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Abstract 

The intrinsically disordered scaffold proteins AFF1/4 and the transcription elongation 

factors ELL1/2 are core components of the superelongation complex required for HIV-1 

proviral transcription. We determined the 2.0-Å resolution crystal structure of the human 

ELL2 C-terminal domain bound to its 50-residue binding site on AFF4, the ELLBow. 

The ELL2 domain has the same arch-shaped fold as the tight junction protein occludin. 

The ELLBow consists of an N-terminal helix followed by an extended hairpin that we 

refer to as the elbow joint, and occupies most of the concave surface of ELL2. This 

surface is important for the ability of ELL2 to promote HIV-1 Tat-mediated proviral 

transcription. The AFF4-ELL2 interface is imperfectly packed, leaving a cavity 

suggestive of a potential binding site for transcription-promoting small molecules. 
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Introduction 

 

Curing Acquired Immunodeficiency Syndrome (AIDS) is a major global health goal. 

AIDS is caused by the human immunodeficiency virus (HIV), which has proved 

exceptionally difficult to eradicate (Archin et al., 2014). The principal obstacle to HIV 

eradication is the persistence in patients of a reservoir of cells harboring latent provirus 

integrated within the genome (Ruelas and Greene, 2013). Clinical interest in the 

reactivation of latent HIV (Archin and Margolis, 2014) has brought renewed attention to 

the mechanism of transcriptional regulation of the HIV provirus. Latency is regulated at 

the levels of epigenetic silencing and transcription initiation and elongation (Mbonye and 

Karn, 2014). Transcription elongation, which is promoted by the HIV Tat protein and 

TAR RNA sequence, is the best-understood of these mechanisms. The functions of HIV 

Tat and TAR in promoting elongation are completely dependent on their ability to hijack 

the host Super Elongation Complex (SEC) (He	
  et	
  al.,	
  2010;	
  Lu	
  et	
  al.,	
  2014;	
  Sobhian	
  et	
  

al.,	
  2010). 

 The SEC consists of the Cyclin-dependent kinase CDK9 and Cyclin T (CycT1 or 

T2), together known as P-TEFb (Price, 2000); one of either of the intrinsically disordered 

(ID) scaffold proteins AFF1 or AFF4 (He et al., 2010; Sobhian et al., 2010); one of either 

ENL or AF9; and one of either of the RNA polymerase elongation factors ELL1 or ELL2 

(Biswas et al., 2011; He et al., 2010; Luo et al., 2012). The reason that Tat is such a 

powerful activator of HIV-1 transcription lies in its ability to pack two distinct 

transcriptional elongation factors P-TEFb and ELL1/2 into a single SEC complex, where 

the two factors can synergistically stimulate a single RNA Pol II elongation complex (He	
  

et	
  al.,	
  2010;	
  Lu	
  et	
  al.,	
  2014). AFF1/4 is more than 1100 residues long and is the principal 

scaffold that holds the SEC together (Lin et al., 2010). AFF1/4 consists almost entirely of 

predicted intrinsically disordered regions (IDRs). AFF1 and AFF4 function in 

transcription elongation by virtue of various peptide motifs interspersed throughout their 

sequences, much like many other ID signaling and regulatory proteins that have come 

under intensive study (Csizmok et al., 2016; Tompa et al., 2014). The AFF1- and ELL2-

containing version of the SEC is the most important in the promotion of proviral 

elongation, despite its low abundance (Li et al., 2016).  
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The structure of P-TEFb lacking the C-terminal IDR of CycT1 has been 

determined in complex with HIV-1 Tat (Tahirov et al., 2010) and the N-terminal 60 

residues of AFF4 (Gu et al., 2014; Schulze-Gahmen et al., 2013). This structure shows 

that AFF4 residues 32-67 bind as an extended strand followed by two α-helices to the 

CycT1 surface. NMR studies showed that AFF4 residues 761-774 fold into a β-strand 

that combines with two strands of the AF9 AFF4-binding domain to generate a three-

stranded β-sheet (Leach et al., 2013). The structures of the P-TEFb and AF9 complexes 

with AFF4 revealed two of the three known interfaces used by AFF4 in assembly of the 

SEC. In this study, we set out to visualize the last of the three known interfaces critical 

for AFF4 function, its binding site for ELL1/2. 

 Progress in characterizing the AFF4 interface with ELL2 has been slower than for 

the P-TEFb and ENL/AF9 interfaces, in part because the AFF4 binding domain for ELL2 

is poorly soluble and prone to aggregation. The first step in this study was to obtain a 

fusion construct such that a stable obligate complex between ELL2 and AFF4 was 

formed. This fusion-based tethered complex was stable and soluble enough to be 

crystallized. The crystal structure confirmed that the AFF4 binding domain of ELL2 has 

an occludin fold, as predicted from sequence homology (Li et al., 2005). It showed that 

the IDR consisting of AFF4 residues 301-351  (hereafter referred to as AFF4ELLBow for 

ELL1/2 Binding) folds up into a helix and elbow joint arrangement that makes extensive 

contacts with the occludin domain of ELL2 (hereafter ELL2Occ). These results complete 

the structural picture of how AFF1/4 engages its three known partners in the SEC. 

