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ABSTRACT

Using network theory on an integrated time-resolved genome-wide gene expression data, we investigated the intricate dy-
namic regulatory relationships of transcription factors and target genes to unravel signatures that contribute to extreme phe-
notypic differences in yeast, Saccharomyces cerevisiae. We performed a comparative analysis of the gene expression profiles of
two yeast strains SK1 and S288c which are known for high and low sporulation efficiency, respectively. The results based on
various structural attributes of the networks, such as clustering coefficient, degree-degree correlations, and betweenness cen-
trality suggested that a delay in crosstalk between functional modules can be construed as one of the prime reasons behind
low sporulation efficiency of S288c strain. A more hierarchical structure in the late phase of sporulation in S288c¢ indicated
an attempt of this low sporulating strain to obtain modularity, which is a feature of early sporulation phase. Further, the weak
ties analysis revealed that mostly meiosis-associated genes were the end nodes of the weak ties for the high sporulating
SK1 strain, while for the low sporulating S288c strain these nodes were mitotic genes. This again was a clear indication
of the delay in regulatory activities in the S288c strain, which are essential to initiate sporulation. Our results demonstrate
the potential of this framework in identifying candidate nodes contributing to phenotypic diversity in natural populations with
application prospects in drug target discovery and personalized health.

Introduction

Phenotypes arise from complex molecular interaction nésydrence comparing transcriptional regulation of a phenotype
across multiple genetic backgrounds can provide comprehensive insights into the network regulating the phenotype. Com-
paring transcriptional networks of developmental or temporal processes allows identification of differences in chronological
order of events regulating a process. For a developmental process such as yeast sporulation, which comprises of meiosis and
ends with spore formation, several genome-wide transcriptome analyses have been done to understand the complete cascade
of transcriptional regulation. This has led to identification of stages of gene regulatioindusporulation with ME1 and
NDTB80 regulating transition between these stage®o understand how different genetic backgrounds modulasetrin-
scriptional cascade, yeast strains from different genetic backgrounds have been compared, such as SK1 (a high sporulating
S cerevisiae strain with over 90% sporulation efficiency in 48h) and W303 (a moderate sporufatoegevisiae strain with
60% efficiency). This comparison between the two strains carried out across each time point showed that while the patterns of
gene expression profiles remained similar, only 60% genes overlapped in expression Whdisthis is a useful method to
compare across time scale#t,does not allow comprehensive comparison between the esipreprofiles of all genes across
time.

Various methods have been suggested to study gene expression profiles across strains such as clusterindauthods,
strapping clustering, four-stage Bayesian modelaussian mixture models with a modified Cholesky-decomposedri-
ance structure,biclustering algorithn, etc. Clustering proved to be a successful initial approactafalyzing gene ex-
pression data and allowed biologists to identify groups of potentially meaningful genes that have related functions or are
co-regulated. However, these studies are gene centric with aim to assigetifuns to functionally unknown genes, for
instance, clustering methods predict function of genes based on their clustering. Moreover, these studies did not provide
information about inter-cluster functional interactions in the genebhus, in order to assess reliability of results obtained
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from clustering methods in a statistically quantifiable mama bootstrap method was propoSedowever, considering the

generic nature of clustering methods and in particular their inability to incorporate system-specific prior information, a model-
based approach was proposed in which experiments were indexed by ordered variables such as time, temperature, or the dose
level of a toxin and the trajectory was modelled as a function of the ordering variable (e.g. time) and a gene-specific set of
parameters. Although classical model-based clustering continues terekinto new application areas, none of the models

had a covariance structure specifically designed for the analysis of longitudinal data. This feature accounting for the relation-
ship between measurements at different time points of the longitudinal data was introduced in Gaussian mixture models with
a modified Cholesky-decomposed covariance structuBet all these methods tend to overlook local patterns whezseth

genes are similar based on only a subset (subspace) of attributes (for example expression values). This led to implementation
of a pattern similarity based biclustering approach to gene expression data that could find bi-clusters among co-regulated
genes under different subset of experimental conditiofiae next step in interpreting gene expression profiles woeltbb

go beyond the gene-centric techniques and employ a more holistic approach in order to acquire an integrative understanding
of how a gene expression profile on the whole is specifically related to the genomic regulatory circuitry of the'gemaine
network theory offers this platform. Network theory provides an efficient framework through which the behavior of complex
systems can be explained in terms of the structural and functional relationships between different molecularefitifies.

