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Abstract

There is currently a great need for analytical tools and accurate approximation meth-
ods for large complex stochastic dynamical models such as those oscillators studied in
systems biology. We present a new stochastic approximation of biological oscillators that
allows such an approach. To do this we analyse the failure of the fast and analytically
tractable Linear Noise Approximation (LNA) and use this understanding and dynami-
cal systems perturbation theory to develop a modified LNA, called phase-corrected LNA
(pcLNA) that overcomes the main limitations of the standard LNA providing approxima-
tions uniformly accurate for long times, which are still fast and analytically tractable. As
part of this, we develop analytical expressions for key probability distributions and asso-
ciated quantities, such as the Fisher Information Matrix and Kullback-Leibler divergence,
which can be used to analyse the system’s stochastic sensitivities and information geom-
etry. We also present algorithms for statistical inference and for long-term simulation of
oscillating systems. We use a model of the drosophila circadian clock for illustration and
comparisons of pcLNA with exact simulations.

Keywords: stochastic models — oscillations — Linear Noise Approximation — biological
systems — Fisher information — Kalman filter

Abbreviations: pcLNA, phase-corrected Linear Noise Approximation; KS, Kolmogorov-
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1 Introduction

Dynamic cellular oscillating systems such as the cell cycle, circadian clock and other signaling
and regulatory systems have complex structures, highly nonlinear dynamics and are subject to
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both intrinsic and extrinsic stochasticity. Moreover, current models of these systems have high-
dimensional phase spaces and many parameters. Modelling and analysing them is therefore
a challenge, particularly if one wants to take account of stochasticity and develop a more
analytical approach enabling the development of theory and quantification in a more controlled
way than is possible by simulation alone. The stochastic kinetics that arise due to random
births, deaths and interactions of individual species give rise to Markov jump processes that, in
principle, can be analyzed by means of master equations. However, these are rarely tractable
and although an exact numerical simulation algorithm is available [1], for the large systems we
are interested in, this is very slow.

It is therefore important to develop accurate approximation methods for such systems that
enable a more analytical approach as well as offering faster simulation and better algorithms
for data fitting and parameter estimation. One obvious candidate for this is the Linear Noise
Approximation (LNA). This is based on a systematic approximation of the master equation
by means of van Kampen’s Ω-expansion [4]. Its large volume (Ω → ∞) validity has been
shown in [5], in the sense that the distribution of the Markov jump process at a fixed finite
time converges, as Ω → ∞, to the LNA probability distribution. The latter distribution is
analytically tractable allowing for fast estimation and simulation algorithms. However, the
LNA has significant limitations, particularly, as we show below, in approximating long-term
behaviour of oscillatory systems.

Our aim in this paper is to introduce a modified LNA, called the phase-corrected LNA, or
pcLNA, for oscillatory systems that overcomes the most important shortcomings of the LNA.
As part of this, (a) we present a simulation algorithm that is uniformly accurate for all times
and very fast compared to exact simulation, (b) we show that we can effectively calculate and
analyse the probability distributions of phase states (such as timing of maxima or minima) of
the system and associated quantities, such as the Fisher Information Matrix and Kullback-
Leibler divergence, thus allowing calculation of its stochastic sensitivities and analysis of its
information geometry, and (c) we facilitate estimation of system parameters θ by showing that,
given appropriate data Y , we can accurately approximate the likelihood function L(θ;Y ) via
a Kalman filter.

A key advantage of this approach is that one obtains approximations that are uniform
in time. To understand how this is possible consider a simpler problem, a system that in
the large volume, Ω → ∞, limit has a stable attracting equilibrium. Under very general
conditions, for time T > 0 large and large Ω, the LNA will give a good approximation of the
true distribution P (Y (t)|t� 0). Thus, under these conditions, the distribution that provides
a good approximation for a specific large T will be a similarly good approximation for all
T � 0. Our approach exploits the fact that the distributions for a general class of systems
with a stable attracting limit cycle in the Ω→∞ limit have a similar property if one conditions
this distribution on appropriate transversal sections to the limit cycle. For these systems and
any transversal section S to the limit cycle our modified LNA (pcLNA) provides a distribution
that can be analytically calculated and that is a good approximation to the true distribution
P (Y (t)|Y (t) ∈ S, t� 0) uniformly in time.
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To do this we build on previous work of Boland et al. [6]. They use the 2-dimensional
Brusselator system as an exemplar to investigate the failure of the LNA in approximating
long-term behavior of oscillatory systems and present a method for computing power spectra
and comparing exact simulations with LNA predictions of the same phase rather than time. We
extend these results in a number of ways including the following: (i) we develop a theory that
treats the general case and provide analytical arguments which justify our approximations and
enable computation of trajectory distributions, (ii) we show that the approach is practicable for
large nonlinear systems and (iii) we provide practical algorithms to simulate systems, estimate
parameters and analytically calculate key quantities including probability distributions and
information metrics. The approach in [6] uses transversal sections which are normal to the
limit cycle. We show that for most considerations one can use any transversal to the limit
cycle.

