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Abstract

Pattern formation during development is a highly dynamic process. In spite of this, few
experimental and modelling approaches take into account the explicit time-dependence
of the rules governing regulatory systems. We address this problem by studying
dynamic morphogen interpretation by the gap gene network in Drosophila melanogaster.
Gap genes are involved in segment determination during early embryogenesis. They are
activated by maternal morphogen gradients encoded by bicoid (bcd) and caudal (cad).
These gradients decay at the same time-scale as the establishment of the
antero-posterior gap gene pattern. We use a reverse-engineering approach, based on
data-driven regulatory models called gene circuits, to isolate and characterise the
explicitly time-dependent effects of changing morphogen concentrations on gap gene
regulation. To achieve this, we simulate the system in the presence and absence of
dynamic gradient decay. Comparison between these simulations reveals that maternal
morphogen decay controls the timing and limits the rate of gap gene expression. In the
anterior of the embyro, it affects peak expression and leads to the establishment of
smooth spatial boundaries between gap domains. In the posterior of the embryo, it
causes a progressive slow-down in the rate of gap domain shifts, which is necessary to
correctly position domain boundaries and to stabilise the spatial gap gene expression
pattern. We use a newly developed method for the analysis of transient dynamics in
non-autonomous (time-variable) systems to understand the regulatory causes of these
effects. By providing a rigorous mechanistic explanation for the role of maternal
gradient decay in gap gene regulation, our study demonstrates that such analyses are
feasible and reveal important aspects of dynamic gene regulation which would have been
missed by a traditional steady-state approach. More generally, it highlights the
importance of transient dynamics for understanding complex regulatory processes in
development.
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Author Summary

Animal development is a highly dynamic process. Biochemical or environmental signals
can cause the rules that shape it to change over time. We know little about the effects
of such changes. For the sake of simplicity, we usually leave them out of our models and
experimental assays. Here, we do exactly the opposite. We characterise precisely those
aspects of pattern formation caused by changing signalling inputs to a gene regulatory
network, the gap gene system of Drosophila melanogaster. Gap genes are involved in
determining the body segments of flies and other insects during early development.
Gradients of maternal morphogens activate the expression of the gap genes. These
gradients are highly dynamic themselves, as they decay while being read out. We show
that this decay controls the peak concentration of gap gene products, produces smooth
boundaries of gene expression, and slows down the observed positional shifts of gap
domains in the posterior of the embryo, thereby stabilising the spatial pattern. Our
analysis demonstrates that the dynamics of gene regulation not only affect the timing,
but also the positioning of gene expression. This suggests that we must pay closer
attention to transient dynamic aspects of development than is currently the case.

Introduction 1

Biological systems depend on time. Like everything else that persists for more than an 2

instant, there is a temporal dimension to their existence. This much is obvious. What is 3

less obvious, however, is the active role that time plays in altering the rules governing 4

biological processes. For instance, fluctuating environmental conditions modify the 5

selective pressures that drive adaptive evolutionary change [1, 3–5], time-dependent 6

inductive signals or environmental cues trigger and remodel developmental 7

pathways [6, 7], and dynamic morphogen gradients influence patterning, not only across 8

space but also through time [8–16]. In spite of this, many current attempts at 9

understanding biological processes neglect important aspects of this temporal 10

dimension [17]. For practical reasons, experimental studies often glance over the 11

detailed dynamics of a process, and focus on its end product or output pattern instead. 12

Similarly, modelling studies frequently restrict themselves to a small-enough time 13

window allowing them to ignore temporal changes in the rules governing the system. 14

Accuracy is sacrificed and the scope of the investigation limited for the sake of 15

simplicity and tractability. Although reasonable, and often even necessary, such 16

simplifications can lead us to miss important aspects of biological regulatory dynamics. 17

We set out to tackle explicitly time-dependent aspects of morphogen interpretation 18

for pattern formation during animal development. As a case study, we use the gap gene 19

network, which is involved in segment determination during the blastoderm stage of 20

early development in the vinegar fly Drosophila melanogaster [18]. Activated by 21

long-range gradients of maternal morphogens Bicoid (Bcd) and Caudal (Cad), the trunk 22

gap genes hunchback (hb), Krüppel (Kr), giant (gt), and knirps (kni) become expressed 23

in broad overlapping domains along the antero-posterior (A–P) axis of the embryo 24

(Fig. 1). The establishment of these domains is fast and dynamic. Subsequently, gap 25

gene domain boundaries sharpen and domains in the posterior region of the embryo 26

shift anteriorly over time (Fig. 1). Towards the end of the blastoderm stage, gap gene 27

production rates drop and domain shifts slow down. The blastoderm stage ends with 28

the onset of gastrulation. 29
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Figure 1. Dynamics of gap gene expression.(A) Space-time plot of protein
expression data for the trunk gap genes during the late blastoderm stage in
D. melanogaster. Coloured areas demarcate regions with relative protein concentration
above half-maximum value. Time flows downwards along the y-axis. (B) Cross-sections
of gene expression in (A) at cycle C13 and time classes C14A-T4 and T8 (dashed arrows
in (A)). Y-axes indicate relative protein concentration in arbitrary units (au). In both
panels, x-axes represent %A–P position, where 0% is the anterior pole. Hunchback (Hb)
is shown in yellow, Krüppel (Kr) in green, Knirps (Kni) in red, and Giant (Gt) in blue.
C13: cleavage cycle 13; C14A-T1–8: cleavage cycle 14A, time classes 1–8 (see Models
and Methods for details).

The gap gene system is one of the most thoroughly studied developmental gene 30

regulatory networks today. For our particular purposes, we take advantage of the fact 31

that it has been extensively reverse-engineered using data-driven modelling. This 32

approach is based on fitting dynamical models of gap gene regulation, called gene 33

circuits, to quantitative spatio-temporal gene expression data [19–27,29,34,35]. 34

Dynamical models capture how a given regulatory process unfolds over time. They 35

are frequently formulated in terms of ordinary differential equations (ODEs) with 36

parameter values that remain constant over time. Such equations represent an 37

autonomous dynamical system. Central to the analysis of such dynamical systems is the 38

concept of phase space and its associated features (S1 Figure A). Phase (or state) space 39

is an abstract space that contains all possible states of a system. Its axes are defined by 40

the state variables, which in our case represent the concentrations of transcription 41

factors encoded by the gap genes. Trajectories through phase space describe how a 42

system’s state changes as time progresses. The trajectories of a gap gene circuit 43

describe how transcription factor concentrations change over time. All trajectories taken 44

together constitute the flow of the system. This flow is shaped by the regulatory 45

structure of the underlying network—the type (activation/repression) and strength of 46

interactions between the constituent factors—which is given by the system’s parameters. 47

Since these parameters are constant over time in an autonomous system, the 48

trajectories are fully determined given a specific set of initial conditions. Once the 49

system’s variables no longer change, it has reached a steady state. Steady states can be 50

stable—such as attractors with converging trajectories from all directions defining a 51

basin of attraction—or unstable—such as saddles; where trajectories converge only 52

along certain directions and diverge along others. The type and arrangement of steady 53

states, and their associated basins of attraction define the phase portrait of the system 54