basic structural properties of networks are dependent on how the networks evolve, the inherent interdependencies of the nodes
as well on the architectural constraints. While on one hand, these network measures help in identifying important nodes of the
network, on the other hand they also enable realization of the impact of interactions on the behavior of the underlying system.
Hence, studying network parameters have expanded our understanding of biological processes, for instance by identifying
important genes for diseaseselucidating the mechanism behind human diseases by angiygationships between disease
phenotypes and genésand deciphering the common genetic origin of multiple diesas

Nutrient Cell-type Sporulation
signals signals genes early ' middle
(Intrinsic and Extrinsic)  (Intrinsic)
o
. c
Function | Genes E
IME1 &
EARLY ez
-
kY4
DNA replication HOP1 (0]

Recombination M DMC1

MIDDLE NDT80
I
Meiosis | #%, cocs
Meiosis I a¥ s §
LATE DIT1 8
DIT2 ]
sPs1 3

Spore
formation

Oh 3h 6h 8.5h
time in sporulation medium

(a) (b) exiression

<15 >1.5

Figure 1. (a) Schematic diagram for the sporulation process. (b) Heatmap of gene expression profiles of crucial meiosis
regulators in early, middle and late phases of sporulation.

In the current work, we used the network theory approach to investigate how transcriptional regulatory networks differ
between two genetic backgrounds leading to extreme phenotypes in the same environment. We studied two genetically diver-
gentS cerevisiae strains that differ adversely in terms of sporulation efficiency: SK1 (90% efficiency in 48h) and S288c (10%
efficiency). Various cellular activities such as DNA replication, recombination and repair, RNA transcription and translation,
intracellular trafficking, enzymatic activities of general metabolism, and mitochondrial biogenesis being conserved from yeast
to humans,? 46% human proteins having homologues in yeast proteome, 8@%% sequence identity of yeast genes with
human disease-associated genéss rendered yeast as an irreplaceable model organism faraaping the molecular basis
of humans. To the best of our knowledge this is the first study using network theory carried out on time-resolved gene expres-

2/12


https://doi.org/10.1101/068270
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/068270; this version posted August 7, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Table 1. Structural attributes of SK1 sporulation networks.N. andNyg respectively denote the network size, number of
connections and number of transcription factors in a particular time point. Catalogue of high degree nodes (degree mentioned
in braces) and degree BDT80 gene are provided for each time point of SK1 sporulation networks.

Time points| N Ne | Nye High degree nodes Degree ofNDT80
Ty 360 | 529 13 BASL (283), RIM101 (39) -
To 791 | 2107 | 34 BASL (480), MSN4 (300),KAR4 (132), FKH1 (109),AFT2 (75) -
T3 1096 | 4033 | 46 ASH1 (612), BASL (560), MSN4 (363), HMSL (168) 47
Ta 1495 | 6540 | 63 ACE2 (1250),ASH1 (770), MSN4 (428),AFT1 (369), HMSL (209) 69
Ts 1640 | 7720 73 ASH1 (926), MSN4 (499), AFT1 (437), GCR1 (399), HMOL (248) 87
Te 1900 | 8978 | 77 ASH1 (1074), MSN4 (580), AFT1 (486),I SA2 (292) 101
Tz 1928 | 8012 | 75 ASH1 (1118),AFT1 (504),1SW2 (309) 102
Ts 1886 | 8281 | 76 ASH1 (1094), AFT1 (484), STE12 (432), FHL1 (392),ISW2 (299), HMO1 (289) 95
To 2024 | 9213 | 74 ACE2 (1700),ASH1 (1039),AFT1 (461), STE12 (421), FHL1 (362),ISA2 (266) 87
Tio 1880 | 8410| 69 ACE2 (1579),AH1 (955), AFT1 (435), STE12 (402), FHL1 (322),1SW2 (243) 79
T11 1711| 7188 | 66 ACE2 (1429),ASH1 (870),AFT1 (428), STE12 (386), FHL1 (291), HMSL (222) 69
Tz 1745 | 7206 | 61 | ACE2(1472),ASH1(886),AFT1 (481), GAL4 (299), HMSL (246),SIN4 (216),INO4 (177) 77