To illustrate and validate our approach we apply it to a relatively large published stochastic
model of the Drosophila circadian clock due to Gonze et al. [7] (see SI). This model involves
10 state variables and 30 reactions. The oscillations are driven by the negative feedback ex-
erted on the per and tim genes by the complex formed from PER and TIM proteins following
phosphorylation. per mRNA (MP ) and tim mRNA (MT ) is transported into the cytosol where
it is degraded and translated into protein (P0 and T0). These proteins are multiply phospho-
rylated (PER: P0 → P1 → P2; TIM: T0 → T1 → T2) and these modifications can be reversed
by a phosphatase. The fully phosphorylated form of the proteins is targeted for degradation
and forms a complex, which is transported into the nucleus in a reversible manner where the
nuclear form of the PER–TIM complex represses the transcription of per and tim genes. The
large system limit is given by the differential equation system of 10 kinetic equations that are
listed in the supplementary information (SI) along with the reaction scheme of the system.

The 2-dimensional Brusselator system is also used for illustrating our methods and the
results can be found in the SI. The SI also contains technical derivations and further illustrative
figures which we refer to in this paper.

1.1 Mathematical preliminaries

Stochastic models of cellular processes in signaling and regulatory systems are usually de-
scribed in terms of reaction networks. A system of multiple different molecular subpopulations
has state vector, Y (t) = (Y1(t), . . . , Yn(t))T where Yi(t), i = 1, . . . , n, denotes the number
of molecules of each species. These molecules undergo a number of possible reactions (e.g.
transcription, degradation of the mRNA, translation, degradation of the protein) where the
reaction of index j changes Y (t) to Y (t) + νj with the vectors νj ∈ Rn called stoichiometric
vectors. Each reaction occurs at a rate wj(Y (t)) (often called the intensity of the reaction)
which is a function of Y (t). The stoichiometry matrix S is the matrix whose columns are the
νj, j = 1, 2, . . . ,m.

We explicitly take into account the volume Ω of the reaction system by assuming that the
rates wj(Y (t)) depend upon the volume Ω as wj(Y ) = uj(Y/Ω,Ω) where the dependence of uj
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on Ω is of canonical form in the sense of [4], that is uj(x,Ω) = f(Ω)
∑∞

m=0 Ω−mu(m)
j (x). Under

this assumption, the LNA as formulated by [5] is derived directly from the underlying Markov
jump process and is valid for any time interval of finite fixed length. It is based on the Ansatz

X(t) =
Y (t)

Ω
= x(t) +

ξ(t)√
Ω

(1)

where x(t) is a solution of the differential equation that describes the limiting Ω→∞ system
i.e.

ẋ = F (x), F (x) =
∑
j

νjuj(x(t)). (2)

We will be interested in the case where the solution x(t) of interest is a stable limit cycle of
minimal period τ > 0 given by x = g(t), 0 ≤ t ≤ τ .

To describe the statistics of ξ we need some mathematical preliminaries. Let J(x) denote
the n × n Jacobian matrix of F so that (J(x))ij = ∂Fi/∂xj where the partial derivative is
evaluated at x. Let C(s, t) be the family of n×n fundamental matrices which are the solutions
of the differential equation

d

dt
C(s, t) = J(g(t))C(s, t), C(s, s) = I. (3)

The fundamental or transition matrix has the properties C(t1, t)C(t0, t1) = C(t0, t) for all
t0 ≤ t1 ≤ t and C(s, t) = C(0, t)C(0, s)−1.

Since g is periodic, J(g(t + τ)) ≡ J(g(t)) and therefore by Floquet theory [9] C(s, t) =
Z(t)e(t−s)R where Z(t + τ) ≡ Z(t), R only depends upon s and where the eigenvalues λi of
C(s, s+ τ) = eτR are independent of s. In the case of a non-degenerate attracting limit cycle
of a free-running oscillator (i.e. when F does not depend directly upon t), the matrix eτR has
λ1 = 1 as a simple eigenvalue and the remaining eigenvalues satisfy |λi| < 1. The tangent vector
at the initial value x0 is an eigenvector associated with λ1. In the case of periodically forced
oscillators the limiting differential equation is ẋ = F (t, x) and for an entrained non-degenerate
attracting limit cycle solution all the eigenvalues λ satisfy |λ| < 1.

In the LNA, the stochastic variable ξ in (1) satisfies

ξ(t) = C(t0, t)ξ(t0) + η(t0, t) (4)

for all t0 < t where η(t0, t) ∼ MVN(0, V (t0, t)) is multivariate normal with mean 0 and covari-
ance matrix

