11 DAL81-ACE2, ACE2-MGA1, CDC14-ACE2
T12 YPL056C-ARG82, DAL80-ACE2, RIF1-TPK1

Table 4. Catalog of links having low overlap (O) yet relatively high link betweenness centrality (βL) in each time point for
S288c. Their corresponding indices as given in Supplementary Fig. S5.

Time points Nodes with low O high βL
T1 BAS1-RTT107, BAS1-TYE7
T2 BAS1-RTT107, BAS1-TYE7
T3 BAS1-RTT107, BAS1-RPH1, YAP6-BAS1
T4 YAP6-BAS1
T6 ASK10-HMO1, HMO1-XBP1
T7 ASK10-HMO1, YAP6-HMO1
T8 HSF1-IME1, ASK10-HMO1
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