(S1 Figure A). There exist powerful analytical tools to analyse and understand the 55

phase portrait and the range of dynamic behaviours determined by it. Geometrical 56

analysis of the phase portrait enables us to build up a rich qualitative understanding of 57

the dynamics of non-linear autonomous systems without solving the underlying 58

equations analytically [36]. 59
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The application of dynamical systems concepts and phase space analysis to the 60

study of cellular and developmental processes has a long history (see [37–39] for recent 61

reviews). In particular, it has been successfully applied to the study of the gap gene 62

system. Manu and colleagues [22,23,40] examined the dynamics and robustness of gap 63

gene regulation in D. melanogaster using diffusion-less gene circuits fit to quantitative 64

expression data. These models have a four-dimensional phase space, where the axes 65

represent the concentrations of transcription factors encoded by the trunk gap genes hb, 66

Kr, gt, and kni. The analysis of these phase portraits yields a rigorous understanding of 67

the patterning capabilities of the system. 68

The analysis by Manu et al. [23] corroborated and expanded upon earlier genetic 69

evidence [41] indicating that the regulatory dynamics responsible for domain boundary 70

placement in the anterior versus the posterior of the embryo are very different. In the 71

anterior, spatial boundaries of gap gene expression domains are positioned statically, 72

meaning that they remain in place over time [42]. Stationary boundaries are regulated 73

in two distinct ways [23]. (1) In the case of the posterior boundary of the anterior gt 74

domain, different nuclei along the A–P axis have equivalent attractors positioned at 75

different locations in phase space (shift in attractor position); (2) in the case of the 76

posterior boundary of the anterior hb domain, system trajectories fall into different 77

basins of attraction (attractor selection) (Fig. 2A). In both of these cases, patterning is 78

largely governed by the position of attractors in a multi-stable phase space. 79

In contrast, gap domain boundaries in the posterior of the embryo shift anteriorly 80

over time [25,42]. In this region, the system always remains far from steady state, and 81

the dynamics of gene expression are transient. Therefore, trajectories here are fairly 82

independent of precise attractor positions. The model by Manu et al. [23] shows that 83

posterior gap gene expression is governed by an unstable manifold (Fig. 2A). An 84

unstable manifold is the trajectory connecting a saddle to an attractor (S1 Figure A). 85

The authors demonstrate that this manifold has canalising properties since it 86

compresses many incoming neighbouring trajectories into an increasingly smaller 87

sub-volume of phase space over time [23]. This explains the observed robustness of 88

posterior patterning. Moreover, the geometry of the unstable manifold provides an 89

explanation for the ordered succession of gap genes that become expressed in each 90

nucleus of the posterior region. Such an ordered temporal sequence of gene expression, 91

if arranged appropriately along the A–P axis, creates the observed kinematic anterior 92

shifts of gap domains over time (Fig. 2A). 93

Despite its explanatory power, the analysis by Manu et al. [23] is limited in an 94

important way. In order to simplify phase space analysis, the authors implement 95

simplified dynamics of maternal morphogens Bcd and Cad in their model (Fig. 2A). 96

They use a time-invariant exponential approximation to simulate the Bcd gradient and 97

Cad is assumed to reach a steady-state profile about 20–30 minutes before 98

gastrulation [22, 23]. This steady-state profile is used for model analysis. (Based on this, 99

we will refer to this formulation as the static-Bcd gene circuit model in what follows). 100

Although reasonable, these simplifications affect the accuracy of the model, since Bcd 101

and Cad have their own expression dynamics on a similar time scale as gap proteins. 102

The Bcd gradient decays and Cad clears from much of the posterior trunk region 103

towards the end of the blastoderm stage (Fig. 2B) [42]. This means that the 104

autonomous analysis of the static-Bcd model is not well suited to investigate the 105

dynamic interpretation of morphogen gradients. In particular, assuming autonomy 106

makes it impossible to isolate and study the explicitly time-dependent effects of 107

changing gradient concentrations on gap gene regulation and pattern formation. 108

For this reason, we consider the dynamics of maternal morphogens explicitly in our 109

model. We have obtained gap gene circuits that incorporate realistic time-variable 110

maternal gradients of Bcd and Cad (Fig. 2B) [26]. These gradients are implemented as 111
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external inputs to gap gene regulation (see Models and Methods section). They are not 112

influenced by any of the state variables and, thus, are parameters of the system. This 113

means that our gap gene circuits become fully non-autonomous [54], since certain 114

parameter values now change over time. While non-autonomous equations are not 115

significantly more difficult to formulate or simulate than autonomous ones, phase space 116

analysis is far from trivial. As model parameters change, so does the geometry of the 117

phase portrait, and consequently system trajectories are actively shaped by this 118

time-dependence. Separatrices and attractors can change their position (geometrical 119

change), and steady states can be created and annihilated through bifurcation events 120

(topological change) (S1 Figure B). In autonomous systems, bifurcations can only occur 121

along the spatial axis of the model. In non-autonomous systems, they also occur in time, 122

implying that trajectories can switch from one basin of attraction to another during a 123

simulation run. We can think of time-variable phase portraits as embedded in parameter 124

space. We call the combination of phase and parameter space the configuration space of 125

the system. The configuration space on non-autonomous models hence encodes a much 126

richer repertoire of dynamical mechanisms of pattern formation than autonomous phase 127

space alone. This can complicate analysis and interpretation of the system considerably. 128
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Figure 2. Static-Bcd versus non-autonomous gap gene patterning
mechanisms. (A) Summary of the phase space analysis of the Static-Bcd gap gene
circuit in D. melanogaster by Manu et. al. [23]. An exponential function fit to the Bcd
profile at cycle C13 was used to calculate trajectories and phase portraits. All Cad
profiles until time class T6 were considered for simulating trajectories, but phase
portraits were calculated using the profile at T6 only. This gene circuit displays the
following mechanisms for boundary formation: patterning between 35–51% A–P
position takes place in a multi-stable regime close to steady state. The Gt boundary is
established as the relevant attractor moves from high to low Gt concentration in more
posterior nuclei. The Hb-Kr interface forms as the maternal Hb gradient places more
anterior nuclei in the basin of an attractor with high Hb concentration, and more
posterior nuclei in the basin of an attractor at high Kr concentration. Between 51 and
53% A–P position a saddle-node bifurcation takes place, and the dynamics become
transient in nuclei posterior of 52%. These nuclei are all in the basin of the same
attractor and approach it by first converging towards an unstable manifold. Anterior
shifts in these posterior gap gene domains emerge from a coordinated succession of
trajectories in more posterior nuclei approaching the unstable manifold. See [23] for
details. (B) In the non-autonomous gap gene circuit analysed here, Bcd and Cad
gradient profiles are included for every time point. They are used to calculate
trajectories of the system and instantaneous phase portraits as discussed in the main
text. Plots in (A) and (B) show % A–P position along the x-axes, and protein
concentrations (in arbitrary units, au) along the y-axes as in Fig.1B).
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Using a simple model of a genetic toggle switch, we have established a methodology 129

for the characterisation of transient dynamics in non-autonomous systems (S1 130

Figure B), based on the analysis of instantaneous phase portraits [43,45]. Such portraits 131

are generated by fixing the values of system parameters starting at a given point in 132

time, and then determining the geometrical arrangement of saddles, attractors, and 133

their basins under these “frozen” conditions. The overall non-autonomous trajectory of 134

the system is given by a series of instantaneous phase portraits over time. With 135

sufficiently high temporal resolution, this method yields an accurate picture of the 136

non-autonomous mechanisms of pattern formation implemented by the system. These 137

mechanisms can be classified into four broad categories [43]: (1) transitions of the 138

system from one steady state to another, (2) pursuit of a moving attractor within a 139

basin of attraction, (3) geometrical capture, where a trajectory crosses a separatrix, and 140