sion data drawn from tw8. cerevisiae strains lying on extreme ends of the sporulation efficiency. The framework used in this
study considering. cerevisiae as a model organism also allowed us to integrate transcriptional regulation information on the
time-resolved gene expression data in order to comprehensively understand how the sequence of events differ between these
two genetic backgrounds. We used several network parameters to perform comparative analysis of gene expression profiles
corresponding to different sporulation time points of both SK1 and S288c strains in order to unravel the complexity of the
sporulation process and to predict the nodes implicated in high sporulation efficiency of SK1 strain as compared to the S288c
strain.

Results and discussion

We constructed a dynamic transcriptional regulatory nétvedrSK1 strain during sporulation (see Methods) and noted the
early, middle and late phases of sporulation (Ri@)) by comparing the appearance of crucial meiosis regslatothe
network (Fig.1(b)) with their expression profiles described in previousréiture: For instanceNDT80 gets activated in the
early-mid phase of sporulation, around 2-3h in sporulation mediu@oncordantly, we observeddDT80 appearing in the
time span fronT; to T12 (from 3h till 12h in sporulation) in the dynamic sporulation network of SK1 strain (Supplementary Fig.
S1). Interactions dDT80 increased fronTs, reaching a maximum ifi; and then decreased as time progressed in sporulation
(Supplementary Fig. S1). Based on the appearandbdB0 in the dynamic sporulation network, we classifiedTs (1-3h

in sporulation) as the early sporulation phakgJs (4-6h in sporulation) as the middle sporulation phaseBrmhwards (7h
onwards in sporulation medium) as the late sporulation phase in the SK1 strain. The regulsfor80tonstituted the high
degree nodes in SK1 strain (Supplementary Fig. S1 and Taldech adMSN4 (stress responsive transcriptional activator),
AFT1 (regulator of iron homeostasis) aRtHL1 (regulator of ribosomal protein transcription).

While NDT80 is the prime initiator of sporulation in SK1, most of the cells of the low sporulating strain S288c did not
enter meiosis at all and were arrested in the stationary phase (G1/G0 phakeyefore, the transcriptional network of SK1
and S288c would show differences during sporulation. Since this could help in understanding why the two strains showed
sporulation efficiency variation, we sought to determine the reason behind the observed differences during sporulation. We
began with comparing the general network properties of the two strains during sporulatiof, (Bigoplementary Tables
S1 and S2). Please note that the the early, middle and late phases of SK1 were compared to the corresponding time-points
(in hours) with S288c in order to draw a fair comparison between the gene expression profiles of both the strains. Hence,
T1-Ts (30m to 2h30m in sporulation mediumJg-T7 (3h50m to 5h40m in sporulation medium) aig(8h30m in sporulation
medium) time points of S288c corresponded to the early, middle and late phases of sporulation, respectively.

SK1 strain exhibited a wider range of network sizes across different sporulation time points as compared to S288c¢ strain
(Tablesl and?2), indicating in regulatory changes in the former strain. iides to follow these changes, we investigated the
early, middle and late phases of sporulation in SK1 independently and compared them to the corresponding phases in S288c
strain which are known to exhibit markedly different sporulation eventdle found that there was a drastic increase in the
number of genes having significantly high or low expression values in the consecutive time points at the onset of sporulation in
both the strains (Tablelsand2) which could be due to cells transitioning from mitotic grovib initiate meiosis. Keeping in
view this massive reprogramming of gene expression in the early sporulation phase for preparing the cells to enter meiotic cell
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Table 2. Structural attributes of S288c sporulation networks N; andNyg respectively denote the network size, number of
connections and number of transcription factors in a particular time point. Catalogue of high degree nodes (degree mentioned
in braces) and degree tYIE1 gene are provided for each time point of S288c sporulation networks.

