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ABSTRACT

Using network theory on an integrated time-resolved genome-wide gene expression data, we investigated the intricate dy-
namic regulatory relationships of transcription factors and target genes to unravel signatures that contribute to extreme phe-
notypic differences in yeast, Saccharomyces cerevisiae. We performed a comparative analysis of the gene expression profiles of
two yeast strains SK1 and S288c which are known for high and low sporulation efficiency, respectively. The results based on
various structural attributes of the networks, such as clustering coefficient, degree-degree correlations, and betweenness cen-
trality suggested that a delay in crosstalk between functional modules can be construed as one of the prime reasons behind
low sporulation efficiency of S288c strain. A more hierarchical structure in the late phase of sporulation in S288c indicated
an attempt of this low sporulating strain to obtain modularity, which is a feature of early sporulation phase. Further, the weak
ties analysis revealed that mostly meiosis-associated genes were the end nodes of the weak ties for the high sporulating
SK1 strain, while for the low sporulating S288c strain these nodes were mitotic genes. This again was a clear indication
of the delay in regulatory activities in the S288c strain, which are essential to initiate sporulation. Our results demonstrate
the potential of this framework in identifying candidate nodes contributing to phenotypic diversity in natural populations with
application prospects in drug target discovery and personalized health.

Introduction
Phenotypes arise from complex molecular interaction networks, hence comparing transcriptional regulation of a phenotype
across multiple genetic backgrounds can provide comprehensive insights into the network regulating the phenotype. Com-
paring transcriptional networks of developmental or temporal processes allows identification of differences in chronological
order of events regulating a process. For a developmental process such as yeast sporulation, which comprises of meiosis and
ends with spore formation, several genome-wide transcriptome analyses have been done to understand the complete cascade
of transcriptional regulation.1 This has led to identification of stages of gene regulation during sporulation withIME1 and
NDT80 regulating transition between these stages.2 To understand how different genetic backgrounds modulate this tran-
scriptional cascade, yeast strains from different genetic backgrounds have been compared, such as SK1 (a high sporulating
S. cerevisiae strain with over 90% sporulation efficiency in 48h) and W303 (a moderate sporulatingS. cerevisiae strain with
60% efficiency). This comparison between the two strains carried out across each time point showed that while the patterns of
gene expression profiles remained similar, only 60% genes overlapped in expression levels.3 While this is a useful method to
compare across time scales,4 it does not allow comprehensive comparison between the expression profiles of all genes across
time.

Various methods have been suggested to study gene expression profiles across strains such as clustering methods,5 boot-
strapping clustering,6 four-stage Bayesian model,7 Gaussian mixture models with a modified Cholesky-decomposedcovari-
ance structure,8 biclustering algorithm,9 etc. Clustering proved to be a successful initial approach for analyzing gene ex-
pression data and allowed biologists to identify groups of potentially meaningful genes that have related functions or are
co-regulated.5 However, these studies are gene centric with aim to assign functions to functionally unknown genes, for
instance, clustering methods predict function of genes based on their clustering. Moreover, these studies did not provide
information about inter-cluster functional interactions in the genes.10 Thus, in order to assess reliability of results obtained
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from clustering methods in a statistically quantifiable manner, a bootstrap method was proposed.6 However, considering the
generic nature of clustering methods and in particular their inability to incorporate system-specific prior information, a model-
based approach was proposed in which experiments were indexed by ordered variables such as time, temperature, or the dose
level of a toxin and the trajectory was modelled as a function of the ordering variable (e.g. time) and a gene-specific set of
parameters.7 Although classical model-based clustering continues to extend into new application areas, none of the models
had a covariance structure specifically designed for the analysis of longitudinal data. This feature accounting for the relation-
ship between measurements at different time points of the longitudinal data was introduced in Gaussian mixture models with
a modified Cholesky-decomposed covariance structure.8 But all these methods tend to overlook local patterns where these
genes are similar based on only a subset (subspace) of attributes (for example expression values). This led to implementation
of a pattern similarity based biclustering approach to gene expression data that could find bi-clusters among co-regulated
genes under different subset of experimental conditions.9 The next step in interpreting gene expression profiles would be to
go beyond the gene-centric techniques and employ a more holistic approach in order to acquire an integrative understanding
of how a gene expression profile on the whole is specifically related to the genomic regulatory circuitry of the genome11 and
network theory offers this platform. Network theory provides an efficient framework through which the behavior of complex
systems can be explained in terms of the structural and functional relationships between different molecular entities.12–14 The
basic structural properties of networks are dependent on how the networks evolve, the inherent interdependencies of the nodes
as well on the architectural constraints. While on one hand, these network measures help in identifying important nodes of the
network, on the other hand they also enable realization of the impact of interactions on the behavior of the underlying system.
Hence, studying network parameters have expanded our understanding of biological processes, for instance by identifying
important genes for diseases,15 elucidating the mechanism behind human diseases by analyzing relationships between disease
phenotypes and genes,16 and deciphering the common genetic origin of multiple diseases.17
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Figure 1. (a) Schematic diagram for the sporulation process. (b) Heatmap of gene expression profiles of crucial meiosis
regulators in early, middle and late phases of sporulation.