V (t0, t) =

∫ T

t0

C(s, t)E(s)E(s)TC(s, t)Tds (5)

and E(s) the square root of the matrix product of the stoichiometry matrix S introduced above
and W (x(s)), a diagonal matrix with main diagonal the reaction rates uj(x(s)). Henceforth,
we write ζ ∼ MVN(m,S) to mean that a random variable ζ is multivariate normal with mean
m and covariance matrix S.
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The locus γ in Rn of the points g(t) on the limit cycle is topologically a circle (possibly
with intersection points in the case of entrained forced oscillator). We will be particularly
interested in the probability distributions of the intersections of a stochastic trajectory with
transversal sections to γ. By a transversal section through x ∈ γ we mean a (n−1)-dimensional
linear hyperplane Sx containing x and transversal to the tangent vector, F (x), to γ at x. A
particular example is the hyperplane normal to γ at x. A transversal system is a family Sg(t)
of transversal sections which vary smoothly with t in the sense that the unit normal vector to
Sg(t) varies smoothly with t. The normal transversal system is the one where Sg(t) is the normal
to γ at g(t). We use this for our computed examples below. However, we will also consider
other interesting transversal systems in the SI. We will see below that, under general conditions
and for free-running oscillators, knowledge of trajectory distributions in one transversal system
allows accurate approximation of them in others. A transversal system defines a mapping G
of a neighborhood of γ onto γ where if X ∈ Sx then G(X) = x ∈ γ. In cases where X(s)
lies in more than one transversal sections, Sx(t′), t′ = t1, t2, . . . , then G(X(s)) = x(t) with
t = mini |ti − s| the closest time to s. We denote this mapping for the normal transversal
system by GN .

When we discuss MVN distributions on a transversal sections Sg(t) and give the covariance
matrix we are always doing this (unless otherwise stated) in an adapted coordinate system.
An adapted coordinate system at g(t), Cg(t), is one determined by a set of orthonormal basis
vectors e1(t), . . . , en(t) with e1(t) the unit normal vector to Sg(t) and the vectors e2(t), . . . , en(t)
forming an orthonormal basis of Sg(t).

2 Motivation

2.1 Exact simulations versus the LNA

We next motivate our methodological results with some observations regarding the dynamics
of oscillatory systems. We use the circadian clock system introduced above. Similar results for
the Brusselator can be found in the SI. We use the Gillespie algorithm to exactly simulate the
system and produce R = 3000 samples of stochastic trajectories (see figure 1) for a time-length
of 8.5×τ , where τ ≈ 26.98h is the period of the limit cycle. The system volume used is Ω = 300
imposing moderate to high levels of stochasticity. Results for system volumes Ω = 200, 500
and 1000 are also reported in the SI.
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Figure 1: Stochastic trajectories obtained from the Gillespie simulation algorithm. Two (out of
10) of the species are displayed (per mRNA (x-axis) and nuclear PER-TIM complex (y-axis)).
The volume size is Ω = 300. A subsample of 300 trajectories is displayed (R = 3000). The
black solid curve is the large volume, Ω→∞, limit cycle solution.

We use the Kolmogorov-Smirnov (KS) statistic to quantify comparisons between different
probability distributions. The KS statistic measures the distance between two scalar cumula-
tive distribution functions (cdf’s) and can be used to test the hypothesis that two distributions
are equal. The latter hypothesis can be rejected on the basis of the KS test only if the value
of the KS statistic is larger than a threshold level. In our examples the KS statistic is applied
to each of the scalar distributions for the individual species populations as a measure of how
close the multivariate distributions are.

We first compare the distribution P (X(t)|X(0) = x0) for the LNA and the Gillespie simu-
lated samples at a sequence of times t = τ, 2τ, . . . , 8τ and for an arbitrary (fixed) initial state
x0 ∈ γ. As we can see in figure 2, the LNA fits the Gillespie simulations relatively well in the
short run (t = τ), but as time progresses the KS distance increases substantially beyond the
threshold level. The LNA predictions spread along the tangental direction and therefore fail
to accurately reflect the Gillespie samples that have spread along the curved limit cycle.
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Figure 2: Comparison between LNA and exact simulations. (a) Samples obtained from the
Gillespie simulation algorithm (red crosses) and 0.05, 0.5, 0.95 contours of the LNA probability
density (black ellipsoids) at fixed times, t = τ, 2τ, . . . , 8τ (τ : minimal period), for the circadian
clock system. The limit cycle ODE solution is also displayed (black solid line). (b) KS distance
between the empirical distribution of Gillespie samples and LNA distribution of each species
(different colors, see legend) at the fixed times. The threshold level is also displayed (black
solid line).

2.2 Transversal distributions

Consider an exact simulation and a stochastic trajectory X(t) of an oscillatory system starting
from a point X(0) at time t0. If the system size is not too small, although there will be some
reversals, G(X(t)) will move around γ in the direction of the deterministic flow given by the

Ω → ∞ limit system. We are interested in the earliest intersection Q
(r)
x1 of this trajectory

with a given transversal section Sx1 to γ when G(X(t)) has done a prescribed number r of

revolutions around γ. Practically, in exact simulations, the intersection points Q
(r)
x1 , are derived

by interpolation between the last state before and the first state after the intersection (see SI
section S1.1).