Time points| N Ne | Nte High degree nodes Degree o ME1
T 434 | 605 15 BASL (356), HAP4 (92), TUP1 (48) 10
To 706 | 1327 | 24 | BASl(523),STE12 (158),HAP4 (134),CUP2 (117), TUP1 (72) 14
T3 691 | 1280 | 26 BASL (524), HAP4 (136),CUP2 (114), TUP1 (76), PUT3 (70) 13
Ta 569 | 1025| 25 BASI (442), HAP4 (108),RLM1 (93) 13
Ts 582 | 1049 | 24 BASL (455), HAP4 (112), SM5 (92) 15
Te 415 | 733 23 HMOL1 (138), HAP4 (125), S5 (98) 16
T7 409 | 686 18 HMOL1 (131), HAP4 (124), SM5 (97) 19
Ts 513 | 1195| 23 MSN4 (261), HSF1 (246), HMO1 (129), SM5 (95), INO4 (75) 21

division,”” our analysis revealed increased involvement of genes dthisghase in both the strains was not very surprising.

In the later phases of sporulation, the rate of change of network size subsides. Despite changes in the early sporulation phase
in both the strains, the ratio of number of differentially expressed transcription factar éNd target genes remains almost
constant across all the time points (Tableand?2). The proportion of regulatory genes remaining constarmutjinout the
sporulation indicates that it may be an intrinsic property of the sporulation process.

A change in the number of connections modulates the intrinsic properties of a netwadinvestigated the impact of
this change for both the strains during various sporulation phases. Similar to the network size, the number of connections
(N¢) increased drastically in the early time points of sporulation in both the strains. However, this rate of increase in the
number of connections was much higher in the case of SK1 strain as compared to the S288c strain. For instance, while S288c
exhibited a two-fold increase in the number of connections in the early sporulation, SK1 exhibited a four-fold increase in the
same phase (Tablésand?2). Note that change in the number of connections will only bespme if either old nodes (genes)
disappear or/and new nodes arise in the networks, since all interactions for both the strains are taken from the same repository
base network. A higher rate of increase in the number of connections in SK1 strain as compared to the rate of increase in
their size can be attributed to the appearance of more number of high degree nodes in the second time pdint [{T#ide
middle phase of sporulation, associated with processes involved in meiotic divistomsumber of connections did not show
considerable change for both the strains since we find that more than 75% of the genes remain same across the different time
points in the middle phase in the individual strains. However, again in the late sporulation phase, there was a change in the
number of connections in S288c strain while for the SK1 strain this number remained almost constant compared to the middle
phase. For instance, towards the mid-late phase, there was a fall in the number of connections in S288c strain. Incidentally,
this decrease in the number of connections could be due to the disappearance of the high ded@a8hedmyb-related
transcription factor involved in amino acid metabolism and meiosisterestingly,BASL contributes to approximately 50%
of the connections in the early phase of S288c (Tapkough this gene is not one of the known regulators of sptouna
and its disappearance in the middle phase is reflected in thbewof connections. What is more intriguing is that this gene
is involved in the regulatory processes only in the early phase of sporulation and disappears in the middle phase in both the
strains. On one hand, this indicates the specific significance of this gene intrinsic to the early phase of sporulation, while on
the other hand it reflects the drastic changes in the regulatory activities from the early to the middle phase. Furthermore, in the
late sporulation phase of S288c strain, the number of connections almost doubled. This difference arose due to the appearance
of MSN4 andHSF1, known stress-responsive regulatcrshowing high degrees only in the last phase of sporulatior28868
(Table2). While MSN4 appeared as a high degree node in the early phase of SK1 sifhih did not appear as a high degree
node at all in the SK1 sporulation network (Talilg indicating the interesting possibility that either theelappearance or
absence of these nodes could be involved in decreasing sporulation efficiency and maintaining stationary phase in the S288c
strain. The differences in the number of connections between the strains in the early, middle and late phases of sporulation,
motivated us further to compare the general principles of regulatory interactions during sporulation between these strains.