In the current work, we used the network theory approach to investigate how transcriptional regulatory networks differ
between two genetic backgrounds leading to extreme phenotypes in the same environment. We studied two genetically diver-
gentS. cerevisiae strains that differ adversely in terms of sporulation efficiency: SK1 (90% efficiency in 48h) and S288c (10%
efficiency). Various cellular activities such as DNA replication, recombination and repair, RNA transcription and translation,
intracellular trafficking, enzymatic activities of general metabolism, and mitochondrial biogenesis being conserved from yeast
to humans,,18 46% human proteins having homologues in yeast proteome, 30% to 40% sequence identity of yeast genes with
human disease-associated genes19 has rendered yeast as an irreplaceable model organism for approaching the molecular basis
of humans. To the best of our knowledge this is the first study using network theory carried out on time-resolved gene expres-

2/12

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 7, 2016. ; https://doi.org/10.1101/068270doi: bioRxiv preprint 

https://doi.org/10.1101/068270
http://creativecommons.org/licenses/by-nd/4.0/


Table 1. Structural attributes of SK1 sporulation networks.N, Nc andNT F respectively denote the network size, number of
connections and number of transcription factors in a particular time point. Catalogue of high degree nodes (degree mentioned
in braces) and degree ofNDT80 gene are provided for each time point of SK1 sporulation networks.

Time points N Nc NT F High degree nodes Degree ofNDT80
T1 360 529 13 BAS1 (283),RIM101 (39) -
T2 791 2107 34 BAS1 (480),MSN4 (300),KAR4 (132),FKH1 (109),AFT2 (75) -
T3 1096 4033 46 ASH1 (612),BAS1 (560),MSN4 (363),HMS1 (168) 47
T4 1495 6540 63 ACE2 (1250),ASH1 (770),MSN4 (428),AFT1 (369),HMS1 (209) 69
T5 1640 7720 73 ASH1 (926),MSN4 (499),AFT1 (437),GCR1 (399),HMO1 (248) 87
T6 1900 8978 77 ASH1 (1074),MSN4 (580),AFT1 (486),ISW2 (292) 101
T7 1928 8012 75 ASH1 (1118),AFT1 (504),ISW2 (309) 102
T8 1886 8281 76 ASH1 (1094),AFT1 (484),STE12 (432),FHL1 (392),ISW2 (299),HMO1 (289) 95
T9 2024 9213 74 ACE2 (1700),ASH1 (1039),AFT1 (461),STE12 (421),FHL1 (362),ISW2 (266) 87
T10 1880 8410 69 ACE2 (1579),ASH1 (955),AFT1 (435),STE12 (402),FHL1 (322),ISW2 (243) 79
T11 1711 7188 66 ACE2 (1429),ASH1 (870),AFT1 (428),STE12 (386),FHL1 (291),HMS1 (222) 69
T12 1745 7206 61 ACE2 (1472),ASH1 (886),AFT1 (481),GAL4 (299),HMS1 (246),SIN4 (216),INO4 (177) 77

sion data drawn from twoS. cerevisiae strains lying on extreme ends of the sporulation efficiency. The framework used in this
study consideringS. cerevisiae as a model organism also allowed us to integrate transcriptional regulation information on the
time-resolved gene expression data in order to comprehensively understand how the sequence of events differ between these
two genetic backgrounds. We used several network parameters to perform comparative analysis of gene expression profiles
corresponding to different sporulation time points of both SK1 and S288c strains in order to unravel the complexity of the
sporulation process and to predict the nodes implicated in high sporulation efficiency of SK1 strain as compared to the S288c
strain.