 

Results 

Mapping the AFF4ELLBow and ELL2Occ interaction 

Following the initial mapping of the AFF4 and ELL2 interaction sites to approximately 

residues 318-337 of the former and 519-640 of the latter (Chou et al., 2013) (Fig. 1A), we 

sought to isolate a stable form of this monomeric (Fig. 1-S1A) complex for crystallization. 

It was difficult to obtain diffraction-quality crystals of ELL2Occ constructs with 

AFF4ELLBow fragments because of the propensity of the ELL2 fragment to aggregate over 

time. We reasoned that fusion of AFF4ELLBow and ELL2Occ fragments might protect the 

AFF4 binding epitope on ELL2Occ from aggregation. Constructs were generated for both 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 6, 2016. ; https://doi.org/10.1101/068262doi: bioRxiv preprint 

https://doi.org/10.1101/068262


	
   5	
  

AFF4ELLBow–(Gly-Ser)4-ELL2Occ and ELL2Occ–(Gly-Ser)4- AFF4ELLBow. The ELL2Occ–

(Gly-Ser)4- AFF4ELLBow dimerized in solution, while AFF4ELLBow–(Gly-Ser)4-ELL2Occ 

was monomeric (Fig. 1-S1B). Given that the unfused fragments were monomeric, we 

concluded that the dimerization of ELL2Occ–(Gly-Ser)4- AFF4ELLBow represented a 

domain-swapping artifact (Fig. 1- S1C) and focused efforts on AFF4ELLBow–(Gly-Ser)4-

ELL2Occ .  

Hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) was 

used to probe the protection of expected helical regions of ELL2Occ in variant constructs 

consisting of AFF4301-351-(Gly-Ser)4-ELL2519-640 and AFF4312-330- ELL2519-640. Essentially 

complete peptide coverage was obtained for both constructs (Fig. 1B). The longer 

construct manifested some exchange-protected regions (330-332) absent in the shorter 

construct (see first dashed box above and below in Fig. 1B). The data for the longer 

construct also showed that the ELL2 sequence 540-554, corresponding to part of the first 

predicted helix (second dashed box above and below in Fig. 1B), manifested < 10 % 

exchange over 10 s. In comparison, a higher level of exchange was observed in the 

shorter construct. We proceeded to focus on crystallizing AFF4301-351-(Gly-Ser)4-

ELL2519-640. 

 

Structure of the AFF4 ELLBow:ELL2Occ complex 

The structure of the AFF4 ELLBow:ELL2Occ complex was determined by SeMet MAD 

phasing (Fig. 2A, Fig. 2-S1, Table 1). Helix α1 (residues 538-578) bends inward at 

Tyr552 by 30° such that the C-terminal helix of α1 (553-578) pack against α2 (Fig. 2B). 

Helices α2 (584-602) and α3 (607-638) of ELL2 are oriented at an angle of ~100° with 

respect to each other such that both pack along the length of the long, bent helix α1 (Fig. 

2B). The structure confirms that ELL2Occ has the same arch-shaped three-helix fold as the 

C-terminal domain of occludin (Li et al., 2005). The ELL2Occ and occludin C-terminal 

domain (pdb entry 1XAW) structures can be superimposed with an r.m.s.d. of 4.0 Å  for 

104 residue pairs (Fig. 2C). The main differences are in the α2-α3 connector and in the 

mutual orientation of these two helices.  The α2-α3 angle is steeper in ELL2Occ than in 

occludin. A minor difference is that ELL2Occ has an extra single-turn helix, denoted α0, at 

its N-terminus. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 6, 2016. ; https://doi.org/10.1101/068262doi: bioRxiv preprint 

https://doi.org/10.1101/068262


	
   6	
  

AFF4 ELLBow is ordered over residues 314-349 and buries 1535 Å2 of solvent-

accessible surface area. Fully 37% of the entire solvent accessible surface area of AFF4 

ELLBow is buried in the contact. The AFF4 ELLBow sequence folds into several distinct 

regions. It begins with helix α1 (315-324), is followed by an extended hydrophobic 

sequence (325-327), a polyproline segment (328-330), an extended region that doubles 

back on itself in what we refer to as the ELLBow joint (331-343), and a second extended 

hydrophobic sequence (344-349) (Fig. 3A). The fusion construct contains 17 residues 

that are not visualized in electron density, AFF4 351-351, 8 Gly-Ser linker residues, and 

ELL2 519-524, more than adequate to span the 15 Å between AFF4 349 and ELL2 525 

in the structure. Hydrophobic side-chains of AFF4 ELLBow α1, including Val316, Ile319, 

Leu320, and Met323, are buried in a hydrophobic groove formed by the C-terminal half 

of ELL2Occ- α1 and α2 (Fig. 3B). These helices of ELL2Occ contribute hydrophobic 

residues Val565, Phe569, Ile570, Leu572, Aps573, Val589, His590, Tyr596, Leu594 and 

Ile599 to the AFF4 α1 binding site (Fig. 3B). ELL2Occ buries 1315 Å2 of solvent-

accessible surface area, corresponding to 15% of its total surface area. 

 AFF4 ELLBow is centered on Trp327, which forms extensive hydrophobic 

interactions with the side-chains of ELL2 residues His 559, Met562, Cys614 and Glu615. 