So far, we focused only on the number of genes and the interactions in the networks. To understand how the interacting
patterns impacted the overall structure of the underlying networks, we investigated the degree-degree mixing of the connected
nodes across different sporulation phases in the two strains. (Dis)assortativity is a parameter that measures the correlation
in the degrees of the nodes in a network and provides understanding of the (dis)likelihood in connectivity of the underlying
systems.” In gene regulatory networks, highly connected nodes avoldrlg directly to each other and instead connect to
proteins with only a few interactions, thus exhibiting disassortative topclodyis behavior of the nodes leads to a reduction
in crosstalk between different functional modules and increase in the robustness of the networks by localizing the effects of
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Figure 2. Structural properties of sporulation networks of SK1 strain (red circles) and S288c strain (blue squares) in early,
middle and late phases of sporulation. (a) Average degrég (K average clustering coefficienf)), (c) Pearson
degree-degree correlation coefficientdnd (d) global reaching centrality (h) are plotted as a function of time in sporulation
medium (in hours) for both the strains.

deleterious perturbatioris. The Pearson (degree-degree) correlation coefficignivéis calculated for the networks at all
time-points in each of the strains (see Methods). As expected for gene regulatory networks, sporulation networks in both SK1
and S288c strains exhibited disassortativity at all time points @igA high value of this property was observed in both the
strains during the early phase of sporulation, suggesting that the strain required being more resilient to perturbations while
carrying out early sporulation transcriptional everit®ost early phase, disassortativity values in SK1 strairhesha steady

state at middle sporulation phase, while those of S288c still showed fluctuationg)(Flgken together, these observations
implied that the necessary crosstalk between functional modules occurred early and then stabilized in SK1, while they were
still going on or were random and unstable in the middle and late phases in S288c strain.

After analyzing the global properties of the sporulation networks, we next investigated the local properties of the networks,
which were expected to reveal the impact of local architecture on the phenotypic profiles of the two strains. Clustering
coefficient is one such local property that measures the local cohesiveness between the Aokligh value of clustering
coefficient of a node depicts high connectivity among the neighbors of that node. For SK1 and S288c strains, we evaluated the
average value of clustering coefficienE{]j for each time point (see Methods). As expected for various biological networks,

a high value of(C) was observed for the networks at all time points in both the strains as compared to their corresponding
random networks (Fig2, Supplementary Tables S1 and S2) as expecté&dirthermore, keeping in view the manner in which

we constructed the sporulation networks, a high meant that many of the neighbor target genes of a transcription factor
also acted as transcription factors for the other neighbor target genes of that same transcription factor. On comparing the
average value of clustering coefficienC{j between the strains, a sharp increas€Gih was observed thrice for the SK1

strain coinciding with the early, middle and late phases of sporulation, while for the S288c¢ strain only two such transitions
were observed for this property (Fig). Moreover, while the transitions between the three peak® wapid in the SK1

strain, a slower transition between the first and second peak was observed for S288c strain. Since high clustering in cellular
networks is known to be associated with the emergence of isolated functional modilese results pertaining to average
clustering coefficient suggested that the increased duration of time taken by S288c strain for forming functional modules can
be considered essential for transferring information from early to middle phases in sporulation, and thus could be involved
with the lower sporulation efficiency shown by this strain.

In order to further unravel the differences of the sporulation process in the two strains, we investigated how number of
neighbors of nodes denoted by node degree is associated with their neighbor connectivities (interactions between the neighbors
of the node of interest) evaluated in terms of clustering coefficient (see Methods). All the networks in SK1 and S288c strains
exhibited negative degree-clustering coefficient correlation (Supplementary Figs. S2 and S3) as also witnessed in various other
real world networks, indicating the existence of hierarchy in the underlying networkshierarchical architecture implies
that sparsely connected nodes are part of highly clustered areas, with communication between the different highly clustered
neighborhoods being maintained by a few hubs. We quantified this hierarchy (h), also termed as global reaching centrality
in the networks’ (see Methods) and found that in both the strains, the netweeke more hierarchical at the beginning of
sporulation (Fig2). A high value of hierarchy has been associated with modularithe network, for instance in case of

5/12


https://doi.org/10.1101/068270
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/068270; this version posted August 7, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Figure 3. Degree (k- Betweenness centrality3f) correlation in SK1 networks. The points marked in blue correspond to
the genes having low degree but high betweenness centrality in respective time points.
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Figure 4. Degree (k- Betweenness centralitydf) correlation in S288c networks. The points marked in red correspond to
the genes having relatively low degree but relatively high betweenness centrality in respective time points.