Results and discussion
We constructed a dynamic transcriptional regulatory network of SK1 strain during sporulation (see Methods) and noted the
early, middle and late phases of sporulation (Fig.1(a)) by comparing the appearance of crucial meiosis regulators in the
network (Fig.1(b)) with their expression profiles described in previous literature.2 For instance,NDT80 gets activated in the
early-mid phase of sporulation, around 2-3h in sporulation medium.20 Concordantly, we observedNDT80 appearing in the
time span fromT3 to T12 (from 3h till 12h in sporulation) in the dynamic sporulation network of SK1 strain (Supplementary Fig.
S1). Interactions ofNDT80 increased fromT3, reaching a maximum inT7 and then decreased as time progressed in sporulation
(Supplementary Fig. S1). Based on the appearance ofNDT80 in the dynamic sporulation network, we classifiedT1-T3 (1-3h
in sporulation) as the early sporulation phase,T4-T6 (4-6h in sporulation) as the middle sporulation phase andT7 onwards (7h
onwards in sporulation medium) as the late sporulation phase in the SK1 strain. The regulators ofNDT80 constituted the high
degree nodes in SK1 strain (Supplementary Fig. S1 and Table1) such asMSN4 (stress responsive transcriptional activator),
AFT1 (regulator of iron homeostasis) andFHL1 (regulator of ribosomal protein transcription).

While NDT80 is the prime initiator of sporulation in SK1, most of the cells of the low sporulating strain S288c did not
enter meiosis at all and were arrested in the stationary phase (G1/G0 phase).21 Therefore, the transcriptional network of SK1
and S288c would show differences during sporulation. Since this could help in understanding why the two strains showed
sporulation efficiency variation, we sought to determine the reason behind the observed differences during sporulation. We
began with comparing the general network properties of the two strains during sporulation (Fig.2, Supplementary Tables
S1 and S2). Please note that the the early, middle and late phases of SK1 were compared to the corresponding time-points
(in hours) with S288c in order to draw a fair comparison between the gene expression profiles of both the strains. Hence,
T1-T5 (30m to 2h30m in sporulation medium) ,T6-T7 (3h50m to 5h40m in sporulation medium) andT8 (8h30m in sporulation
medium) time points of S288c corresponded to the early, middle and late phases of sporulation, respectively.

SK1 strain exhibited a wider range of network sizes across different sporulation time points as compared to S288c strain
(Tables1 and2), indicating in regulatory changes in the former strain. In order to follow these changes, we investigated the
early, middle and late phases of sporulation in SK1 independently and compared them to the corresponding phases in S288c
strain which are known to exhibit markedly different sporulation events.22 We found that there was a drastic increase in the
number of genes having significantly high or low expression values in the consecutive time points at the onset of sporulation in
both the strains (Tables1 and2) which could be due to cells transitioning from mitotic growth to initiate meiosis. Keeping in
view this massive reprogramming of gene expression in the early sporulation phase for preparing the cells to enter meiotic cell
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Table 2. Structural attributes of S288c sporulation networks.N, Nc andNT F respectively denote the network size, number of
connections and number of transcription factors in a particular time point. Catalogue of high degree nodes (degree mentioned
in braces) and degree ofIME1 gene are provided for each time point of S288c sporulation networks.