The Trp327 indole nitrogen also forms a water-mediated hydrogen bond with the Tyr607 

hydroxyl. This cluster of residues is completed by the side chains of AFF4 Pro328, 

Phe345 and Phe347 (Fig. 3C). Collectively, this cluster forms an extensive interaction 

network in which AFF4 ELLBow folds up not only against ELL2 but also against itself.  

 In the AFF4 ELLBow joint, the side chain of Leu331 sticks into a pocket comprising 

Tyr 552, Tyr555, His618, Leu621 and Ala622 of the N-terminal half of ELL2Occ- α1 and 

α3. The side chain of Ile334 packs against the side chains of Lys545, Phe547, Lys625 

and Leu628. At the distal end of ELLBow joint, Pro342 falls into a shallow cavity 

composed of Ala622, Lys625 and Arg626 (Fig. 3D).  

A number of hydrogen bonds are observed in the complex (Fig. 4A).  In AFF4 

ELLBow α1, the side-chains of Asp317 and Arg576 of ELL2 form a bidentate salt-bridge 

with one another (Fig. 4B). Glu322 of AFF4 forms a 2.8 Å salt bridge with one of the 

two observed rotamers of His608 of ELL2 (Fig. 4B). In the central cluster, the carbonyl 

group of Pro328 forms a 2.7 Å hydrogen bond with the side chain of His559 of ELL2 
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(Fig. 4C). Moving into the ELLBow joint, the main chain amide and carbonyl of AFF4 

Leu331 form hydrogen bonds with the hydroxyl oxygens of Tyr552 and Tyr555, 

respectively, of ELL2. A 2.6 Å hydrogen bond is formed between Thr332 of AFF4 and 

Lys625 of ELL2 (Fig. 4D). The Ile334 carbonyl accepts a hydrogen bond from the side-

chain of Lys545. The Cys338 main-chain amide donates a hydrogen bond to the side-

chain of Asp632. The main-chain amide of Phe345 forms a 2.9 Å hydrogen bond with the 

side chain of Gln619 (Fig. 4D).  

The AFF4ELLBow:ELL2Occ complex was screened for cavities using POCASA 1.1 

(POcket-CAvity Search Application) (Yu et al., 2010) with a probe radius of 3 Å. Of the 

five largest cavities located, one of these is an internal cavity at the AFF4 ELLBow:ELL2Occ 

interface (Fig. 5A). The cavity is 36 Å3 in volume and is connected to the exterior by a 

narrow mouth (Fig. 5B). It is lined by the aliphatic part of Glu322, Met323, His325, 

Trp327, Phe347, and Pro348 of AFF4 and by Met562, Ala566, Tyr607, and the aliphatic 

part of Lys611 of ELL2 (Fig. 5C). These residues are in or adjoin the central cluster part 

of the interface. 

 

Function of the AFF4 ELLBow:ELL2Occ interface in binding 

To validate whether that the observed structural interface corresponded to the mode of 

binding of AFF4 ELLBow and ELL2Occ in solution, we carried out a series of mutant peptide 

binding assays using fluorescence polarization. We considered this particularly critical 

given the use of the fusion construct to obtain crystals. The assay monitored the 

displacement of fluorescently labeled wild-type ELLBow peptide by unlabeled mutant 

peptides 301-351. The unlabeled wild-type peptide in this system has Kd = 86 nM (Table 

2; Fig. 6A). The AFF4 hydrophobic residues Val316, Ile319, Leu320, Met323, Trp327, 

Leu331, Ile334 and Pro342, were mutated to Asp in order to maximally destabilize 

hydrophobic interactions. Consistent with expectation, mutation of multiple hydrophobic 

residues to Asp resulted in large decreases in affinity. The double mutant I319D/L320D 

reduced affinity by >25-fold (Table 2; Fig. 6A). The Kd for the triple mutant 

I319D/L320D/M323D was immeasurable due to weak binding, but greater than 3 µM, 

representing a ~50-fold loss of affinity (Table 2; Fig. 6A). The same was true of two 

other triple hydrophobic mutants tested, M323D/L331D/I334D and 
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W327D/L331D/I334D (Table 2; Fig. 6B). The single mutant M323D has the largest 

effect of any single amino acid change, with a reduction in affinity of >25-fold (Table 2; 

Fig. 6A). Moving closer to the center of the AFF4 ELLBow, L331D and I334D reduce 

affinity by ~20- and 8-fold, respectively (Table 2; Fig. 6B). This highlights the role of 

hydrophobic residues in AFF4 ELLBow helix α1 and immediately C-terminal to it in the 

central cluster as the critical anchor points and affinity determinants. 

 Hydrophobic residues of the central cluster make smaller contributions than those 

highlighted above. W327D reduces affinity 4-fold, while F345D/F347D reduces it by less 

than two-fold. P342D led to a similar 3-fold drop (Table 2; Fig. 6B). These more modest 

contributions may reflect that these side-chains are partially solvent-accessible in the 

AFF4 ELLBow:ELL2Occ complex. Moreover, their interactions are made in part with other 

residues within the AFF4 ELLBow such that they could potentially make residual 

hydrophobic interactions even in unbound AFF4. The polyproline helix does not seem to 

have a major role in affinity, with the double 328-329 Pro-Gly mutant reducing affinity 

only by a factor of three (Table 2; Fig. 6B). 