metabolic networks, hierarchical structure indicates that the sets of genes sharing common neighbor are likely to belong to
the same functional class.A low value ofh indicates more random interactions in the underlying networks. A decrease in
hierarchy was observed until the middle phase of sporulation in both the strains. While SK1 continued to exhibit diminishing
hierarchy in the late phase, in S288c there was an increase in the hierarchy at the last time point, again suggesting that the
strain was attempting to achieve modularity in late phases of sporulation. These results implied that since both the strains
showed high values of disassortativity, average clustering coeffici€ht &nhdh early in sporulation, the nature of genes
involved in transferring information from the early phase to middle and late phases of sporulation would be important for us to
understand the phenotypic difference between them. Therefore, next we identified the genes that would directly or indirectly
be involved in bringing about the phenotypic differences in both the strains as sporulation progresses.

For a network, betweenness centrality (see Methods) is a measure of network resilgamta estimates the number of
shortest paths (the minimum number of edges traversed between each of the pairs of nodes) that will increase if a node is
removed from the network: Usually, nodes with high betweenness centrality are knowbrittge different communities
in the network. High degree nodes have high betweenness centrality §rigsel4). But there are few nodes, which have
low degree, yet high betweenness centrality (Figgnd4), i.e. these genes, despite having very less number of atiena,
appear in multiple pathways and hence can be expected to have special significance in the underlying networks. Hence,
removal of these nodes can bring about major breakdown in the pathways controlling the sporulation process. We identified

6/12


https://doi.org/10.1101/068270
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/068270; this version posted August 7, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Table 3. Pairs of interacting genes which have low overlap (O) and high link betweenness cenfiglity K1 networks.
Their corresponding indices as given in Fig. S4.

Time points Gene pair
Ty STP2-BASL, HCM1-BASL, BASL-RIM101
To ACE2-MGAL, ACE2-SR2, DAL81-ACE2, CDC14-ACE2
Tio CDC14-ACE2, ACE2-ARG82, DAL81-ACE2
T11 DAL81-ACE2, ACE2-MGAL, CDC14-ACE2
T2 YPLO56C-ARG82, DAL80-ACE2, RIF1-TPK1

a few important sporulation genes showing this property of dtiegree and high betweenness centrality in both SK1 and
S288c strains. In the SK1 networks, these were known markers of respiratory stress and starvatiorSrRgnelpMAL

andRPL2B,"" while in S288c these wendlE1 and TOS4 which are involved in initiation of meiosis and DNA replication
checkpoint response, respectively. Interestingly, these sporulation genes appeared to show this property in the early phase of
SK1 strain and during the middle to late meiotic transition in S288c strain. These results suggested that this late appearance of
important early sporulation genes as bridges that could transfer information between regulatory modules during sporulation,
might be the cause for sporulation not proceeding in the S288c strain. The above analyses helped us to identify the influential
genes underlying the sporulation process. We next identified a few interactions that might be instrumental in regulating
the sporulation process by considering an important proposition of sociology, Granovetter's ‘Weak ties hypothesis’. This
hypothesis states that the degree of overlap of two individuals’ friendship networks varies directly with the strength of their tie
to one another! In the networks, the ties having low overlap in their neighioards (i.e. less number of common neighbors)

are termed as the weak ti€s.The weak ties that have high link betweenness centrality Ndetbods) are the ones known

to bridge different communities. Such weak ties revealed through our analysis of differentudption networks are listed

in Tables3 and4. Interestingly, we found repetitive occurrence of the sameakuies in consecutive time points for both

the strains indicating their phase-specific importance in yeast sporulation. For in®ASteRTT107, BASL-TYE?, YAP6-