The transversal distribution P (Q
(r)
x0 |X(0) = x0), r = 1, 2, . . . , describes the stochastic

behaviour of the system in the (n − 1)-dimensional space of system states with phase x0, i.e.
G(X(t)) = x0. As we can see in figure 3, these transversal distributions are approximately
normal and hardly distinguishable between different rounds which indicates a fast convergence
to a fixed, approximately normal transversal distribution (see also KS distances in SI figures
S18 and S19). The exact transversal distributions are also accurately approximated by the LNA
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transversal distributions which are analytically derived in later sections (see (6)). Therefore,
we see that, even though the full n-dimensional LNA distribution is not accurate, when we
restrict it to transversals it is effectively indistinguishable from that of exact simulations. This
restricted LNA distribution is multivariate normal.
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Figure 3: Distribution of oscillatory systems at transversal sections. (a) A single trajectory
(grey line) of Gillespie simulation algorithm and its intersections (crosses) to a transversal
section (grey cross) of the limit cycle (black line) projected on adapted coordinates e1 and e2.
(b) The exact empirical distribution (solid lines) and LNA distribution (dashed line) of the

(centered) intersections, κ(r) = Q
(r)
x0 − x0, projected on the first transversal direction e2 (c) KS

distances between exact empirical and LNA distribution of κ
(r)
k , r = 1, 2, . . . , 8, in the k-th

transversal coordinate, k = 2, 3, . . . , 10with k set in order of decreasing scale.

We also study the distribution of the times of intersection, T (r) = T
(r)
x0 , of the stochastic

trajectories with the transversal section Sx0 . As we can see in figure 5(a), they appear to
be approximately normally distributed with mean approximately rτ , but, crucially, as time
progresses, their variance grows linearly. This is a characteristic of free-running oscillators. For
entrained forced oscillators, the variance converges to a finite limit, but still may be sufficiently
large to cause inaccuracies.

This variability accumulation explains the failure of LNA in the long run. To elaborate
this further, let κ(t) =

√
Ω(X(t) − GN(X(t))) so that κ(t) is normal to γ at GN(X(t)) (see

figure 4). Consider the times t = t1, t2, . . . where X(t) meets the section Sx0 . Then the
above observation suggests that the distribution of the κ(ti) is approximately normal and is
independent of t providing t is not too small. Thus, while (κ(t)|GN(X(t)) = x0) has a long-
time stable distribution, the noise process used in the LNA, ξ(t) =

√
Ω(X(t)− g(t)), does not

have this property because

ξ(t) = κ(t) + Ω1/2(g(t)−GN(X(t))),

and the variance of g(t)−GN(X(t)) grows linearly with time. This implies the result in figure
5(c)). Therefore, long-term predictions of ξ(t) have large variance due to the Ω1/2(g(t) −
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GN(X(t))) term, but long-term prediction of κ(t) conditional on the phase of X(t) does not
suffer from this. Moreover, since the LNA has a multivariate normal distribution for X(t) and
since the dominant variance σ2

1 will have size which is O(t), when σ1 is larger than the diameter
of the limit cycle, it is clear that the LNA will be inaccurate for large times.

X(ti)

1

Ω−1/2ξ(ti)

1

g(ti)

1

Ω−1/2κ(ti)

1

g(t′i) = G(X(ti))

1

Figure 4: This illustrates the relation between X(ti) = Y (ti)/Ω, g(t′i), ξ(ti) and κ(ti). To each
X(ti) we can associate the point on γ, G(X(ti)) and the vector κ(ti)/

√
Ω from this point to

X(ti). However, G(X(ti)) = g(t′i) for some 0 ≤ t′i < τ and thus to X(ti) we can also associate
the pair (g(t′i), κ(ti)).

This understanding of the nature of the LNA’s failure along with the observation that the
corrected return times, Ť

(r)
x0 = T

(r)
x0 − T

(r−1)
x0 , have a stable normal distribution across different

rounds (figure 5), motivates the following simulation algorithm to approximate exact solutions.
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Figure 5: Times of intersection to a transversal section. Empirical distribution of (a) the

intersection times, T
(r)
x0 , and (b) the corrected intersection times, Ť

(r)
x0 and their empirical

variance (c) for samples derived by Gillespie simulation of the circadian clock system.
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3 Results

3.1 pcLNA Simulation Algorithm

Our simulation algorithm is based on that developed in [6] for the Brusselator system. The
approach is to use resetting of g(t) to GN(X(t)) to cope with the growth in the variance of
g(t) − GN(X(t)) and keep the LNA fluctuation in the transversal direction. The fact that
g(t)−GN(X(t)) is expected to be approximately normal enables us to do this in a well-defined
way.

//

Figure 6: This illustrates the main step in the pcLNA algorithm. The solid horizontal bars
below the horizontal axis are all of length δτ . The black arrows show κ̂(ti) = Ω−1ξ(ti) and the
grey arrows κ̂(ti) = Ω−1κ(ti).

The pcLNA simulation algorithm is described next. Its main step is illustrated in figure 6.
1. Choose a time-step size δτ > 0.
2. Input initial condition κ(t0) and X(t0) = g(t0) + Ω−1/2κ(t0).
3. For iteration i = 1, 2, . . .

(a) sample ξ(ti−1 + δτ) from MVN(Ciκ(ti−1), Vi);
(b) compute Xi = g(ti−1 + δτ) + Ω−1/2ξ(ti−1 + δτ);
(c) set ti to be such that GN(Xi) = g(ti) and κ(ti) = Ω1/2(Xi − g(ti)).