Time points N Nc NT F High degree nodes Degree ofIME1
T1 434 605 15 BAS1 (356),HAP4 (92),TUP1 (48) 10
T2 706 1327 24 BAS1 (523),STE12 (158),HAP4 (134),CUP2 (117),TUP1 (72) 14
T3 691 1280 26 BAS1 (524),HAP4 (136),CUP2 (114),TUP1 (76),PUT3 (70) 13
T4 569 1025 25 BAS1 (442),HAP4 (108),RLM1 (93) 13
T5 582 1049 24 BAS1 (455),HAP4 (112),SWI5 (92) 15
T6 415 733 23 HMO1 (138),HAP4 (125),SWI5 (98) 16
T7 409 686 18 HMO1 (131),HAP4 (124),SWI5 (97) 19
T8 513 1195 23 MSN4 (261),HSF1 (246),HMO1 (129),SWI5 (95), INO4 (75) 21

division,23 our analysis revealed increased involvement of genes duringthis phase in both the strains was not very surprising.
In the later phases of sporulation, the rate of change of network size subsides. Despite changes in the early sporulation phase
in both the strains, the ratio of number of differentially expressed transcription factors (NT F ) and target genes remains almost
constant across all the time points (Tables1 and2). The proportion of regulatory genes remaining constant throughout the
sporulation indicates that it may be an intrinsic property of the sporulation process.

A change in the number of connections modulates the intrinsic properties of a network.12 We investigated the impact of
this change for both the strains during various sporulation phases. Similar to the network size, the number of connections
(Nc) increased drastically in the early time points of sporulation in both the strains. However, this rate of increase in the
number of connections was much higher in the case of SK1 strain as compared to the S288c strain. For instance, while S288c
exhibited a two-fold increase in the number of connections in the early sporulation, SK1 exhibited a four-fold increase in the
same phase (Tables1 and2). Note that change in the number of connections will only be possible if either old nodes (genes)
disappear or/and new nodes arise in the networks, since all interactions for both the strains are taken from the same repository
base network. A higher rate of increase in the number of connections in SK1 strain as compared to the rate of increase in
their size can be attributed to the appearance of more number of high degree nodes in the second time point (Table1). In the
middle phase of sporulation, associated with processes involved in meiotic divisions,1 the number of connections did not show
considerable change for both the strains since we find that more than 75% of the genes remain same across the different time
points in the middle phase in the individual strains. However, again in the late sporulation phase, there was a change in the
number of connections in S288c strain while for the SK1 strain this number remained almost constant compared to the middle
phase. For instance, towards the mid-late phase, there was a fall in the number of connections in S288c strain. Incidentally,
this decrease in the number of connections could be due to the disappearance of the high degree nodeBAS1, a Myb-related
transcription factor involved in amino acid metabolism and meiosis.24 Interestingly,BAS1 contributes to approximately 50%
of the connections in the early phase of S288c (Table2) though this gene is not one of the known regulators of sporulation,22

and its disappearance in the middle phase is reflected in the number of connections. What is more intriguing is that this gene
is involved in the regulatory processes only in the early phase of sporulation and disappears in the middle phase in both the
strains. On one hand, this indicates the specific significance of this gene intrinsic to the early phase of sporulation, while on
the other hand it reflects the drastic changes in the regulatory activities from the early to the middle phase. Furthermore, in the
late sporulation phase of S288c strain, the number of connections almost doubled. This difference arose due to the appearance
of MSN4 andHSF1, known stress-responsive regulators25 showing high degrees only in the last phase of sporulation in S288c
(Table2). While MSN4 appeared as a high degree node in the early phase of SK1 strain,HSF1 did not appear as a high degree
node at all in the SK1 sporulation network (Table1), indicating the interesting possibility that either the late appearance or
absence of these nodes could be involved in decreasing sporulation efficiency and maintaining stationary phase in the S288c
strain. The differences in the number of connections between the strains in the early, middle and late phases of sporulation,
motivated us further to compare the general principles of regulatory interactions during sporulation between these strains.

So far, we focused only on the number of genes and the interactions in the networks. To understand how the interacting
patterns impacted the overall structure of the underlying networks, we investigated the degree-degree mixing of the connected
nodes across different sporulation phases in the two strains. (Dis)assortativity is a parameter that measures the correlation
in the degrees of the nodes in a network and provides understanding of the (dis)likelihood in connectivity of the underlying
systems.26 In gene regulatory networks, highly connected nodes avoid linking directly to each other and instead connect to
proteins with only a few interactions, thus exhibiting disassortative topology.27 This behavior of the nodes leads to a reduction
in crosstalk between different functional modules and increase in the robustness of the networks by localizing the effects of
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Figure 2. Structural properties of sporulation networks of SK1 strain (red circles) and S288c strain (blue squares) in early,
middle and late phases of sporulation. (a) Average degree (〈k〉), (b) average clustering coefficient (〈C〉), (c) Pearson
degree-degree correlation coefficient (r) and (d) global reaching centrality (h) are plotted as a function of time in sporulation
medium (in hours) for both the strains.