BASL andASK10-HMO1 were repetitive weak ties with high link betweenness centrality in consecutive time points of S288c
networks while so wer®AL81-ACE2 and CDC14-ACE2 in SK1 networks. In order to assess the functional importance of
these weak ties, we investigated the characteristic properties of the end nodes of these weak ties. Unlike social networks where
the end nodes of weak ties are low degree nddésthe sporulation networks of both the strains, the nodesifty weak ties

were high degree nodes. An example of this was aBA#L, which as discussed above, is a Myb-related transcription factor
involved in amino acid metabolism and meiosisin addition toBASL, other important sporulation regulatory genes were
identified in SK1, such aRIM101, a pH-responsive regulator of an initiator of meioSidME2, a serine-threonine kinase
activator ofNDT80 and meiosis;” CDC14, a protein phosphatase required for meiotic progressi¢tCM1, an activator of

genes involved in respiration.Whereas in S288c, apart froBASL, genes associated with mitotic functions suchirés7 for

glycolytic gene expressior, YAP6 for carbohydrate metabolisti RTT107 for DNA repair, " ASK10 for glycerol transport

andHMOL1 for DNA structure modificatioty were identified. These results showed that while in SK1 stresiosis-associated

genes formed important bridges, in S288c¢ strain bridges were formed by genes involved in mitotic functions. This implied
how differences in weak ties in regulatory networks can help us understand the dramatic differences observed in phenotypes.
Moreover,DAL81, a nitrogen starvation regulatorand ACE2, a regulator of G1/S transition in the mitotic cell cyclewere

identified as end nodes of repetitive weak ties in SK1, suggesting their probable regulatory role in the sporulation process that

Table 4. Catalogue of links having low overlap yet relatively high link betweenness centrality in each time point for S288c.
Their corresponding indices as given in Supplementary Fig. S5.

Time points Nodes with lowO high .
T1 BASL-RTT107, BASL-TYE7
T, BASL-RTT107, BASL-TYEY
T3 BASL-RTT107, BASL-RPH1, YAP6-BASL
T4 YAP6-BASL
Te ASK10-HMO1, HMO1-XBP1
T7 ASK10-HMO1, YAP6-HMO1
Tg HSF1-IME1, ASK10-HMO1
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requires further investigation.

Conclusion

This study presents a novel framework for assessing the mlaleansequences of genetic variation across strains. This frame-
work can help reveal the characteristic signatures of the phenotype of interest and identify novel candidate genes contributing
to phenotypic variation. Using this framework for the dynamic yeast sporulation network, we showed that the comparative
analysis of parameters measuring the network connectivity and degree-degree mixing were the best in identifying differences
between two yeast strains showing diverse sporulation efficiency. Comparing the basic structural attributes of the dynamic
sporulation networks of the two strains revealed that a delayed crosstalk between functional modules of the low sporulating
S288c strain might be the plausible reason behind its low sporulation efficiency. The end nodes of the repetitive weak ties,
which are instrumental in bridging communities, were meiosis-associated genes for SK1 strain while these nodes in S288c
were involved in mitotic functions, thus outlining the importance of this parameter in unraveling the differences between the
two strains.

Model organisms have provided remarkable amount of information to construct the core molecular network. However,
identifying the nodes within this network causing variable phenotypic consequences in a natural population, still remains a
major challenge. Application of genome-wide strategies to elucidate the molecular networks in multiple genetic backgrounds
provides us with the opportunity to understand the impact of natural variation. These strategies can be used to incorporate this
new molecular information such as a different type of interaction between molecules, in the already known . This notion is
encouraging, especially for understanding complex diseases such as cancer and diabetes, as it provides with a cohort of key
nodes governing phenotypic behaviors that get altered by underlying genetic defects. Given the large scale availability of gene
expression data, the framework proposed in this study and the network parameters used, can find application in personalized
medicine and drug target discovery by carrying out comparative investigations on individuals showing phenotypic diversity.

Methods

Network construction

For constructing the transcriptional regulatory sporolatietwork, the known static regulatory interactions were overlaid on

the time-resolved transcriptomics data of the two strains. This created the dynamic integrated sporulation network. The static
network known for yeast contains all the known regulatory interactions between all the yeast transcription factors (TF) and
their target genes (TG). These interactions were obtained from YEASTRACT datatmsarated repository of regulatory
associations irs cerevisiae, based on more than 1,200 literature references.