In the for loop Ci = C(ti−1, ti−1 + δτ) and Vi = V (ti−1, ti−1 + δτ).
Stochastic trajectories of N = 3000 samples of the circadian clock system observed over a

period of time-length 8.5τ are derived using the pcLNA simulation algorithm (see SI figure 2).
The distribution P (X(t)|X(0) = x0) derived by the pcLNA simulation algorithm is compared
with Gillespie algorithm exact simulations and the standard LNA in figure 7. As we can see,
the pcLNA accurately approximates the Gillespie samples for all the considered time points,
substantially improving the performance of standard LNA. Similar results are obtained for
volume sizes Ω = 200, 500 and 1000 (see SI figures 24, 25).
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Figure 7: Comparison between Gillespie and pcLNA simulated distribution. (a) Samples
obtained from the Gillespie simulation algorithm (red crosses) and the pcLNA simulation
algorithm (blue crosses) and 0.05, 0.5, 0.95 contours of the LNA distribution (black ellipsoids)
at fixed times, t = τ, 2τ, . . . , 8τ (τ : minimal period), for the circadian clock system. (b) KS
statistics of the distance between the empirical distribution of Gillespie and pcLNA samples
of each species (different colors, see legend) at the fixed times. The threshold level is also
displayed (black solid line).

To understand why this algorithm is fast it is important to note that there is an efficient
method to compute and store a subset of the matrices C(s, t) for this system and the given
parameters once and for all so that all such matrices can be computed extremely quickly from
this subset. This subset is computed up-front. A Matlab routine to do this is contained
with the package PeTSSy which is freely available.1. Thus, the only extra computational cost
compared to the standard LNA is due to the derivation of G(X) which can be practically
performed through an optimization procedure (e.g. Newton-Raphson algorithm). In the above
simulation, phase correction is performed every 6 hours (τ/6 ≈ 4.5 corrections in every round
of the limit cycle). The effect of less frequent correction is studied in the SI section S2.5.1.

3.2 Calculation and convergence of transversal distributions

The stochastic behaviour of oscillatory systems at specific phase-states such as maxima or
minima of pivotal species is of paramount importance in analysing the stochastic sensitivities
of the system, its information geometry and various other aspects. The transversal distributions
which provide the necessary information for such analysis are generally intractable. However,

1http://www2.warwick.ac.uk/fac/sci/systemsbiology/research/software/
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as we showed in figure 3 (see also SI figure S4), transversal distributions can be accurately
approximated by the LNA. In the following, we compute these LNA transversal distributions,
which are multivariate normal and have parameters in a reasonably simple form, and show
that they converge to a fixed point under fairly general conditions.

Consider q phase states of the limit cycle xi = g(ti), i = 1, . . . , q on γ where 0 ≤ t1 <
t2 < . . . < tq < τ and associated transversals Sxi which are not necessarily normal and assume
that these are part of a transversal system Sg(t) so that the mapping G is defined. If X(t) is a
stochastic trajectory, we consider how it meets the transversal sections at the xi as t increases
as described above. Suppose it first meets Sxi in Q

(1)
xi for i = 1, . . . , q. If i < q then we let

Q
(k)
xi+1 denote the first point in Sxi+1

that X meets after it leaves Q
(k)
xi . If i = q then the next

transversal it meets is Sx0 and the intersection point is Q
(k+1)
x0 . In this way we derive a sequence

of points Q = Q
(1)
x0 , . . . , Q

(1)
xq , Q

(2)
x0 , . . . , Q

(2)
xq , . . . , Q

(m)
x0 , . . . , Q

(m)
xq .

Figure 8: This illustrates the sequence Q in two-dimensions. The stochastic trajectory X(t)
(grey dotted line) initiated from x0 intersects the transversal sections Sx1 ,Sx3 and Sx3 (grey

dashed lines) of the limit cycle (black solid line) for the first time at Q
(1)
x1 , Q

(1)
x2 and Q

(1)
x3 ,

respectively, and then Sx1 ,Sx3 and Sx3 at Q
(2)
x1 , Q

(2)
x2 and Q

(2)
x3 , respectively, for the second time.

We shall be interested in the distribution

P (Q|X(t0)) = P (Q(1)
x0
, . . . , Q(m)

xq |X(t0)) (6)

and will derive an analytic expression for it.
For this calculation we need to introduce some new matrices. At each of the points xk we

fix a coordinate system Cxk defined by a set of orthonormal vectors e1(xk), . . . , en(xk) where
e1(xk) is normal to the hyperplane Sxk . We write coordinates in Cxk in the form (y1,y2) where
y1 ∈ R and y2 ∈ Rn−1 and y2 are coordinates on Sx0 . The matrices C(s, t) and V (s, t) in this
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coordinate systems are

C(s, t) =

 C11 C12

C21 C22

 and V (s, t) =

 V11 V12

V21 V22

 ,

where V12 = V T
21. Let Č(s, t) = C22 − V21V −111 C12 and V̌ (s, t) = V22 − V21V −111 V12. Note that

V̌ (s, t) is the Schur complement of V22 in V (s, t) so if (y1,y2) is MVN with covariance V (s, t)
then the distribution of y2 conditional on y1 having a specific value has covariance V̌ (s, t).