deleterious perturbations.28 The Pearson (degree-degree) correlation coefficient (r) was calculated for the networks at all
time-points in each of the strains (see Methods). As expected for gene regulatory networks, sporulation networks in both SK1
and S288c strains exhibited disassortativity at all time points (Fig.2). A high value of this property was observed in both the
strains during the early phase of sporulation, suggesting that the strain required being more resilient to perturbations while
carrying out early sporulation transcriptional events.28 Post early phase, disassortativity values in SK1 strain reached a steady
state at middle sporulation phase, while those of S288c still showed fluctuations (Fig.2). Taken together, these observations
implied that the necessary crosstalk between functional modules occurred early and then stabilized in SK1, while they were
still going on or were random and unstable in the middle and late phases in S288c strain.

After analyzing the global properties of the sporulation networks, we next investigated the local properties of the networks,
which were expected to reveal the impact of local architecture on the phenotypic profiles of the two strains. Clustering
coefficient is one such local property that measures the local cohesiveness between the nodes.29 A high value of clustering
coefficient of a node depicts high connectivity among the neighbors of that node. For SK1 and S288c strains, we evaluated the
average value of clustering coefficient (〈C〉) for each time point (see Methods). As expected for various biological networks,12

a high value of〈C〉 was observed for the networks at all time points in both the strains as compared to their corresponding
random networks (Fig.2, Supplementary Tables S1 and S2) as expected.29 Furthermore, keeping in view the manner in which
we constructed the sporulation networks, a high〈C〉 meant that many of the neighbor target genes of a transcription factor
also acted as transcription factors for the other neighbor target genes of that same transcription factor. On comparing the
average value of clustering coefficient (〈C〉) between the strains, a sharp increase in〈C〉 was observed thrice for the SK1
strain coinciding with the early, middle and late phases of sporulation, while for the S288c strain only two such transitions
were observed for this property (Fig.2). Moreover, while the transitions between the three peaks were rapid in the SK1
strain, a slower transition between the first and second peak was observed for S288c strain. Since high clustering in cellular
networks is known to be associated with the emergence of isolated functional modules,14 these results pertaining to average
clustering coefficient suggested that the increased duration of time taken by S288c strain for forming functional modules can
be considered essential for transferring information from early to middle phases in sporulation, and thus could be involved
with the lower sporulation efficiency shown by this strain.

In order to further unravel the differences of the sporulation process in the two strains, we investigated how number of
neighbors of nodes denoted by node degree is associated with their neighbor connectivities (interactions between the neighbors
of the node of interest) evaluated in terms of clustering coefficient (see Methods). All the networks in SK1 and S288c strains
exhibited negative degree-clustering coefficient correlation (Supplementary Figs. S2 and S3) as also witnessed in various other
real world networks, indicating the existence of hierarchy in the underlying networks.14 A hierarchical architecture implies
that sparsely connected nodes are part of highly clustered areas, with communication between the different highly clustered
neighborhoods being maintained by a few hubs. We quantified this hierarchy (h), also termed as global reaching centrality
in the networks30 (see Methods) and found that in both the strains, the networkswere more hierarchical at the beginning of
sporulation (Fig.2). A high value of hierarchy has been associated with modularity in the network, for instance in case of
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metabolic networks, hierarchical structure indicates that the sets of genes sharing common neighbor are likely to belong to
the same functional class.31 A low value ofh indicates more random interactions in the underlying networks. A decrease in
hierarchy was observed until the middle phase of sporulation in both the strains. While SK1 continued to exhibit diminishing
hierarchy in the late phase, in S288c there was an increase in the hierarchy at the last time point, again suggesting that the
strain was attempting to achieve modularity in late phases of sporulation. These results implied that since both the strains
showed high values of disassortativity, average clustering coefficient (〈C〉) andh early in sporulation, the nature of genes
involved in transferring information from the early phase to middle and late phases of sporulation would be important for us to
understand the phenotypic difference between them. Therefore, next we identified the genes that would directly or indirectly
be involved in bringing about the phenotypic differences in both the strains as sporulation progresses.