 The interface has a significant polar component, with some hydrophilic residues 

contributing substantially to binding, and others less so. The AFF4 ELLBow α1 mutant 

D317P/E317P was designed to disrupt hydrogen bonding involving Asp317 and to 

introduce helix breaker mutants in α1. This mutation lowered affinity by 10-fold (Table 

2; Fig. 6A). The charge reversal mutation E322H reduced affinity by less than two-fold 

(Table 2; Fig. 6A).  

 It proved impossible to purify hydrophobic to Asp mutants in the AFF4 binding 

site of ELL2Occ because these proteins were insoluble when expressed in E. coli. 

Presumably this is because these hydrophobic residues also contribute to the hydrophobic 

core of the ELL2Occ fold. It was, however, possible to purify ELL2Occ polar mutants in 

the binding site. We examined the roles of ELL2 His559, His608, Asn619, and Lys625 

by pull-down assay (Fig. 6C). Single mutants H559E, H608E, N619A, and K625T had no 

apparent effect on binding by pull-down. However, the quadruple mutant 

H559E/H608E/N619A/K625T completely abrogated binding in this assay. This validates 

the role of these residues in the interface in solution. 
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AFF4ELLBow and ELL2Occ are important for in vivo complex assembly 

It had previously been shown that the AFF4 sequence 318-337 was sufficient for ELL2 

binding (Chou et al., 2013). We tested whether this sequence was also necessary for 

binding, and found to our surprise that AFF4 Δ318-337 still pulled down ELL2 in nuclear 

extracts (Fig. 7-S1A). We hypothesized that AFF4 contained a second ELL2 binding site, 

and determined that a double deletion of residues 318-337 and 970-1163 abrogated the 

interaction completely (Fig. 7A). In order to determine if single residues within AFF4 

ELLBow contributed to binding and function in cells, point mutants were constructed in the 

context of AFF4 Δ970-1163. ELL1 contains a C-terminal domain homologous to that of 

ELL2, hence binding to ELL1 was also tested. L320D was most effective, blocking both 

ELL1 and ELL2, consistent with its very strong effect on binding in vitro (Fig. 6A, Table 

2). E322H, P329G, and I334D partially blocked ELL2 binding but completely knocked 

out ELL1 binding, consistent with their intermediate effects on in vitro peptide binding. 

Both ELL1 and ELL2 bound robustly to the mutants P324D, F345D, and F347D, 

consistent with their 2-3-fold effects on binding in vitro (Fig. 6A, Table 2). 

 In order to determine if the AFF4 binding site on ELL2 was functional in cells, 

polar mutants were inserted into ELL2 alleles and these were transfected into HeLa cells. 

We avoided testing hydrophobic mutants of ELL2 since we had previously found that 

these destabilized the ELL2 structure. HA-tagged ELL2H559E/H608E and 

ELL2H559E/H608E/N619A/K625T were expressed at essentially wild-type levels in HeLa cells 

(Fig. 7B). Wild-type HA-ELL2 pulled down AFF1, AFF4, and ELL1 from extracts. 

ELL2H559E/H608E has sharply reduced binding to AFF1, AFF4, and ELL1. 

ELL2H559E/H608E/N619A/K625T has only trace binding to AFF1 and AFF4 in extracts. These 

findings support that the structural interface is responsible for the interaction of ELL2 

with both AFF1 and AFF4 in cells.  

 

Role of the ELL2Occ ELLBow-binding interface in HIV proviral transactivation  

Overexpression of AFF4 stimulates proviral transcription by ~5-9-fold and ~26-fold in 

HEK 293T and HeLa cells, respectively (Fig. 8A). Unsurprisingly, AFF4 ELLBow 

mutants that on their own do not abrogate binding have little or no effect on transcription 

(Fig. 7-S1B). Deletion of the C-terminal ELL1/2 binding domain almost completely 
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blocked transactivation (Fig. 8A). The residual activity of AFF4Δ970-1163 was so low 

that meaningful results could not be obtained for transactivation phenotypes of these 

mutants (Fig. 8A). The abundance of the SEC complex appears to be limiting for 

transactivation such that overexpression of ELL2 in the presence of extra AFF4 promotes 

transcription by a factor of 14 (Fig. 8B). Polar mutants in the AFF4 binding site of 

ELL2Occ were tested for their effects on transcription. ELL2H559E/H608E and 

ELL2H559E/H608E/N619A/K625T had 3-fold and 5-fold less transactivation activity, respectively, 

than wild-type. These observations strongly support a functional role for the AFF4 

ELLBow binding site on ELL2Occ in transactivation. 

 

Discussion 

The crystallization of the AFF4 ELLBow:ELL2Occ complex rounds out our structural-level 

understanding of how the AFF4 scaffold recruits its three known partners in the SEC, P-

TEFb, ENL/AF9, and ELL1/2.  The limited solubility of ELL2Occ made this a more 

challenging target for crystallization, hence the necessity for the fusion approach. When 

using protein chimeras as a basis for structure solution, it is particularly critical to 

validate the findings in solution and in functional assays. Binding assays in vitro, pull-

downs from nuclear extracts, and proviral transactivation assays present a unified, 

consistent picture that validates the structural results. 