(4) topological capture, where a trajectory suddenly falls into a new basin of attraction 141

due to a preceding bifurcation event (S1 Figure B). This classification scheme can be 142

used to characterise the dynamical repertoire of non-autonomous models in a way 143

analogous to phase space analysis in autonomous dynamical systems. 144

In this paper, we present a detailed analysis of a non-autonomous gap gene circuit. 145

Specifically, we use the model to address the effect of non-autonomy, i. e. the effect of 146

time-variable maternal gradient concentrations, on gap gene regulation (Fig. 2). To 147

isolate explicitly time-dependent regulatory aspects, we simulate gap gene expression in 148

the presence and absence of maternal gradient decay. Using phase space analysis, we 149

then identify and characterise the dynamic regulatory mechanisms responsible for the 150

observed differences between the two simulations. Our analysis reveals that maternal 151

gradient decay limits the levels of gap gene expression and controls the dynamical 152

positioning of posterior domains by regulating the rate and timing of domain shifts in 153

the posterior of the embryo. 154

Models and Methods 155

Non-autonomous gene circuits 156

Non-autonomous gene circuit models are based on the connectionist formalism 157

introduced by Mjolsness et al. [21], modified to include time-variable external regulatory 158

inputs as previously described [26,34]. Gene circuits are hybrid models with discrete cell 159

divisions and continuous gene regulatory dynamics. The basic objects of the model 160

consist of nuclei arranged in a one-dimensional row along the A–P axis of the embryo, 161

covering the trunk region between 35 and 92% A–P position (where 0% is the anterior 162

pole). Models include the last two cleavage cycles of the blastoderm stage (C13 and 163

C14A) and end with the onset of gastrulation; C14A is further subdivided into eight 164

time classes of equal duration (T1–T8). At the end of C13, division occurs and the 165

number of nuclei doubles. 166

The state variables of the system consist of the concentration levels of proteins 167

produced by the trunk gap genes hb, Kr, gt, and kni. We denote the concentration of 168

gap protein a in nucleus i at time t by gai (t). Change in protein concentration over time 169

is given by the following set of ODEs: 170

d

dt
gai (t) = Raφ(uai (t)) +Da(n)

(
gai−1(t) + gai+1(t)− 2gai (t)

)
− λagai (t) (1)

where Ra, Da and λa are rates of protein production, diffusion, and decay, respectively. 171

Diffusion depends on the distance between neighbouring nuclei, which halves at nuclear 172

division; thus, Da depends on the number of preceding divisions n. φ is a sigmoid 173
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regulation-expression function representing coarse-grained kinetics of transcriptional 174

regulation. It is defined as follows: 175

φ(uai (t)) =
1

2

(
uai (t)√

(uai (t))2 + 1
+ 1

)
(2)

where 176

uai (t) =
∑
b∈G

W bagai (t) +
∑
m∈M

Emagmi (t) + ha (3)

with the set of trunk gap genes G = {hb,Kr , gt , kni}, and the set of external regulatory 177

inputs M = {Bcd,Cad,Tll,Hkb}. External regulator concentrations gmi are 178

interpolated from quantified spatio-temporal protein expression profiles [26, 42, 46]. The 179

dynamic nature of these profiles renders the parameter term representing external 180

regulatory inputs
∑

m∈M
Emagmi (t) time-dependent; explicit time-dependence of 181

parameters implies non-autonomy of the dynamical system (see Introduction and [54]). 182

Interconnectivity matrices W and E define interactions among gap genes, as well as 183

regulatory inputs from external inputs, respectively. The elements of these matrices, 184

wba and ema, are called regulatory weights. They encode the effect of regulator b or m 185

on target gene a. These weights may be positive (representing an activating regulatory 186

input), negative (representing repression), or near zero (representing the absence of a 187

regulatory interaction). ha is a threshold parameter that represents the activation state 188

of target gene a in the absence of any spatially and temporally specific regulatory input. 189

This term incorporates the regualtory influence of factors that are not expressed in a 190

spatially specific manner (for example, the pioneer factor Zelda [31]). Equation (1) 191

determines regulatory dynamics during interphase. In order to accurately implement 192

the non-instantaneous duration of the nuclear division between C13 and C14A, the 193

production rate Ra is set to zero during a mitotic phase, which immediately precedes 194

the instantaneous nuclear division. Mitotic schedule as in [26]. 195

Model fitting and selection 196

We determine the values for parameters Ra, λa, W , E, and ha using a 197

reverse-engineering approach [19,25, 26, 34]. For this purpose, we numerically solve gene 198

circuit equations (1) across the region between 35 and 92% A–P position using a 199

Runge-Kutta Cash-Karp adaptive step-size solver [26]. Models are fit to a previously 200

published quantitative data set of spatio-temporal gap protein expression [26,42,46] (see 201

Fig. 1 for gap gene expression patterns, and Fig. 2B for dynamic Bcd and Cad profiles). 202

Model fitting was performed using a global optimization algorithm called parallel Lam 203

Simulated Annealing (pLSA) [47]. We use a weighted least squares cost function as 204

previously described [26]. 205

To enable comparison of our results to the static-Bcd gene circuit analysis by Manu 206

et al. [23], we keep model formalism and fitting procedure as similar as possible to this 207

earlier study. Manu and colleagues fitted gene circuits including a diffusion term, but 208

analysed the model with diffusion rates Da set to zero [23]. This diffusion-less approach 209

reduces the phase space of the model from hundreds of dimensions to 4 by spatially 210

uncoupling the equations and considering each nucleus independently from its 211

neighbours. Dimensionality reduction is essential for geometrical analysis of phase space. 212

Unfortunately, setting diffusion to zero in our best 3 (of a total of 100) non-autonomous 213

gene circuits fitted to data with non-zero diffusion terms leads to severe patterning 214

defects (see S2 Figure for common patterning defects). This is likely due to numerical, 215

not biological issues, since we do find circuit solutions that correctly reproduce gap gene 216
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patterns both in the presence and absence of diffusion using an alternative fitting 217

approach: that fixes diffusion parameters Da to zero during optimization (see below). 218

To further facilitate comparison with the static-Bcd model, we constrained the signs of 219

regulatory weights to those reported in Manu et al. [23]. In previoius work, we have 220

verified this network structure extensively against experimental data [18,25,26,34]. 221

Optimization was performed on the Mare Nostrum supercomputer at the Barcelona 222

Supercomputing Centre (http://www.bsc.es). One optimization run took approximately 223