For a network, betweenness centrality (see Methods) is a measure of network resilience32 and it estimates the number of
shortest paths (the minimum number of edges traversed between each of the pairs of nodes) that will increase if a node is
removed from the network.33 Usually, nodes with high betweenness centrality are known tobridge different communities
in the network. High degree nodes have high betweenness centrality (Figs.3 and4). But there are few nodes, which have
low degree, yet high betweenness centrality (Figs.3 and4), i.e. these genes, despite having very less number of interactions,
appear in multiple pathways and hence can be expected to have special significance in the underlying networks. Hence,
removal of these nodes can bring about major breakdown in the pathways controlling the sporulation process. We identified
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Table 3. Pairs of interacting genes which have low overlap (O) and high link betweenness centrality (βL) in SK1 networks.
Their corresponding indices as given in Fig. S4.

Time points Gene pair
T1 STP2-BAS1, HCM1-BAS1, BAS1-RIM101
T9 ACE2-MGA1, ACE2-SIR2, DAL81-ACE2, CDC14-ACE2
T10 CDC14-ACE2, ACE2-ARG82, DAL81-ACE2
T11 DAL81-ACE2, ACE2-MGA1, CDC14-ACE2
T12 YPL056C-ARG82, DAL80-ACE2, RIF1-TPK1

a few important sporulation genes showing this property of low degree and high betweenness centrality in both SK1 and
S288c strains. In the SK1 networks, these were known markers of respiratory stress and starvation, namelySTP2,34 PMA135

andRPL2B,36 while in S288c these wereIME1 andTOS4 which are involved in initiation of meiosis and DNA replication
checkpoint response, respectively. Interestingly, these sporulation genes appeared to show this property in the early phase of
SK1 strain and during the middle to late meiotic transition in S288c strain. These results suggested that this late appearance of
important early sporulation genes as bridges that could transfer information between regulatory modules during sporulation,
might be the cause for sporulation not proceeding in the S288c strain. The above analyses helped us to identify the influential
genes underlying the sporulation process. We next identified a few interactions that might be instrumental in regulating
the sporulation process by considering an important proposition of sociology, Granovetter’s ‘Weak ties hypothesis’. This
hypothesis states that the degree of overlap of two individuals’ friendship networks varies directly with the strength of their tie
to one another.37 In the networks, the ties having low overlap in their neighborhoods (i.e. less number of common neighbors)
are termed as the weak ties.38 The weak ties that have high link betweenness centrality (seeMethods) are the ones known
to bridge different communities.39 Such weak ties revealed through our analysis of different sporulation networks are listed
in Tables3 and4. Interestingly, we found repetitive occurrence of the same weak ties in consecutive time points for both
the strains indicating their phase-specific importance in yeast sporulation. For instance,BAS1-RTT107, BAS1-TYE7, YAP6-
BAS1 andASK10-HMO1 were repetitive weak ties with high link betweenness centrality in consecutive time points of S288c
networks while so wereDAL81-ACE2 andCDC14-ACE2 in SK1 networks. In order to assess the functional importance of
these weak ties, we investigated the characteristic properties of the end nodes of these weak ties. Unlike social networks where
the end nodes of weak ties are low degree nodes,40 in the sporulation networks of both the strains, the nodes forming weak ties
were high degree nodes. An example of this was againBAS1, which as discussed above, is a Myb-related transcription factor
involved in amino acid metabolism and meiosis.24 In addition toBAS1, other important sporulation regulatory genes were
identified in SK1, such asRIM101, a pH-responsive regulator of an initiator of meiosis;41 IME2, a serine-threonine kinase
activator ofNDT80 and meiosis;42 CDC14, a protein phosphatase required for meiotic progression;43 HCM1, an activator of
genes involved in respiration.44 Whereas in S288c, apart fromBAS1, genes associated with mitotic functions such asTYE7 for
glycolytic gene expression,45 YAP6 for carbohydrate metabolism,46 RTT107 for DNA repair,47 ASK10 for glycerol transport48

andHMO1 for DNA structure modification49 were identified. These results showed that while in SK1 strainmeiosis-associated
genes formed important bridges, in S288c strain bridges were formed by genes involved in mitotic functions. This implied
how differences in weak ties in regulatory networks can help us understand the dramatic differences observed in phenotypes.
Moreover,DAL81, a nitrogen starvation regulator50 andACE2, a regulator of G1/S transition in the mitotic cell cycle,51 were
identified as end nodes of repetitive weak ties in SK1, suggesting their probable regulatory role in the sporulation process that