 The structure confirms the decade-old prediction that the C-terminal domains of 

ELL1/2 would have the same fold as the occludin ZO-1 binding domain. Occludin is a 

transmembrane tight junction protein that has no known involvement in transcription. It 

is not clear why this protein and ELL1/2 should share a domain uniquely present in this 

small set of otherwise unrelated proteins. In the initial analysis of the occludin structure, 

it was proposed that another tight junction protein, ZO-1, bound to a basic patch at the 

concave center of the arch (Li et al., 2005). This patch of occludin includes Lys504 and 

Lys511, which correspond structurally to the functionally important His618 and Lys625 

in the AFF1/4 binding site of ELL2. Subsequently, another report proposed that ZO-1 

bound elsewhere, at one tip of the occludin domain arch.  Despite these uncertainties, the 

structural similarities are extensive enough to suggest a common evolutionary origin and 

related protein-binding functions for the three-helical domains of occludin and ELL1/2. 
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 The bromodomain and extraterminal (BET) protein inhibitor JQ1 

(Filippakopoulos et al., 2010) and related compounds promote reactivation of HIV-1 

from latency via P-TEFb (Banerjee et al., 2012; Bartholomeeusen et al., 2012; Boehm et 

al., 2013; Li et al., 2013; Zhu et al., 2012). Other small molecule activators of HIV-1 

transcription are being sought in the context of HIV eradication strategies. We observed a 

cavity at the AFF4-ELL2 interface that appears likely to be present also in the AFF1-

ELL2 complex relevant to proviral activation (Li et al., 2016), on the basis of the 

complete identity of the AFF1 and AFF4 residues involved. If so, this could provide an 

avenue for the design of new SEC activators with JQ1-like effects on latency, but acting 

by an orthogonal molecular mechanism.  
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Experimental procedures 

Cloning and protein purification 

DNAs for ELL2 fragments and AFF4-ELL2 fusions were subcloned into pGST-parallel2, 

and DNAs for AFF4 peptide fragments were subcloned into pRSFduet-1 and pHis-

parallel2. Plasmids expressing FLAG-tagged wild-type AFF4 and HA-tagged wild-type 

ELL2 were generated previously (He et al., 2010). The plasmids expressing mutant 

versions of AFF4 and ELL2 were generated by PCR mutagenesis. The mutant constructs 

were verified by DNA sequencing. All proteins were expressed in E. coli BL21-gold 

(DE3) cells (Agilent Technologies). After induction with 0.2 mM IPTG overnight at 

16 °C, the cells were pelleted by centrifugation at 4000 x g for 10 minutes. Cell pellets 

were lysed in 25 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.5 mM TCEP-HCl, and 1 mM 

PMSF by ultrasonication. The lysate were centrifuged at 25,000 x g for 1 hour at 4°C. 

The supernatants for ELL2 and its fusions were loaded onto GS4B resin at 4°C, target 

proteins were eluted, and the eluate applied to a Hi Trap Q HP column. Peak fractions 

were collected and digested with Tobacco Etch Virus (TEV) protease at 4°C overnight. 

TEV and GST were removed by loading the solution onto Ni-NTA and GS4B columns, 

respectively. Target proteins were further purified on a Superdex 200 16/60 column 

equilibrated with 25 mM Tris-HCl pH 8.0, 150 mM NaCl, and 0.5 mM TCEP-HCl. The 

peak fractions were collected and flash-frozen in liquid N2 for storage. The supernatant of 

AFF4 was loaded onto Ni-NTA resin at 4°C, eluted with an imidazole gradient, and 

applied to a Superdex 75 16/60 column equilibrated with 25 mM Tris-HCl pH 8.0, 150 

mM NaCl, 0.5 mM TCEP-HCl. Selenomethionyl (SeMet) protein was expressed in E. 

coli BL21-gold (DE3) cells grown in M9 minimal medium supplemented with 5% LB 

medium.  0.2 mM IPTG and 100 mg selenomethionine were added when the OD600 

reached 1.0. Cells were pelleted by centrifugation at 4000 x g for 10 minutes after 

overnight induction at 16 °C.  Se-Met AFF4301-351-(Gly-Ser)4-ELL2519-640 was prepared as 

above and SeMet incorporation verified by mass spectrometry. 
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HDX-MS Experiments 

Amide HDX was initiated by a 20-fold dilution of 40 µM AFF4-ELL2 fusion into a D2O 

buffer containing 25 mM Tris-HCl (pH 8.0), 150 mM NaCl, and 5 mM DTT at 30°C. 

After 10 s, exchange was quenched at 0°C with the addition of ice-cold quench buffer 

(400 mMKH2PO4/H3PO4 [pH 2.2]). Quenched samples were injected onto a high-

performance liquid chromatography (HPLC) (Agilent 1100; Agilent Technologies) with 

in-line peptic digestion and desalting. Desalted peptides were eluted and directly 

analyzed by an Orbitrap Discovery mass spectrometer (Thermo Scientific). Peptides were 

identified using tandem MS/MS and Proteome Discoverer 2.1 (Thermo Scientific). Initial 

mass analysis of the peptide centroids was performed using HDExaminer2.0 (Sierra 

Analytics) followed by manual verification of every peptide. The deuteron content was 

adjusted for deuteron gain/loss during digestion and HPLC. Both non-deuterated and 

fully deuterated fusions were analyzed. Fully deuterated samples were prepared by three 

cycles of drying and resolubilization in D2O and 6 M guanidinium hydrochloride. 