35 min on 64 cores. 224

The purpose of our reverse-engineering approach is not to sample parameter space 225

systematically, but instead to discover whether there are specific model-fitting solutions 226

that are consistent with the biological evidence and reproduce the dynamics of gap gene 227

expression correctly. Global optimization algorithms are stochastic heuristics without 228

guaranteed convergence, which means that for complex non-linear problems many 229

optimization runs will fail or end up at sub-optimal solutions (see also discussions 230

in [24,26,33]). In order to find the best-fitting solution, we therefore select solutions 231

from 200 initial fitting runs as follows: (1) we discard numerically unstable circuits; 232

(2) we only consider solutions with a root-mean-square (RMS) score less than 20.0 as 233

most circuits with scores above this threshold show gross patterning defects; (3) we use 234

visual inspection to detect remaining gross patterning defects among selected circuits 235

(missing or bimodal domains, and disconnected boundaries. See S2 Figure) as previously 236

described [34]. Out of the resulting 7 highest scoring circuits, only 3 recover the shifting 237

dynamics of posterior gap domains. In order to rule out diffusion as a 238

pattern-generating mechanism in these circuits, we compared their performance in the 239

presence and absence of diffusion (see above). For this purpose, we used values of 240

diffusion rates Da obtained by fitting our non-autonomous models with diffusion. All 241

three circuits produce satisfactory gap gene patterns (including anteriorly shifting 242

posterior trunk domains) whether diffusion is present or not. The best fit among these 243

was selected for detailed analysis (see S1 Table, for parameter values). 244

The residual error of our best-fitting diffusion-less circuit (RMS = 10.73) lies at the 245

lower end of the range of residual errors for fully-non-autonomous circuits with diffusion, 246

which range from RMS scores of 10.43 to 13.32 [26]. This lends further support to the 247

notion that diffusion is not essential for gap gene patterning. Moreover, our previous 248

work also shows that circuits which were fit without weighting the data show somewhat 249

lower RMS scores of 8.71 to 10.11 despite exhibiting more patterning defects at late 250

stages [26]. The RMS score of the static-Bcd model (fit without weights) is higher, at 251

10.76 [22]. Taken together, this implies a slightly better quality-of-fit of our fully 252

non-autonomous diffusion-less model compared to the static-Bcd diffusion-less circuits 253

of Manu et al. [22]. 254

Gap gene circuit analysis 255

We characterise the time-variable geometry and topology of phase space in our fully 256

non-autonomous gap gene circuit for every nucleus in a sub-range of the fitted model 257

between 35 and 71% A–P position. This restricted spatial range allows us to simplify 258

the analysis by excluding the influence of terminal gap genes tll and hkb on patterning 259

(similar to the approach in [22]). We aim to identify those features of configuration 260

space that govern the placement of domain boundaries, and thus the patterning 261

capability of the gap gene system. We achieve this by generating instantaneous phase 262

portraits for the model [43,45] at 10 successive points in time (C13, C14A-T1–8, and 263

gastrulation time). To generate an instantaneous phase portrait, all time-dependent 264

parameter values—i. e. those corresponding to the profiles of external regulators—are 265

frozen at every given time point. This yields an autonomous system for each point in 266

time, for which we can calculate the position of steady states in phase space using the 267
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Newton-Raphson method [48,49] as implemented by Manu et al. [23]. We classify 268

steady states according to their stability, which is determined by the corresponding 269

eigenvalues (see S1 Figure A). 270

Nuclei express a maximum of three trunk gap genes over developmental time, and 271

only two at any given time point. Therefore, we project four-dimensional phase 272

portraits into lower-dimensional representations to visualise them more easily. This 273

yields a graphical time-series of instantaneous phase portraits for each nucleus, which 274

allow us to track the movement, creation, and annihilation of steady states (typically 275

attractors and saddles) by bifurcations. The transient geometry of phase space governs 276

the non-autonomous trajectories of the system. We classify the dynamic behaviours 277

exhibited by these trajectories into transitions, pursuits, and captures according to our 278

previously established methodology (see Introduction and S1 Figure B) [43]. 279

Results 280

Non-autonomous gap gene circuits without diffusion 281

Previously published non-autonomous gap gene circuits suggest a specific regulatory 282

structure for the gap gene network in D. melanogaster (Fig. 3A) [26]. This structure is 283

consistent with the network predicted by the static-Bcd model of Manu et al. [23], and 284

with the extensive genetic and molecular evidence available in the published literature 285

on gap gene regulation [18]. Unfortunately, it is difficult to derive insights about 286

dynamic regulatory mechanisms from a static network diagram. Computer simulations 287

help us understand which network interactions are involved in positioning specific 288

expression domain boundaries across space and time [24–26,34]. Although powerful, 289

this simulation-based approach has its limitations. It cannot tell us how expression 290

dynamics are brought about: for instance, why some gap domain boundaries remain 291

stationary while others shift position over time. To gain a deeper understanding of the 292

underlying regulatory dynamics, we analyse the configuration space of a fully 293

non-autonomous gene circuit through instantaneous phase portraits (S1 Figure B) [43], 294

analogous to the autonomous phase-space analysis presented by Manu and 295

colleagues [23] (Fig. 2). This type of analysis requires diffusion-less gap gene circuits to 296

keep the dimensionality of phase space at a manageable level. 297
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Figure 3. Non-autonomous gap gene circuits. (A) Regulatory structure derived
from previously published non-autonomous gap gene circuits with diffusion [26].
Connecting arrows and T-bars represent activating and repressive interactions,
respectively. Line thickness indicates an interaction’s relative strength, with very weak
interactions dashed. (B) Model output of a fully non-autonomous gene circuit without
diffusion (dots) and gap protein data (filled curves) at three time points: C13 (early),
T4 (mid), and T8 (late blastoderm stage). The x-axis represents %A–P position, where
0% is the anterior pole. The y-axis represents relative protein concentration in arbitrary
units (au). Coloured background areas indicate different dynamic patterning
mechanisms that are shown in detail in Figs. 5–7.

We obtained fully non-autonomous gap gene circuits that lack diffusion through 298

model fitting with diffusion parameters Da fixed to zero and interaction signs 299

constrained to those of previous works (as described in “Models and Methods”). This 300

resulted in a set of three selected, well-fitted circuits. The network topology of these 301

gene circuit models correspond to that shown in Fig. 3A. The following analysis is based 302

on the best-fitting model with a root mean square (RMS) residual error of 10.73, which 303

constitutes a slight overall improvement in quality-of-fit compared to static-Bcd models 304

(see “Models and Methods” and [22,26]). Its regulatory parameter values are listed in 305