Firstly, we consider P (Q
(l)
xj |Q

(k)
xi ) where either k < l or k = l and i < j. We show in the

Section S1.3 of the SI that this is very well approximated by a MVN distribution with mean
ČjQ

(k)
xi and covariance V̌j where

Čj = Č(tj, tj − ti + (l −m)τ), V̌j = V̌ (tj, tj − ti + (l −m)τ).

We also prove that as l−k →∞, P (Q
(l)
xj |Q

(k)
xi ) converges to a limit Pxj which is independent of

Q
(k)
xi and does this exponentially fast in the sense that the mean and covariance of P (Q

(l)
xj |Q

(k)
xi )

converge exponentially fast to their limiting values.

Fixed point distribution. The special case where the transitions are returns to the same
transversal sections (i = j) is especially interesting. Clearly, P (Q

(k)
xi |Q

(1)
xi ) converges to the

same limit Pxi as above and this distribution is a fixed point in the sense that the distribution

P (Q
(k+1)
xi |Q(k)

xi ∼ Pxi) = Pxi . We therefore denote it P
(fp)
xi . Because of the aforementioned

convergence the transversal distribution has the following important property

lim
k→∞

P (Q(k)
xi
|X(t0)) = P (fp)

xi

for any initial condition X(t0). That is, the distribution of the system at any transversal section
converges to a limiting multivariate normal distribution. For the circadian clock the conver-
gence is fast: the L2-norm of the difference between the covariance matrices of the limiting
distribution, P

(fp)
x0 and P (Q

(r)
x0 |X(t0)) for r = 1, 2, . . . , 5 is respectively (1250, 70, 3.9, 0.2) · 10−3

.
This distribution can be easily calculated numerically. To derive its mean and covariance

matrix one solves the equations m = Čim and S = ČiSČi
T

+ V̌i, respectively. The latter can
be solved by using the fact that vec(ČiSČ

T
i ) = (Či ⊗ Či)vec(S) which implies that vec(S) =

(I − Či ⊗ Či)−1vec(V̌i). Here vec(S) is the vector obtained by stacking all the colums of S on
top of each other and ⊗ is the Kronecker or tensor product.

3.3 The distribution P (Q|X(t0))

We now consider the distribution of the sequence of transitions between transversal section
of different phases P (Q|X(t0)). We relabel Q

(1)
x0 , . . . , Q

(1)
xq , . . . , Q

(m)
x0 , . . . , Q

(m)
xq as Q1, . . . , QN
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where N = m(q+ 1). To each Q
(k)
xi there is a corresponding time ti + (k− 1)τ . We label these

times in increasing order as T1, . . . TN so that Tn corresponds to Qn. Let T0 = t0. With this
notation if follows from the above that P (Qi+1|Qi) is approximately MVN with mean ČiQi and
covariance V̌i where Či = Č(Ti, Ti+1) and V̌i = V̌ (Ti, Ti+1). Consequently, if Qi has covariance
matrix Ši then Qi+1 has covariance matrix given by Si+1 = V̌i + ČiSiČ

T
i . As explained in

Section S4 of the SI, it follows that P (Q|Q0) is MVN with mean

µ = (Č0Q0, . . . , ČN−1 · · · Č0Q0)

and covariance Σ where the precision matrix Σ−1 is a tridiagonal matrix whose only non-zero
entries are the main diagonal with matrix entries Σi,i = ČT

i V̌
−1
i Či + V̌ −1i−1 if 1 ≤ i < N and

ΣN,N = V̌ −1N−1, the upper diagonal with entries −ČT
i V̌
−1
i and the lower diagonal with entries

−V̌ −1i Či, i = 1, . . . , N − 1.

3.4 Fisher Information

Fisher Information quantifies the information that an observable random variable carries about
an unknown parameter θ. If P (X, θ) is a probability distribution depending on parameters θ
the Fisher Information Matrix (FIM) I = IP has entries

Iij = E

[
∂`

∂θi

∂`

∂θi

]
= −E

[
∂2`(θ;X)

∂θiθj

]
(7)

where ` = logP , and θi and θj are the i-th and j-th components of the parameter θ. If P is
MVN with mean and covariance µ = µ(θ) and Σ = Σ(θ) then

Iij =
∂µ

∂θi

T

Σ−1
∂µ

∂θj
+

1

2
tr

(
Σ−1

∂Σ

∂θi
Σ−1

∂Σ

∂θj

)
.