Crystallization of the AFF4 ELLBow-ELL2Occ fusion 

The purified fusion construct AFF4(301-351)-(Gly-Ser)4-ELL2(519-640) was 

concentrated to 10 mg/ml with a 10 kD centrifugal filter (Millipore). Crystals were grown 

by hanging-drop vapor-diffusion at 19°C. The protein solution was mixed with well 

buffer composed of 0.2 M NaCl, 10 mM MgCl2, 0.3M Na3 Citrate, 0.2M Na thiocyanate, 

0.1M Hepes pH 7.4. Crystals appeared in 24 hr and grew to full size in 5 days. Crystals 

were flash-frozen with liquid N2 in well buffer. Se-Met crystals were grown in the same 

condition as native crystals. 

Data collection and structure determination 

Native data were collected on BL7-1 at Stanford Synchrotron Radiation Lightsource. 

Native crystals diffracted to 2.5 Å and data were collected at a wavelength of 1.1271 Å. 

Se-MAD data were collected on BL8.3.1 at the Advanced Light Source, LBNL, Berkeley. 

The peak data set and the high energy remote data set were collected at wavelengths of 

0.9797Å and 0.9569Å respectively. All data sets were processed with HKL2000 (HKL 

Research). Data collection and processing statistics are given in Table 1. Phases were 

determined by two-wavelength multiwavelength anomalous dispersion (MAD). Model 
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building and refinement were finished with ARP/wARP (Langer et al., 2008), COOT 

(Emsley et al., 2010), REFMAC5 (Murshudov et al., 1997) and PHENIX (Adams et al., 

2010). 

Pulldown Assays 

Mutants of ELL2 (519-640) and AFF4 (300-351) were purified as described above. The 

concentration of proteins and peptides was determined by UV absorption at 260-280-nm. 

9 µM GST-ELL2 and 20 µM His6-AFF4 were incubated with GS4B resin at 4°C for 2 

hours in 80 µL of 25 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.5mM TCEP-HCl. The resin 

was washed 3 times with the incubation buffer. Then, the resin was boiled in 30 µL 1x 

SDS loading buffer at 95°C for 5 min before being applied to SDS-PAGE for analysis. 

Fluorescence Polarization 

Protein binding was measured using the fluorescence anisotropy of a 33-residue segment 

of AFF1 (residues 358-390) encompassing the protein-protein contacts in the crystal 

structure. AFF1 358-390 are almost identical to AFF4 318-350 with only 3 amino acid 

changes between the two homologs. The AFF1 peptide was synthesized at the University 

of Utah DNA/Peptide Facility using the following sequence: C-FAM-GABA- 

EILKEMTHSWPPPLTAIHTPSTAEPSKFPFPTK-amide where FAM indicates 5-

carboxyfluoroscein and GABA indicates a γ-amino-butyric acid spacer. Increasing 

amounts of purified Sumo-ELL2519-640 were incubated for 30 min with 5 nM labeled 

peptide at room temperature in 25 mM HEPES pH 7.5, 100 mM NaCl, 10% glycerol, 

0.05% NP40, and 0.5 mM Tris(2-carboxyethyl)phosphine (TCEP) to determine a suitable 

protein concentration for competition experiments. Competition titration experiments 

with unlabeled His-tagged AFF4 protein 301-351 were performed using 2 µM Sumo-

ELL2 in 25 mM HEPES pH 7.5, 100 mM NaCl, 10% glycerol, 0.05% NP40, 0.5 mM 

TCEP, and 5 nM fluorescent peptide. Fluorescence anisotropy was measured using a 

Victor 3V (Perkin Elmer) multi-label plate reader. Data points represent the average of 

three experiments. Binding curves were fit to a formula describing competitive binding of 

two different ligands to a protein using Prism version 5.0c (Graphpad Software). Error	
  

bars	
  are	
  representative	
  of	
  the	
  standard	
  error	
  from	
  the	
  mean	
  of	
  three	
  experimental	
  

replicates. 
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Co-immunoprecipitation 

Approximately 2 × 107 HEK 293T cells in two 145-mm dishes were transfected by 

plasmids expressing the wild-type or mutant FLAG-AFF4 or ELL2-HA (20 µg/each). 48 

hours after transfection, the cells were harvested and swollen in 4 ml hypotonic buffer A 

(10 mM HEPES-KOH [pH 7.9], 1.5 mM MgCl2, and 10 mM KCl) for 5 minutes and then 

centrifuged at 362 × g for 5 min. The cells were then disrupted by grinding 20 times with 

a Dounce tissue homogenizer in 2 ml buffer A, followed by centrifugation at 3,220 × g 

for 10 min to collect the nuclei. The nuclei were then extracted in 400 µl buffer C (20 

mM HEPES-KOH [pH 7.9], 0.42 M NaCl, 25 % glycerol, 0.2 mM EDTA, 1.5 mM 

MgCl2, 0.4 % NP-40, 1 mM dithiothreitol, and 1 × protease inhibitor cocktail) on ice for 

30 min, followed by centrifugation at 20,800 × g for 30 min. The supernatant (NE) was 

then mixed with 10 µl of anti-FLAG agarose (A2220 Sigma) or Anti-HA agarose (A2095 

Sigma) and rotated at 4 °C overnight. The beads were then washed three times with 

buffer D (20 mM HEPES-KOH [pH 7.9], 0.3 M KCl, 15 % glycerol, 0.2 mM EDTA, and 

0.4 % NP-40), and eluted with 30 µl 0.1 M glycine-HCl (pH 2.0). For Western blot, 3 % 

of the NE input and 50 % of the IP eluate were loaded into each NE and IP lane, 

respectively. 