S1 Table. 306

This diffusion-less non-autonomous gene circuit accurately reproduces gap gene 307

expression (Fig. 3B). In particular, it exhibits correct timing and relative positioning of 308

domain boundaries. Together with the fact that it fits the data equally well as 309

equivalent circuits with diffusion (see “Models and Methods”, and [26]), this confirms 310

earlier indications that gap gene product diffusion is not essential for pattern formation 311

by the gap gene system [23,25]. Interestingly, previously published diffusion-less 312

static-Bcd circuits show rugged patterns with abrupt “on/off” transitions in expression 313

levels between neighbouring nuclei [23]. In contrast, diffusion-less fully non-autonomous 314

circuits produce smooth spatial expression patterns with a graded increase or decrease 315

in concentration levels across domain boundaries. This is because non-autonomy, with 316

its associated movement of attractors and separatrices over time, provides increased 317

flexibility for fine-tuning expression dynamics over time compared to models with 318

constant phase-space geometry (see below). In biological terms, it suggests that the 319

expression of smooth domain boundaries does not strictly require diffusion. Although 320

diffusion undoubtedly contributes to this process in the embryo, its role may be less 321

prominent than previously thought [23,25]. 322
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Maternal gradient decay affects the level and timing of gap gene 323

expression 324

We used our non-autonomous gap gene circuit to assess the effect of maternal gradient 325

decay on gap gene regulation. One way to isolate this effect is to compare the output of 326

the fully non-autonomous model—with decaying maternal gradients—to simulations 327

using the same model parameters, but keeping maternal gradients fixed to their 328

concentration levels early during the blastoderm stage (time class C12). As shown in 329

Fig.4, the relative order and positioning of gap domains remain unaffected when 330

comparing models with fixed versus time-variable gradient concentrations. This 331

indicates that maternal gradient decay is not strictly required for correct pattern 332

formation by gap genes. 333
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Figure 4. Effect of the time-dependence of maternal gradients on gap gene
pattern formation. (A) Plots show output from the non-autonomous gap gene
circuit with time-variable maternal gradients (dots), compared to output from the same
model with maternal gradients fixed to their values at cycle C12 (early blastoderm
stage; lines). Y-axes represent relative protein concentrations in arbitrary units (au);
x-axes represents %A–P position, where 0% is the anterior pole. Differences between
the two model simulations are shaded using vertical stripes in the anterior trunk region,
and wavy horizontal stripes in the posterior. Asterisks mark over-expression in the
region of the Gt/Kr interface; arrows mark “overshoot” of gap domain shifts in the
posterior of the embryo.

We do observe, however, that maternal gradient dynamics significantly affect the 334

levels of gap gene expression throughout the trunk region of the embryo (Fig. 4, shaded 335

areas). While early expression dynamics are very similar in both models (time classes 336

C12–T2), they begin to diverge at later stages. The fully non-autonomous model 337

reaches peak expression at T2/T4, but the autonomous model without maternal 338
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gradient decay overshoots observed expression levels in the data between T4 and T8. 339

This indicates that maternal gradient decay leads to decreasing activation rates at the 340

late blastoderm stage, thereby regulating the timing and level of peak gap gene 341

expression. Such a limiting regulatory effect of maternal gradients has been proposed 342

before [25,42], but has never been tested explicitly. 343

Interestingly, the overshoot occurs in different ways in the anterior and the posterior 344

of the embryo. In the anterior, maximum concentrations of Hb and Kr across each 345

domain remain unchanged, but levels of expression keep increasing around the Kr/Gt 346

interface, rendering the domain boundaries steeper and less smooth in the simulation 347

without maternal gradient decay (Fig. 4, asterisk). In the posterior, we observe 348

increased levels of Kni and Gt across large parts of their respective expression domains 349

(Fig. 4, arrows). These effects are asymmetric: both posterior Kni and Gt domains 350

exhibit an anterior expansion, while the posterior boundary of the Kni domain is not 351

affected. Considering that both of these domains shift towards the anterior over time 352

(Fig. 1) [25, 42], we interpret this as follows: maternal gradient decay not only decreases 353

the rate of expression at late stages in the posterior region, but also leads to a 354

slow-down of gap domain shifts, thereby limiting the extent of the shift. In the 355

autonomous simulation without maternal gradient decay, both Kni and Gt domains 356

keep on moving, which explains the observed expansion and increase of expression levels 357

towards the anterior part of the domain. 358

Non-autonomous regulatory mechanisms for gap gene 359

patterning 360

We asked whether the differing effects of maternal gradient decay in the anterior and the 361

posterior of the embryo depend on the presence of different regulatory mechanisms in 362

these regions [23]. To validate this hypothesis, we need to understand and characterise 363

the dynamic mechanisms underlying gene regulation in our non-autonomous model. We 364

achieve this through analysis of the time-variable phase spaces of nuclei across the trunk 365

region of the embryo using the methodological framework presented in the Introduction 366

(S1 Figure B; see [43] for details). To briefly reiterate, this analysis is based on the 367

characterization of the changing phase space geometry that shapes the trajectories of 368

the system. The shape of a trajectory indicates typical dynamical behaviors, that can 369

be classified into four distinct categories—transitions, pursuits, as well as geometrical 370

and topological captures—each showing particular dynamic characteristics. These 371

categories provide mechanistic explanations for the dynamic behavior of the system. For 372

every nucleus, we then compare these non-autonomous mechanisms to the autonomous 373

mechanisms of pattern formation found in the static-Bcd model [23]. This direct 374

comparison allows us to identify the causes underlying the observed effects of maternal 375

gradient decay on the temporal dynamics of gap gene expression. 376

In agreement with Manu et al. [23], we find different patterning modes anterior and 377

posterior to 52% A–P position. Just like in static-Bcd models, anterior expression 378

dynamics are governed by convergence of the system towards attractors in a multi-stable 379

regime. In contrast, our model differs from that of Manu et al. [23] concerning posterior 380

gap gene regulation. We find that a monostable spiral sink drives gap domain shifts in 381

the posterior of the embryo; this differs markedly from the unstable manifold observed 382

in static-Bcd gap gene circuits [23]. An in-depth analysis and biological discussion of 383

spatial pattern formation driven by this mechanism goes beyond the scope of this study. 384

It is provided elsewhere [44]. Here, we focus on temporal aspects of gene regulation and 385

pattern formation, namely the regulation of the velocity of gap domain shifts by 386

maternal gradient dynamics in the posterior of the embryo. 387
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Anterior non-autonomous mechanisms of pattern formation. Phase portraits 388

of nuclei in the anterior of the embryo (35 to 51% A–P position) are multi-stable at 389

every time point. Every instantaneous phase portrait contains multiple attractors. 390

Distinct attractors govern the dynamics of gap gene expression at different points in 391

space and time. We identify three alternative non-autonomous mechanisms which 392

control the positioning of domain boundaries in the anterior trunk region of the embryo. 393

The posterior border of the anterior Gt domain forms between 35 and 40% A–P 394

position (Fig. 5A). Of all the trunk gap genes, nuclei in this region of the embryo only 395

express hb and gt. Gap gene expression dynamics are governed by the same attractor 396

across different nuclei (Fig. 5B). Each trajectory starts at non-zero (maternal) Hb 397

concentration and initially converges towards the attractor located at high Hb and Gt 398

concentrations (Fig. 5B). The phase portrait for every nucleus changes in the 399

non-autonomous simulation as maternal gradients decay. For the nuclei between 35 and 400

40% A–P position, the attractor drops towards lower Gt levels over time, while 401

maintaining high concentrations of Hb. Convergence towards the moving attractor is 402

shaping these trajectories (Fig. 5B, grey trajectories). At some point, the attractor 403