The FIM measures the sensitivity of P to a change in parameters in the sense that

DKL(P (·, θ + δθ), P (·, θ)) =
1

2
δθT Iδθ + O(||δθ||3)

where DKL is the Kullback-Leibler divergence. The significance of the FIM for sensitivity and
experimental design follows from its role in (7) as an approximation to the Hessian of the
log-likelihood function at a maximum. Assuming non-degeneracy, if θ∗ is a parameter value
of maximum likelihood there is a s× s orthogonal matrix U such that, in the new parameters
θ′ = U · (θ − θ∗),

`(θ) ≈ `(θ∗)−
∑
i

σ2
i θ
′
i
2
.

for θ near θ∗. From these facts it follows that the σ2
i are the eigenvalues of the FIM and that

the matrix U diagonalises it.
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If we assume that the σi are ordered so that σ2
1 ≥ · · · ≥ σ2

s then it follows that near
the maximum the likelihood is most sensitive when θ′1 is varied and least sensitive when θ′s
is. Moreover, σi is a measure of this sensitivity. Since θ′i =

∑
j Uij(θj − θ∗j ) we can regard

Sij = σiUij as the contribution of the parameter θj to varying θ′i and thus S2
j =

∑
i S

2
ij can be

regarded as a measure of the sensitivity of the system to θj. It is sometimes appropriate to

normalise this and instead consider Ŝj = S2
j /
∑

i S
2
i .

The theory of optimal experimental design is based on the idea of trying to make the
σi decrease as slowly as possible so that the likelihood is as peaked as possible around the
maximum, thus maximising the information content of the experimental sampling methods.
Various criteria have been proposed such as D-optimality which maximises the determinant
of the FIM and A-optimality that minimise the trace of the inverse of the FIM [5]. Diagonal
elements of the inverse of FIM constitute a lower-bound for variance of any unbiased estimator
of elements of θ (Cramer-Rao inequality). However, for the systems we consider the σi typically
decrease very fast and there are many of them. Thus, in general, criteria based on a single
number are less likely to be of less use than consideration of the set of σi as a whole.

Calculation of the FIM for stochastic systems using the LNA has been carried out in
[11] but only for small systems and not for long times. It is notable that the pcLNA en-
ables one to do this for large systems and large times. As an example, we analyse the
stochastic behavior of the circadian clock based on the limit distribution P (Q|Q0) when

Q = Q
(1)
x0 , Q

(1)
x1 , Q

(2)
x0 , Q

(2)
x1 , . . . , Q

(m)
x0 , Q

(m)
x1 where x0 = g(t0) and x1 = g(t1) are chosen so that t0

is the time of the peak of per mRNA MP and t1 the peak of the nuclear complex of PER and
TIM proteins CN . We compute the Fisher Information of the latter distribution which has a
closed form. As we can see in figure 9(a) the eigenvalues of the Fisher Information matrix decay
exponentially, with a sharp decline followed by a slower decrease. This reveals that the influ-
ential directions in the parameter space of the system are much less than its total dimension.
Furthermore, a few parameters appear to be most influential. The eigenvectors associated
with the three largest eigenvalues of Fisher Information matrix have large entries only for the
parameters kdn (PER-TIM complex nuclear degradation), kd (per mRNA linear degradation),
k2 (PER-TIM complex transportation to cytosol), vst (tim mRNA transcription), vmt (tim
mRNA degradation), vsp (per mRNA transcription) and vmp (per mRNA degradation).
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Figure 9: Fisher Information Analysis of the circadian clock system. (a) The logarithm of the
eigenvalues of the Fisher Information Matrix (FIM). (b) The entries/weights of the eigenvectors
corresponding to the 3 largest eigenvalues of FIM. Large weights are marked with red color,
moderate to large weights with orange color.

The exponential decrease of the eigenvalues is typical of tightly coupled deterministic sys-
tems [12, 13, 14, 15, 16, 17, 18], but has to our knowledge not been demonstrated before for
stochastic systems. It has important consequences. For example, it tells us that only a few
parameters can be estimated efficiently from time-series data unless the system is perturbed
in some way to get complementary data and that there will be identifiability problems that
can be analysed using the FIM. It also can be used to design experiments that will give data
so that the FIM of the combined models (old and new experimental data) will alleviate the
decline of the eigenvalues.

3.5 Calculating likelihoods via a pcLNA Kalman Filter

Although there is no elegant formula for P (X|X(t0)) = P (X(t1), . . . , X(tm)|X(t0)) similar to
P (Q|X(t0)) above, we can efficiently calculate it. To do this we derive a Kalman Filter for the
pcLNA that is a modification of the Kalman Filter associated with the LNA [10]. This can
be used to compute the likelihood function L(θ; X̂) of the system parameters θ with respect

to observations of the species concentrations, X̂ =
(
X̂(t0), X̂(t1), . . . , X̂(tN)

)
recorded at N

times t0, t1, . . . , tN . This is slightly more general than just calculating P (X|X(t0)) because we
allow for a measurement equation. The Kalman filter can also be used for forward prediction.