 

Luciferase reporter assay 

Approximately 6 × 105 HEK 293T cells or 4 × 105 HeLa cells in 6-well plates were 

transfected in triplicate by plasmids expressing FLAG-AFF4 and/or ELL2-HA (1 

µg/each) with the HIV-1 LTR-luciferase construct (0.1 µg). 48 hours after transfection, 

the cells were harvested and lysed in 1 × Reporter Lysis Buffer (E3971 Promega), 

followed by centrifugation at 20,800 g for 1 min. Luciferase activities in the supernatant 

were measured using the Luciferase Assay System (E1501 Promega) on a Lumat LB 

9501 luminometer.  
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Figure Legends 

 

Figure 1. Determinants of AFF4 binding to ELL2.  

A. Schematic of the interactions of the AFF4 IDP scaffold with its partners in the SEC. 

The highlighted boxes within AFF4 and ELL2 represent the co-crystallized elements 

described below. Other regions of AFF4 are annotated for binding to P-TEFb, AF9/ENL, 

and the novel C-terminal ELL1/2 binding site described below. B. Deuterium uptake data 

for the AFF4-ELL2 fusion complexes. HDX-MS data are shown in heat map format, 

where peptides are represented using rectangular strips above the protein sequence. 

Absolute deuterium uptake (in %) after 10 s is indicated by a color gradient below the 

protein sequence. Protein sequence corresponding to the AFF4 is indicated by purple box. 

Protein sequence corresponding to the N-terminal portion of the ELL2 α1 helix is 

indicated by red box. 

 

Figure 1 Supplement 1. Fusion constructs screen. 

A. The unfused ELL2Occ:AFF4ELLBow complex is monomeric in solution. B. The 

ELL2Occ–(Gly-Ser)4- AFF4ELLBow was eluted at 62.45ml on the Hiload 16/60(GE) while 

AFF4ELLBow–(Gly-Ser)4-ELL2Occ was eluted at 73.22 ml, which correspond to a dimer 

and a monomer, respectively. Red line: ELL2Occ–(Gly-Ser)4- AFF4ELLBow , Blue line: 

AFF4ELLBow–(Gly-Ser)4-ELL2Occ . C. Schematic of hypothesis for ELL2Occ–(Gly-Ser)4- 

AFF4ELLBow dimerization in solution while AFF4ELLBow–(Gly-Ser)4-ELL2Occ was 

monomeric. ELL2Occ is shown in blue.  AFF4ELLBow is shown in orange. N, C represent 

amino termini and carboxyl termini respectively. 

 

Figure 2. Crystal structure of the AFF4 ELLBow in complex with the Occludin 

homology domain of ELL2. A. Se anomalous difference peaks and overall structure of 

the complex. The Se substructure map  is displayed at a contour level of 2σ(magenta).  B.  

Three views of the overall structure of the complex, with AFF4 in orange and ELL2 in 

light blue. C. Comparison of ELL2 and occludin C-terminal domain showing that the 

folds are similar but ELL2 is more sharply bent. D. α3 from both ELL2 and Occludin are 
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aligned, the structurally and functionally conserved residues are shown in stick. ELL2 is 

shown in light blue while Occludin is shown in cyan. 

 

Figure 2 Supplement 1. Electron density. 

A. The overall experimental electron density map after density modification is displayed 

at a contour level of 2σ (gray), with AFF4ELLBow and ELL2Occ shown as stick in orange 

and light blue, respectively. B. The map from (A) corresponding to AFF4ELLBow is 

displayed at a contour level of 2σ (gray), with AFF4ELLBow shown in a stick model.  

Met323 is highlighted. 

 

Figure 3. AFF4ELLBow:ELL2Occ interaction surfaces. 

A. Overview of the main binding determinants of the AFF4 ELLBow. B. The first helix 

of the ELLBow (orange) binds in a hydrophobic groove on ELL2 (gray). The key 

residues are shown in a stick model. C. The central cluster, in which hydrophobic 

residues of the ELLBow pack against ELL2 and one another, and are supplemented by 

polar interactions. Water molecules are shown as red spheres. c D. The ELLBow joint. 

 

Figure 4. Hydrogen bonding in the AFF4ELLBow:ELL2Occ complex. 

A. Overview of the network of hydrogen bonds. The residues involved in the hydrogen 

bonding are shown in stick. Hydrogen bonds are shown as magenta-colored dashed lines. 

(B-D). Details of the hydrogen bonds. The length of the hydrogen bonds is indicated next 

to the dashed lines.  

 

Figure 5. Cavity at the AFF4ELLBow:ELL2Occ  interface 

A. Overall view of the cavity that might work as a potential drug binding site. Molecules 

are shown in cartoon. Side-chains of residues that line the sides of cavity are shown in a 

stick representation. Colors are light blue, ELL2; orange, AFF4; green, dummy atoms 

marking the cavity. B. Surface model of AFF4ELLBow:ELL2Occ  complex showing the 

mouth of the cavity. C. Close-up of the cavity region as represented and colored in (A). 