“overtakes” (i. e. passes in front of) the trajectory in phase space, which leads to a 404

marked change in the trajectory’s direction. Although all nuclei across the Gt boundary 405

show qualitatively similar behaviour, the timing of attractor movement differs markedly 406

from one nucleus to another. The further posterior a nucleus is located along the A–P 407

axis, the earlier the drop of the attractor occurs (Fig. 5B). As a result, non-autonomous 408

trajectories bend towards low Gt levels at increasingly early stages as we move towards 409

the posterior, which results in lower overall Gt concentration profiles as we proceed 410

from 35 to 39% A–P position. This causes a gradual decrease in Gt concentration along 411

the Gt boundary in the non-autonomous model which results in a smooth boundary, 412

even in the absence of diffusion. In the phase portraits of nuclei at 37 and 39%, we 413

observe a saddle-node bifurcation (at T7 and T8, respectively) which annihilates the 414

attractor to which the trajectory is initially converging. However, this bifurcation 415

occurs too late to perceivably affect the dynamics of the system. We conclude that the 416

position of the posterior boundary of the anterior Gt domain is largely defined by the 417

timing of attractor movement. Therefore, it is governed by what we call a pursuit 418

mechanism in S1 Figure B [43]. 419

In contrast, the simulation without gradient decay does not show a drop in attractor 420

position, since the phase portrait does not change over time and the attractor remains 421

at high Hb and Gt concentration until the onset of gastrulation (Fig. 5B, black 422

trajectory and black steady state). This causes its trajectory to increasingly diverge 423

from the non-autonomous case, explaining the elevated Gt concentrations in this region 424

of the embryo (Fig. 4). 425

15/30

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 12, 2017. ; https://doi.org/10.1101/068064doi: bioRxiv preprint 

https://doi.org/10.1101/068064
http://creativecommons.org/licenses/by-nd/4.0/


Figure 5. Positioning the posterior boundary of the anterior Gt domain.
(A) Output of the non-autonomous gene circuit (dots) versus the same model without
maternal gradient decay (lines) shown at cleavage cycle C13 and C14A (time classes T4
and T8) for nuclei within 35–52% A–P position. Axes and colouring scheme as in
Fig. 3B. Blue vertical bars mark the nuclei at 35% and 39%A–P position shown in (B).
(B) Phase portraits for nuclei at 35% (top) and 39 %A–P position (bottom). Phase
portraits are shown as two-dimensional projections onto the plane defined by Hb
(x-axis) and Gt (y-axis) concentrations (in arbitrary units, au). Non-autonomous
trajectories shown as grey lines and autonomous trajectories as black lines. Attractors
shown as spheres (point attractors) and cylinders (indicating a spiral sink). Small
coloured dots on trajectories indicate the position in space of that trajectory at different
time points. Colouring of attractors and trajectory positions indicates time class (see
key). Other steady states have been omitted for clarity, since they do not shape the
trajectories in these nuclei. See text for details.

Further posterior, in the region between 40 and 52% A–P position, the only gap 426

genes that are expressed are hb and Kr. In this area, the posterior boundary of the 427

anterior Hb domain and the anterior boundary of the central Kr domain overlap 428

(Fig.6A). In the non-autonomous model, this boundary interface is set up by two 429

different regulatory mechanisms (Fig. 6B,C). Phase portraits of nuclei between 41 and 430

45% A–P position (Fig. 6A, yellow vertical bar) show the following dynamics: for most 431

of the time, system trajectories converge towards an attractor located at high Hb and 432

high Kr concentration (Fig. 6B, grey trajectory). However, these trajectories are 433

transient and remain at low Kr and intermediate Hb concentrations, far from steady 434

state. At T7, two simultaneous saddle-node bifurcations give rise to two new attractors, 435

one at high Hb and the other at high Kr concentration (Fig. 6B). Two new saddles are 436

also created. System trajectories are caught in the basin of the attractor with high Hb 437

levels. This only has a noticeable effect in more posterior nuclei (e. g. at 43% A–P 438

position in Fig. 6B), where there is a drastic (but late) change in the direction of the 439

trajectory. At T8, two additional saddle-node bifurcations occur, which annihilate the 440

high Hb/high Kr attractor, as well as the newly created attractor at high Hb. This 441

leaves only the attractor at high Kr concentrations (Fig. 6B). Trajectories of the system 442

are once again caught in a different basin of attraction. However, this second round of 443

bifurcations occurs too late to still have a substantial effect on expression dynamics. A 444
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non-autonomous trajectory being caught in a new basin of attraction due to a preceding 445

bifurcation event is called a topological capture (S1 Figure B) [43]. 446

In the region between 46 and 52% A–P position (Fig. 6A, green vertical bar), we 447

observe a different kind of dynamical behaviour. Similar to more anterior nuclei, these 448

instantaneous phase portraits have an attractor at high Hb and high Kr levels and 449

trajectories converge to this steady state at early stages (Fig. 6C). In contrast to more 450

anterior nuclei, however, there is a saddle located on the Hb-Kr plane. Between time 451

class T2 and T6, the position of this saddle moves towards higher Hb levels. When a 452

saddle moves on a phase portrait, it drags the associated separatrix with it (S1 453

Figure A). These concerted movements change the location of the boundaries between 454

existing basins of attraction. When a separatrix “overtakes” a trajectory in phase space, 455

a geometrical capture occurs (S1 Figure B) [43]. This can be observed in the nucleus at 456

47% A–P position (Fig. 6C, grey trajectory). Here, the trajectory gets captured by the 457

moving separatrix between T2 and T5, and later starts to converge towards the 458

attractor at high Kr, limiting Hb concentrations at intermediate levels. Taken together, 459

our results indicate that the posterior boundary of the anterior Hb domain, as well as 460

the anterior boundary of the central Kr domain, are positioned by a combination of 461

topological and geometrical capture events. 462

In simulations without gradient decay, captures cannot occur (Fig. 6B and C, black 463

trajectory and black steady state). In both nuclei at 43 and 47%, trajectories keep on 464

converging towards the attractor at high Hb and Kr. This results in higher and 465

sustained Hb and Kr levels throughout the region where the two factors are 466

co-expressed. It explains why there are very abrupt boundaries between Gt and Kr, as 467

well as between Hb and Kni, instead of the smooth interfaces between the corresponding 468

domains observed in the non-autonomous model (Fig. 6A). 469
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Figure 6. Positioning the Hb-Kr interface. Output of the non-autonomous gene
circuit (dots) versus the same model without maternal gradient decay (lines) shown at
cleavage cycle C13 and C14A (time classes T4 and T8) for nuclei between 35–52% A–P
position. Axes and colouring scheme as in Fig. 3B. Yellow and green vertical bars mark
the nuclei at 43% and 47%A–P position shown in (B) and (C) respectively. (B) Phase
portrait for nucleus at 43% position. (C) Phase portrait for nucleus at 47% position.
Phase portraits are shown as two-dimensional projections onto the plane defined by Hb
(x-axis) and Kr (y-axis) concentrations (in arbitrary units, au). Non-autonomous
trajectories are shown as grey lines and autonomous trajectories, as black lines. Point
attractors are represented by spheres and saddles points by squares. Small coloured
dots on the trajectories indicate the position in phase space (Hb and Kr concentrations)
of the trajectory at different time points. Colouring of attractors and trajectory
positions indicates time class (see key). Other steady states have been omitted for
clarity, since they do not shape trajectories in these nuclei. See text for details.