Table 4. Catalogue of links having low overlap yet relatively high link betweenness centrality in each time point for S288c.
Their corresponding indices as given in Supplementary Fig. S5.

Time points Nodes with lowO high βL

T1 BAS1-RTT107, BAS1-TYE7
T2 BAS1-RTT107, BAS1-TYE7
T3 BAS1-RTT107, BAS1-RPH1, YAP6-BAS1
T4 YAP6-BAS1
T6 ASK10-HMO1, HMO1-XBP1
T7 ASK10-HMO1, YAP6-HMO1
T8 HSF1-IME1, ASK10-HMO1
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requires further investigation.

Conclusion

This study presents a novel framework for assessing the molecular consequences of genetic variation across strains. This frame-
work can help reveal the characteristic signatures of the phenotype of interest and identify novel candidate genes contributing
to phenotypic variation. Using this framework for the dynamic yeast sporulation network, we showed that the comparative
analysis of parameters measuring the network connectivity and degree-degree mixing were the best in identifying differences
between two yeast strains showing diverse sporulation efficiency. Comparing the basic structural attributes of the dynamic
sporulation networks of the two strains revealed that a delayed crosstalk between functional modules of the low sporulating
S288c strain might be the plausible reason behind its low sporulation efficiency. The end nodes of the repetitive weak ties,
which are instrumental in bridging communities, were meiosis-associated genes for SK1 strain while these nodes in S288c
were involved in mitotic functions, thus outlining the importance of this parameter in unraveling the differences between the
two strains.

Model organisms have provided remarkable amount of information to construct the core molecular network. However,
identifying the nodes within this network causing variable phenotypic consequences in a natural population, still remains a
major challenge. Application of genome-wide strategies to elucidate the molecular networks in multiple genetic backgrounds
provides us with the opportunity to understand the impact of natural variation. These strategies can be used to incorporate this
new molecular information such as a different type of interaction between molecules, in the already known . This notion is
encouraging, especially for understanding complex diseases such as cancer and diabetes, as it provides with a cohort of key
nodes governing phenotypic behaviors that get altered by underlying genetic defects. Given the large scale availability of gene
expression data, the framework proposed in this study and the network parameters used, can find application in personalized
medicine and drug target discovery by carrying out comparative investigations on individuals showing phenotypic diversity.

Methods

Network construction
For constructing the transcriptional regulatory sporulation network, the known static regulatory interactions were overlaid on
the time-resolved transcriptomics data of the two strains. This created the dynamic integrated sporulation network. The static
network known for yeast contains all the known regulatory interactions between all the yeast transcription factors (TF) and
their target genes (TG). These interactions were obtained from YEASTRACT database,52 a curated repository of regulatory
associations inS. cerevisiae, based on more than 1,200 literature references.

Gene expression data for yeast strains SK153 and S288c21 was obtained from previously published studies. These datasets
contained gene expression of 6,926 genes across 13 different time points in linear scale (0h to 12h with 1h intervals termed
asT0 to T12, respectively) in SK1 and 9 different time points in logarithmic scale (0h, 30m, 45m, 1h10m, 1h40m, 2h30m,
3h50m, 5h40m, 8h30m termed asT0 to T8, respectively) in S288c. Gene expression analysis was performed as described
previously.21 In brief, all time points were normalized together usingvsn54 and the time-resolved data of each strain was
smoothed separately usingloc f it.55 Gene expression data for each strain was base-transformed, by calculating the fold
differences, for all the time-points from t = 0h (t0), as follows:

Y ′
SK1(tn) = YSK1(tn)−YSK1(t0) (1)

such thatY is the expression value of a transcript for a strain (SK1) at a specific time pointn andY ′ is the transformed
expression value.