We assume the measurement equation,

X̂(t) = BX(t) + ε, (8)
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relating the observations X̂(t) to the state variables, X(t). Here B is a transformation ma-
trix (often simply removing unobserved species or introducing unknown scalings) and ε =
(ε1, . . . , εn) ∼MVN(0,Σε) the observational error. The pcLNA likelihood can be decomposed
as

L
(
θ; X̂

)
= P

(
X̂(t0); θ

) n∏
i=1

P
(
X̂(ti)|X̂(ti−1); θ

)
Let m(t) and S(t) be the mean and covariance matrix of the stochastic process ξ(t) =√

Ω(X(t)− g(t)) under the LNA. Then

µ(t) = g(t) + Ω−1/2m(t), Σ(t) = Ω−1S(t) (9)

are the mean and covariance matrix of X(t) and

µ̂(t) = Bµ(t), Σ̂(t) = BΣ(t)BT + Σε (10)

the mean and covariance of X̂(t). Denote ê(t) = X̂(t) − µ̂(t) the prediction error at time t.
The posterior estimates2 of (µ(t),Σ(t)) derived using Bayes rule are

µ∗(t) = µ(t) + Σ(t)BT Σ̂(t)−1ê(t), Σ∗(t) = Σ(t)− Σ(t)BT Σ̂(t)−1BΣ(t). (11)

The pcLNA Kalman Filter algorithm uses the following recursive algorithm for computing

the terms in L
(
θ; X̂

)
.

1. Input
(
X̂(t0), X̂(t1), . . . , X̂(tN)

)
, µ(t0), Σ(t0), B and Σε.

2. Compute P
(
X̂(t0); θ

)
from MVN(µ̂(t0), Σ̂(t0)) using equation(10).

3. For iteration i = 1, 2, . . .
(a) Set (X(ti−1)|X̂(ti−1)) ∼MVN(µ∗(ti−1),Σ∗(ti−1)) using equation (11);
(b) Derive g(t′i−1) = G(µ∗(ti−1)) and (κ(t′i−1)|X̂(ti−1)) ∼ MVN(m∗(t′i−1), S

∗(t′i−1)) us-
ing equation (12);

(c) Set (X(ti)|X̂(ti−1)) ∼MVN(µ(ti),Σ(ti)) using equations (13) and (14);

(d) Compute P
(
X̂(ti)|X̂(ti−1); θ

)
∼MVN(µ̂(ti), Σ̂(ti)).

In the for loop, the posterior mean and covariance matrix of the corrected stochastic process
κ are

m∗(t′i−1) = Ω1/2(µ∗(ti−1)−g(t′i−1)), S
∗(t′i−1) = ΩE2(t

′
i−1)

(
Σ∗22(t

′
i−1)−

Σ∗21(t
′
i−1)Σ

∗
12(t

′
i−1)

Σ∗11(t
′
i−1)

)
E2(t

′
i−1)

T

(12)
where the matrix E2(t) = [e2(t) . . . en(t)], the projections (in cartesian coordinates)

Σ∗11(t) = e1(t)
TΣ∗(t)e1(t), Σ∗12(t) = e1(t)

TΣ∗(t)E2(t),

2conditional on the observed measurement at the current time
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Σ∗21(t) = Σ∗12(t)
T , Σ∗22(t) = E2(t)

TΣ∗(t)E2(t)

and the prior3 mean and covariance matrix of the species population X at time ti,

µ(ti) = g(ti) + Ω−1/2m(ti), Σ(ti) = Ω−1S(ti), (13)

with
m(ti) = C(t′i−1, ti)m

∗(t′i−1), S(ti) = V (t′i−1, ti) (14)

the prior mean and covariance of the stochastic process ξ.
Equation (12) is derived by restricting the posterior distribution of the noise process on the

transversal section Sg(t′i−1)
normal to e1(t

′
i−1) using the Schur complement. If this correction is

omitted, step 3(b) of the above algorithm is replaced by the standard LNA step,

(ξ(ti−1)|X̂(ti−1)) ∼ N(m∗(ti−1), S
∗(ti−1))

where
m∗(ti−1) =

√
Ω(µ∗(ti−1)− g(ti−1)), S∗(ti−1) = ΩΣ∗(ti−1).

4 Discussion

We present a comprehensive treatment of stochastic modelling for large stochastic oscillatory
systems. Practical algorithms for fast long-term simulation and likelihood-based statistical
inference are provided along with the essential tools for a more analytical study of such systems.

There is considerable scope for future work in various directions. We expect that these
results can be extended to a broader class of systems including those that are chaotic in the
Ω→∞ limit. Our approach should provide the opportunity to develop new methodology for
parameter estimation, likelihood-based inference and experimental design in such systems. Fi-
nally, there is currently much interest in information transfer and decision-making in signaling
systems and our methods provide new tools with which to tackle problems in this area.

If system biologists are to reliably use complex stochastic models to provide robust un-
derstanding it is crucial that there are analytical tools to enable a rigorous assessment of the
quality and selection of these models and their fit to current biological knowledge and data.
Our aim in this paper is to contribute to that but the results should be of much broader
interest.
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3before the observation of the measurement at the current time
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[8] D.A. Potoyan and P.G. Wolynes, On the dephasing of genetic oscillators., Proceedings of
the National Academy of Sciences of the United States of America 111 (2014), pp. 2391-6.

[9] P. Hartman, Ordinary differential equations, New York: Wiley (1964).
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