Taken together, our evidence suggests that the non-autonomous mechanisms 470

positioning anterior gap domains are equivalent to the corresponding autonomous 471

mechanisms from the static-Bcd model described by Manu et al. [23] since they too rely 472

on attractor position and/or switching between basins of attraction. In their work, just 473

as in ours, the Gt boundary is set by an attractor moving from high to low Gt 474

concentrations (across space, i.e. moving along the A–P axis), and the Hb/Kr interface 475

is positioned by attractor selection: nuclei anterior to this border fall into the basin of 476

an attractor with high Hb, nuclei posterior of the border end up in the basin of an 477

attractor with high Kr concentration. Instead of a static switch, however, we find nuclei 478

being captured by different basins at different time points across space. Still, the overall 479

principle of boundary placement by attractor selection remains the same between 480

static-Bcd and fully non-autonomous gap gene circuit models. The fact that similar 481

regulatory principles are at work in both models validates our approach, and confirms 482

that the placement of stationary domain boundaries in the anterior of the embryo does 483

not depend in any fundamental way on the dynamics of maternal inputs. 484

Posterior non-autonomous mechanisms of pattern formation. Expression 485

boundaries posterior to 52% A–P position are not stationary but move towards the 486

anterior over time, causing a shift and concurrent narrowing of gap domains in this 487
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region (Fig. 7A) [25, 42]. Surprisingly, we find that these shifting posterior gap domains 488

are governed by quite different phase space geometries in our model compared to those 489

previously reported. Manu et al. [23] found that posterior gap gene expression dynamics 490

are controlled by an unstable manifold embedded in a multi-stable phase space 491

geometry in their static-Bcd model. In contrast, our fully non-autonomous gap gene 492

circuit features no such manifold: the phase portraits of posterior nuclei lack saddle 493

points since they are monostable throughout the blastoderm stage and only contain a 494

single attractor (Fig. 7B). This attractor is not a regular point attractor. Its complex 495

eigenvalues reveal that it is a spiral sink (also known as a focus ; see S1 Figure A) ( [36]). 496

Like regular point attractors, spiral sinks are stable, in that they draw trajectories 497

asymptotically towards them. Unlike regular point attractors, these trajectories do not 498

approach the steady state in a straight line, but rather spiral inward towards the sink. 499

Since sinks are a consistent feature of the phase spaces of nuclei in the posterior of the 500

embryo, it is likely that they are important for the spiral-shaped geometry of the 501

trajectories observed in this region (Fig. 7B). The spiral geometry in turn is responsible 502

for the ordered succession of transient gap gene expression governing dynamic domain 503

shifts. A full characterization of this patterning mechanism is presented elsewhere [44]. 504

For the purpose of our present analysis, we conclude that the non-autonomous 505

mechanism patterning the posterior region corresponds to a pursuit, where the system 506

follows but never reaches a moving attractor (S1 Figure B). 507

Figure 7. Regulating the extent and timing of posterior gap domain shifts.
(A) Output of the non-autonomous gene circuit (dots) versus the same model without
maternal gradient decay (lines) shown at cleavage cycle C13 and C14A (time classes T4
and T8) for nuclei between 50–75% A–P position. Axes and colouring scheme as in
Fig. 3B. Red vertical bars mark the nuclei at 59% and 69%A–P position shown in (B).
(B) Phase portraits for nuclei at 59% (top) and 69 %A–P position (bottom). Phase
portraits are shown as three-dimensional projections onto the sub-space defined by Kr
(x-axis), Gt (y-axis) and Kni (z-axis) concentrations (in arbitrary units, au).
Non-autonomous trajectories shown as grey lines and autonomous trajectories as black
lines. Spiral sinks are represented by cylinders. Small coloured dots on trajectories
indicate the position in phase space of the trajectory at different time points. Colouring
of attractors and trajectory positions indicates time class (see key). See text for details.
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The correct geometry of transient trajectories in the posterior of the embryo depends 508

crucially on maternal gradient decay. As we can see in Fig. 7B (black trajectories), 509

simulations without dynamic gradient concentrations show much less tightly wound 510

spirals. This means that the transition between the expression of successive gap genes 511

in this region is delayed. For example, the nucleus at 59% A–P position shows a delayed 512

down-regulation of Kr, while kni keeps on accumulating. This provides a 513

straightforward explanation of the “overshoot” of Kni and Gt domain shifts observed in 514

the simulation without maternal gradient decay (Fig. 7A). In biological terms, it 515

suggests that the disappearance of Cad from the abdominal region of the embryo is 516

required for correct pattern formation, by limiting the timing—and as a result, the 517

extent—of gap domain shifts. 518
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Discussion 519

In this paper, we have examined the explicitly time-dependent aspects of morphogen 520

gradient interpretation by a gene regulatory network; the gap gene system of the 521

vinegar fly D. melanogaster. Using a fully non-autonomous gap gene circuit, we 522

compared the dynamics of gene expression in the presence and absence of maternal 523

gradient decay. We find that dynamic changes in the concentration of maternal 524

morphogens Bcd and Cad affect the timing and rate of gap gene expression. The precise 525

nature of these effects differs between the anterior and the posterior region of the 526

embryo. In the anterior, gradient decay creates smooth domain borders by preventing 527

the excessive accumulation of gene products across boundary interfaces between 528

neighbouring gap domains. In the posterior, gradient decay limits the rate of gap gene 529

expression, and therefore the extent of gap domain shifts, towards the end of the 530

blastoderm stage. A temporal effect on gene expression rates is translated into slowing 531

rates of domain shifts, which in turn alter the spatial positioning of expression 532

boundaries. As a consequence, gradient decay stabilises spatial gap gene patterns before 533

the onset of gastrulation. An effect of maternal gradient decay on gap gene expression 534

rates has been suggested before—based on the analysis of quantitative expression 535

data [25,42]. However, only mechanistic dynamical models—such as the 536

non-autonomous gap gene circuits presented here—can provide specific mechanisms and 537

quantitative causal evidence for this aspect of gap gene regulation. 538

Our analysis suggests that maternal gradient decay—specifically, the disappearance 539

of Cad from the abdominal region of the embryo—has an important role in regulating 540

the timing of gap gene expression as well as limiting the rate and extent of gap domain 541

shifts in the posterior of the embryo. This result is consistent with experimental data 542

indicating that Cad affects gap domain shifts. Mutants lacking maternal cad, which 543

show a reduced level of Cad protein throughout the blastoderm stage [28], show a delay 544

in the shift of the posterior domains of kni and gt [32, 44]. However, Cad does not seem 545

to act exclusively. An indirect role of Bcd in regulating gap domain shifts through 546

altering gap-gap interactions was suggested by a modelling study [30]. It remains 547

unclear whether Cad is also involved in mediating this effect. Finally, a recent study of 548

Bcd-dependent regulation of hb postulated an additional mechanism for gap gene 549

down-regulation that acts before maternal gradient decay occurs [2]. This could have an 550

indirect effect on the timing of late (Bcd-independent) hb regulation, which may mediate 551

the direct effect of Bcd decay on late hb expression we are observing in our models. 552