Over-expressed and repressed genes were identified at each time point, by setting the threshold value on the fold differences
as 1. This threshold was selected to include known sporulation genes such asIME2, NDT80 and DIT156 in the network.
For each time point, we obtained all the genes showing fold difference greater than 1 (over-expressed) or lower than−1
(repressed).

The dynamic sporulation network was constructed by overlaying the experimentally determined yeast sporulation-specific
gene expression values on the yeast static network. For each time point of each strain, only those TF-TG pairs were considered,
which both showed either over-expression or repression. These pairs were included in the subnetwork for that specific time
point. In such a manner, subnetworks for each time point were constructed for each strain. For comparison of the gene names
obtained from YEASTRACT and the sporulation gene expression data, aliases were obtained from Saccharomyces Genome
Database.57
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Data availability
The adjacency matrices of the networks constructed using time-resolved sporulation data drawn from SK1 and S288c strains,
the corresponding gene indices and transcription factors are freely available online at Figshare.58

Structural parameters
Several statistical measures are proposed to understand specific features of the network.12,13 The number of connections
possessed by a node is termed as its degree. The spread in the degrees is characterized by a distribution functionP(k), which
gives the probability that a randomly selected node has exactlyk edges. The degree distribution of a random graph is a Poisson
distribution with a peak atP(〈k〉). One of the most interesting developments in our understanding of complex networks was the
discovery that for most large networks the degree distribution significantly deviates from a Poisson distribution. In particular,
for a large number of networks, including the World Wide Web, the Internet or the metabolic networks, the degree distribution
has a power-law tailP(k) ∼ k−γ . The inherent tendency of social networks to form clusters representing circles of friends
or acquaintances in which every member knows every other member, is quantified by the clustering coefficient.29 Clustering
coefficient of a nodei denoted asCi, is defined as the ratio of the number of links existing between the neighbors of the node
to the possible number of links that could exist between the neighbors of that node59 and is given by

Ci =
2∑ki

j2=1 ∑ki
j1=1(Ai j1A j1 j2A j2i)

ki(ki −1)
(2)

wherei is the node of interest andj1 and j2 are any two neighbors of the nodei andki is the degree of the nodei. The average
clustering coefficient of a network corresponding to a particular condition (〈C〉) can be written as

〈C〉=
1
N

N

∑
i=1

Ci (3)

We define the betweenness centrality of a nodei, as the fraction of shortest paths between node pairs that pass through the
said node of interest.33

xi = ∑
st

ni
st

gst
(4)

whereni
st is the number of geodesic paths froms to t that passes throughi andgst is the total number of geodesic paths froms

to t.
We quantify the degree-degree correlations of a network by considering the Pearson (degree-degree) correlation coefficient,

given as26

r =
[M−1 ∑M

i=1 jiki]− [M−1 ∑M
i=1

1
2( ji + ki)

2]

[M−1 ∑M
i=1

1
2( j2i + k2

i )]− [M−1 ∑M
i=1

1
2( ji + ki)2]

, (5)

where ji, ki are the degrees of nodes at both the ends of theith connection andM represents the total connections in the
network.

Link betweenness centrality is defined for an undirected link as

βL = ∑
v∈Vs

∑
w∈V/v

σvw(e)/σvw (6)

whereσvw(e) is the number of shortest paths betweenv andw that containe, andσvw is the total number of shortest paths
betweenv andw.38

The overlap of the neighborhood of two connected nodesi and j is defined as38

Oi j =
ni j

(ki −1)+(k j −1)−ni j
(7)

whereni j is the number of neighbors common to both nodesi and j. Hereki andk j represent the degree of theith and jth

nodes.
Hierarchy can be defined as the heterogeneous distribution of local reaching centrality of nodes in the network. The local

reaching centrality, (CR), of a nodei is defined as30

CR(i) =
1

N −1 ∑
j:0<d(i, j)<∞

1
d(i, j)

, (8)
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whered(i, j) is the length of the shortest path between any pair of nodesi and j. The measure of hierarchy (h), termed as
global reaching centrality is given by

h =
∑i∈V [C

max
R −CR(i)]
N −1

(9)
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