Gene expression data for yeast strains Skahd S288¢" was obtained from previously published studies. These efatas
contained gene expression of 6,926 genes across 13 different time points in linear scale (Oh to 12h with 1h intervals termed
asTp to Typ, respectively) in SK1 and 9 different time points in logarithmic scale (Oh, 30m, 45m, 1h10m, 1h40m, 2h30m,
3h50m, 5h40m, 8h30m termed &g to Tg, respectively) in S288c. Gene expression analysis was performed as described
previously-- In brief, all time points were normalized together usirep”* and the time-resolved data of each strain was
smoothed separately usingcfit.”> Gene expression data for each strain was base-transformerldulating the fold
differences, for all the time-points from t = Otp), as follows:

Y1) = Yaca(ty) — Ysci(to) (1)

such thatY is the expression value of a transcript for a strain (SK1) at a specific time pantY’ is the transformed
expression value.

Over-expressed and repressed genes were identified at each time point, by setting the threshold value on the fold differences
as 1. This threshold was selected to include known sporulation genes sUiefiE2sNDT80 and DIT1"" in the network.

For each time point, we obtained all the genes showing fold difference greater than 1 (over-expressed) or lowér than
(repressed).

The dynamic sporulation network was constructed by overlaying the experimentally determined yeast sporulation-specific
gene expression values on the yeast static network. For each time point of each strain, only those TF-TG pairs were considered,
which both showed either over-expression or repression. These pairs were included in the subnetwork for that specific time
point. In such a manner, subnetworks for each time point were constructed for each strain. For comparison of the gene names
obtained from YEASTRACT and the sporulation gene expression data, aliases were obtained from Saccharomyces Genome
Database:!
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Data availability
The adjacency matrices of the networks constructed usirgrtéaolved sporulation data drawn from SK1 and S288c strains,
the corresponding gene indices and transcription factors are freely available online at Figshare.

Structural parameters

Several statistical measures are proposed to understanificpeatures of the network:> The number of connections
possessed by a node is termed as its degree. The spread in the degrees is characterized by a distributiékunetiarn

gives the probability that a randomly selected node has exaetlges. The degree distribution of a random graph is a Poisson
distribution with a peak &((k)). One of the most interesting developments in our understanding of complex networks was the
discovery that for most large networks the degree distribution significantly deviates from a Poisson distribution. In particular,
for a large number of networks, including the World Wide Web, the Internet or the metabolic networks, the degree distribution
has a power-law taiP(k) ~ k=Y. The inherent tendency of social networks to form clusters representing circles of friends
or acquaintances in which every member knows every other member, is quantified by the clustering coeffiigsiering
coefficient of a nodé denoted a€;, is defined as the ratio of the number of links existing between the neighbors of the node
to the possible number of links that could exist between the neighbors of that'rasdkis given by

c 25K 3N (ALALLAL)
! ki(ki —1)

wherei is the node of interest and and j, are any two neighbors of the nodandk; is the degree of the nodeThe average
clustering coefficient of a network corresponding to a particular conditiof) gan be written as

)

1 N
CRIPL ©

We define the betweenness centrality of a nip@es the fraction of shortest paths between node pairs that pass through the
said node of interest.

N
x=9y = 4
Z O« “)
wheren is the number of geodesic paths frerot that passes throughandgy is the total number of geodesic paths frem
tot.
We quantify the degree-degree correlations of a network by considering the Pearson (degree-degree) correlation coefficient,
given as
oo e k] - Mt 5+ k)7 )
M3 (2 + k)~ Mgy 3 (i + k)2
where ji, k are the degrees of nodes at both the ends ofttheonnection and represents the total connections in the

network.
Link betweenness centrality is defined for an undirected link as

BL= VEZ/SWE%/V Ow(€)/ 0w (6)

whereay(€) is the number of shortest paths betweesndw that containe, and oy is the total number of shortest paths
betweerv andw.
The overlap of the neighborhood of two connected nodesl j is defined as
Nij
(ki =1)+ (kj—1)—nj

wheren;; is the number of neighbors common to both nodasd j. Herek; andk; represent the degree of tifé and jt"
nodes.

Hierarchy can be defined as the heterogeneous distribution of local reaching centrality of nodes in the network. The local
reaching centrality,Ggr), of a node is defined as

Oij = (7

(8)

CR(|) i ; o)
N_]‘j:0<d i,j)<ood(|’J)
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whered(i, j) is the length of the shortest path between any pair of nbdes j. The measure of hierarchy (h), termed as
global reaching centrality is given by

h— Ziev[CR* —CR()]
N—-1

9
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