To better understand the mechanistic basis for the observed differences in patterning 553

between the anterior and the posterior, we analysed the time-variable phase portraits in 554

our non-autonomous model [43]. In agreement with a previous study based on 555

autonomous phase space analysis of static-Bcd gap gene circuits [23], we find that two 556

distinct dynamical regimes govern gap gene expression anterior and posterior to 52% 557

A–P position (Fig. 8). Stationary domain boundaries in the anterior are governed by 558

regulatory mechanisms that are equivalent in static-Bcd and fully non-autonomous 559

models (our work and [23]): they take place in a multi-stable dynamical regime where 560

the posterior boundary of the anterior Gt domain is set by the movement of an attractor 561

in phase space, and the posterior boundary of the anterior Hb domain is set by attractor 562

selection (i. e. the capture of transient trajectories in the non-autonomous case) (Fig. 8, 563

left). Attractor movement in fully non-autonomous models leads to smooth expression 564

boundaries, which are absent in the static-Bcd case. In contrast, static-Bcd and 565

non-autonomous models suggest different mechanisms for gap domain shifts in the 566

posterior of the embryo. While these shifts are controlled by an unstable manifold in 567

the static-Bcd gene circuit model [23], we find a pursuit mechanism featuring a 568

monostable spiral sink to govern their behaviour in our fully non-autonomous analysis 569

(Fig. 8). The spiralling geometry of transient trajectories imposes temporal order on the 570
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progression of gap genes being expressed. If arranged appropriately across nuclei in the 571

posterior of the embryo, this temporal progression from Kr to kni to gt to hb leads to 572

the emergence of the observed kinematic domain shifts [44]. 573

It is important to note that similar regulatory principles can be found in all three 574

solutions of our fully non-autonomous model that reproduce gap-gene patterning 575

correctly both in the presence and absence of diffusion. We have chosen the most 576

structurally stable solution for detailed analysis. The other two circuits show more 577

variability of regulatory features both across space and time. Still, both of these models 578

consistently exhibit multi-stability in the anterior, and spiral sinks as well as transiently 579

appearing and disappearing limit cycles in the region posterior to 52% A–P position. 580

This indicates that the two main dynamical regimes described here—stationary 581

boundaries through attractor selection in the anterior vs. shifting gap domain 582

boundaries through spiralling trajectories in the posterior—are reproducible across 583

model solutions. 584

It is important to note that non-autonomy of the model is not strictly required for 585

the spiral sink mechanism to pattern the posterior of the embryo. Simulations with fixed 586

maternal gradients demonstrate that domain shifts can occur in an autonomous version 587

of our gap gene circuit (see Figs. 4 and 7). The reason why earlier models [22,23] do not 588

feature spiral sinks remains unknown although one possibility is that fitting in the 589

absence of diffusion somehow benefits characterisations of posterior pattern formation in 590

terms of oscillatory behaviours. In spite of this, there are two reasons to consider the 591

mechanism proposed here an important advance over the unstable manifold proposed by 592

Manu et al. [23]. The first reason is technical: non-autonomous gap gene 593

circuits—implementing correct maternal gradient dynamics—are more accurate and 594

stay closer to the data than the previous static-Bcd model. The fact that the quality of 595

a reverse-engineered model usually depends on the quality of its fit to data implies that 596

our model provides more accurate and rigorous predictions than previous efforts. The 597

second reason is conceptual: although it is difficult to interpret an unstable manifold in 598

an intuitive way, it is straightforward to understand the spiral sink as a damped 599

oscillator patterning the posterior of the embryo. The presence of an oscillatory 600

mechanism in a long-germband insect such as D. melanogaster has important functional 601

and evolutionary implications, which are discussed elsewhere [44]. 602

Analysis of an accurate, non-autonomous model is required to isolate and study the 603

explicitly time-dependent aspects of morphogen interpretation by the gap gene system. 604

Here, we have shown that such an analysis is feasible and leads to relevant and specific 605

new insights into gene regulation. Other modelling-based studies have used 606

non-autonomous models before (see, for example, [16, 26,34,50–53]). However, none of 607

them have directly addressed the proposed role of non-autonomy in pattern 608

formation [17]. Our analysis provides a first step towards a more general effort to 609

transcend this limitation in our current understanding of the dynamic regulatory 610

mechanisms underlying pattern formation during animal development. 611
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Figure 8. Summary of non-autonomous mechanisms for gap gene pattern
formation in D. melanogaster. (A) Non-autonomous gap gene circuits implement
realistic, time-dependent dynamics of maternal morphogen gradients (Bcd in purple,
Cad in cyan). Y-axis shows relative protein concentration (in arbitrary units, au);
X-axis shows %A–P position, where 0% is the anterior pole. (B) Different
non-autonomous mechanisms of pattern formation are active at different positions along
the A–P axis of the embryo. Stylized projections of phase space are shown. See Box.1B
and [43] for nomenclature. (C) Gap gene expression dynamics differ between the
anterior and the posterior regions of the embryo. While domain boundaries in the
anterior are stationary, boundaries in the posterior shift towards the anterior over time.
Time-space plot as in Fig.1A: note that time flows downward along the y-axis (cycle
C13 and time classes T1–8 as defined in Models and Methods). The dashed vertical line
spanning all panels indicates a bifurcation event at 52% A–P position, which separates
the multi-stable from the oscillatory regime.
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Supporting Information 612

Promoter Strengths Rhb RKr Rgt Rkni

10.0001 16.9328 15.9656 13.0138
Interconnectivity

Matrix (W) hb kr gt kni
hb 0.0102 0.0000 0.0246 -0.2625
kr -0.0040 0.0113 -0.2723 -0.0106
gt -0.0060 -0.3882 0.0047 0.0162
kni -0.1821 0.0000 -0.0642 0.0055

External Input
Strengths (E) bcd cad hkb tll

hb 0.0790 0.0016 0.1702 -0.8470
kr 0.0691 0.0244 -3.1254 0.0000
gt 0.0912 0.0258 -0.0947 0.0000
kni 0.0000 0.0276 -0.7241 0.0000

Promoter Thresholds hhb hKr hgt hkni

-2.5000 -2.5000 -2.5000 -2.5000
Protein Half Lives Hb Kr Gt Kni

15.4725 9.6659 9.6622 19.9993
Diffusion Parameters Dhb DKr Dgt Dkni

0.0000 0.0000 0.0000 0.0000

Table S1. Values of the parameters in the non-autonomous gap gene circuit
model Model equations are shown in the Models and Methods section.
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Figure S1. Dynamical systems concepts. (A) Features of phase space in
autonomous dynamical systems. (B) Categorisation of transient, non-autonomous
dynamics.
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Figure S2. The three most commonly observed patterning defects in fully
non-autonomous diffusion-less gap gene circuits. Commonly observed defects in
fully autonomous D. melanogaster gap gene circuits fitted to data without diffusion.
Circuits showing any of these gross patterning defects were excluded from further
analysis, even if their RMS score was low. Arrows indicate patterning defects as named
in the panel headings (A–C). Horizontal axes represent %A–P position (where 0% is
the anterior pole). Vertical axes show relative protein expression levels (Rel. Prot.
Expr.) in arbitrary units (au). T4/6 indicate time classes C14-T4 and T6, respectively.
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