 

Figure 6. Contributions of AFF4 ELLBow interactions to binding in solution. 
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 A.  Binding of  AFF4ELLBow WT and mutants in the N-terminal α-helix to Sumo-ELL2Occ. 

Sumo-ELL2Occ binding to fluorescently labeled AFF1ELLBow is competitively inhibited by 

increasing amounts of AFF4ELLBow, as described in experimental procedures. Error bars 

reflect the standard error from three experimental replicates. B. Binding of  AFF4ELLBow 

WT and mutants in the central cluster and elbow joint, assayed as in (A).  C. GST-fusions 

of the indicated ELL2Occ  mutants were immobilized and their ability to pull down His6-

tagged wild-type AFF4ELLBow assessed. 

 

Figure 7. Role of the ELLBow in AFF4 interactions with ELL1/2 in nuclear extracts. 

Nuclear extracts (NE) were prepared from HEK 293T cells transfected by the indicated 

plasmids and subjected to immunoprecipitation (IP) with anti-FLAG (A.) or anti-HA (B.) 

agarose beads. The NE inputs and IP eluates were examined by immunoblotting for 

presence of the various proteins labeled on the left.  

 

Figure 7 Supplement 1. AFF4 ELLBow mutants in the background of the full-length 

protein have little effect on binding or proviral transcription. A. NE and IP were 

conducted as in Fig. 7 using HEK 293T cells transfected by the indicated plasmids. B. 

Luciferase activities were measured and analyzed as in Fig. 7 using extracts of HEK 

293T cells transfected with the combinations of the indicated plasmids. 

 

Figure 8. The ELLBow binding site of ELL2 is important for HIV-1 LTR 

transcription. Luciferase activities were measured and analyzed in extracts of cells 

transfected in triplicate with the HIV-1 LTR-luciferase construct together with the 

combinations of plasmids expressing wild-type and mutant ELL2-HA and FLAG-AFF4 

as indicated. Each of the ELL2 and AFF4 plasmids was transfected at 1 µg/well. The 

activities in the control groups were set to 1. The error bars represent mean +/- standard 

deviation from triplicate wells. An aliquot of each cell extract was examined by 

immunoblotting for presence of the various proteins labeled on the left. 
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Table 1. Statistics of Crystallographic Data Reduction and Refinement 

 

 Native Se-Met  

(Se peak) 

Se-Met 

 (Se high remote) 

Data collection    

Space group P212121 P212121 P212121 

Unit cell 
parameters 

   

a, b, c (Å) 52.866, 57.324, 
61.805 

52.641, 57.422, 61.338  52.641, 57.422, 
61.338  

α, β, γ (°) 90.000, 90.000, 
90.000 

90.000, 90.000, 90.000 90.000, 90.000, 
90.000 

Wavelength (Å) 1.12709 0.9797 0.9569 

Resolution (Å) 50.00-2.51 (2.60-
2.51) 

50.000-2.10 (2.14-2.10) 50.00-2.10 (2.18-
2.10) 

No. of reflections 36437 159481 159642 

Completeness (%) 99.1 (92.3) 100.0 (100.0) 100 (100) 

Redundancy 5.4 (4.0) 14.1 (13.9) 14.1 (14.2) 

Rsym 0.139 (0.917) 0.748(0.141) 0.132 (0.72) 

<I>/<σ(I)> 10.83 (1.05) 33.7 (3.71) 20.59 (4.06) 

CC1/2 0.701 0.919 0.925 

Refinement    

Resolution (Å)  41.92-2.003(2.075-2.003)  

Rwork/Rfree (%)  19.71/24.83(28.04/40.22)  

Average B-factor 
(Å) 

 40.79  

R. m. s. deviation 
from ideality 

   

Bond length (Å)  0.003  
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Bond angle (°)  0.57  

Ramachandran Plot 
(%) 

   

Favored  98  

Allowed  2  

Outliers  0  
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Table 2. Kd values for AFF4-ELL2 binding as determined by fluorescence anisotropy.  
 
AFF4 
construct/mutation 

Kd (µM) R2 

WT, 300-350 +His6-tag 0.086 + 0.024 0.97 
V316D 0.23 + 0.054 0.99 
I319D/L320D NA  
M323D NA  
D317P/E318P 0.82 + 0.19 0.99 
K321P 0.24 + 0.06 0.98 
E322H 0.13 + 0.037 0.99 
W327D 0.38 + 0.097 0.96 
P328G/P329G 0.28 + 0.076 0.97 
L331D 1.6 + 0.38 0.98 
T332K 0.069 + 0.037 0.97 
I334D 0.69 + 0.17 0.95 
L331D/I334D 1.98 + 0.58 0.97 
P342D 0.2 + 0.056 0.99 
F345D/F347D 0.13 + 0.041 0.97 
I319D/L232D/M323D NA  
D317P/E318P/E322H NA  
M323D/L331D/I334D NA  
W327D/ L331D/I334D NA  
 
Fluorescence anisotropy data in Fig. 6 were fitted with a single site binding model. NA 
means fitting was not applicable because of very low affinity binding. 
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