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Abstract

The conditions under which the Michaelis-Menten equation accurately cap-
tures the steady-state kinetics of a simple enzyme-catalyzed reaction is con-
trasted with the conditions under which the same equation can be used to
estimate parameters, K, and V', from progress curve data. Validity of the
underlying assumptions leading to the Michaelis—Menten equation are shown
to be necessary, but not sufficient to guarantee accurate estimation of K,
and V. Detailed error analysis and numerical “experiments” show the re-
quired experimental conditions for the independent estimation of both K,
and V' from progress curves. A timescale, ¢, measuring the portion of the
time course over which the progress curve exhibits substantial curvature pro-
vides a novel criterion for accurate estimation of K,; and V from a progress
curve experiment. It is found that, if the initial substrate concentration is
of the same order of magnitude as K, the estimated values of the K, and
V' will correspond to their true values calculated from the microscopic rate
constants of the corresponding mass-action system, only so long as the initial
enzyme concentration is less than K.

Keywords: experimental design, parameter estimation, reproducibility,
inverse problem.

*Corresponding author.
Email addresses: stroberg@umich.edu (Wylie Stroberg), schnells@umich.edu
(Santiago Schnell)

September 6, 2016


https://doi.org/10.1101/068015
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/068015; this version posted September 6, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-ND 4.0 International license.

1 1. Introduction

2 The fundamental equation of enzyme kinetics is the Michaelis—Menten
3 (MM) equation, which relates the rate of an enzyme-catalyzed reaction to
s+ the concentration of substrate [1, 2]. The MM equation is typically derived
s using the steady-state assumption as proposed by Briggs and Haldane [3]. It
s is characterized by two parameters: the Michaelis constant, K, which acts
7 as an apparent dissociation constant under the assumption of steady-state,
s and the limiting rate, V' (or the catalytic constant, k., if the enzyme concen-
o tration is known) [4]. These parameters are often viewed as thermodynamic
10 properties of an enzyme-substrate pair, and hence depend on conditions
n such as pH and temperature, but not on time-dependent enzyme nor sub-
12 strate concentrations [5]. As a result, measuring K, and V are essential to
13 characterizing enzymatic reactions [6]. However, the treatment of K, and
1V as constants with respect to enzyme and substrate concentrations relies
15 on simplifying assumptions relating to the quasi-steady-state of the interme-
16 diate complex formed by the enzyme and substrate [7]. If conditions for the
17 reaction lie outside the range for which the simplifying assumptions are valid,
18 Ky becomes dependent on the concentration of the substrate, and hence, on
19 time. Experiments to estimate K, must be conducted under conditions for
20 which the MM equation is valid [7, 8]. This can be problematic since it is
a1 generally necessary to know K, a priori in order to insure the experimental
2 conditions meet the requirements for the using MM equation. Additionally,
23 values of K); and V measured under valid experimental conditions can only
2 be transferred to cases that also meet the requirements. Since this is often
5 not the case in vivo, using values of Kj; and V measured in vitro to predict
s the activity of an enzyme in living organisms can often be seriously unreliable
2 [9].

28 The range of substrate and enzyme concentrations over which the MM
» equation can be applied has long history of theoretical investigation [see 8,
w0 for a recent review|, and requires two assumptions be valid. The first, called
a the steady-state assumption, implies that the timescale for the formation of
22 the intermediate complex is much faster than that of the conversion of the
13 substrate into product [10]. The second, called the reactant-stationary as-
s sumption, implies that the fast, transient period in which the steady-state
55 population of intermediate complex first forms, depletes only a negligible
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s amount of substrate [11]. It has been shown that the reactant-stationary as-
» sumption is more restrictive and, if valid, the reaction velocity (after the ini-
s tial transient period) will follow the MM equation and be well-characterized
1 by the parameters K); and V' [10, 12, §].

40 At first sight, it is tempting to assume that, when the MM equation is
s valid, experimental data should also yield accurate estimates of K, and V
2 [13, 14]. However, the conditions for the validity of the steady-state and
13 reactant-stationary assumptions are based on a forward problem, i.e. one in
s which the parameters are known. Estimating parameters from experimental
s data, on the other hand, is an inverse problem [15]. Extracting true values of
s parameters from data requires a stable and unique inverse mapping that is
# not guaranteed by the existence of a solution to the forward problem [see 16,
i for example]). Hence, even in cases where the assumptions underlying the
s MM equation are valid, and the MM equation accurately fits an experimental
so progress curve, the values of Kj; and V estimated from the data may differ
s1 significantly from their true values.

52 Understanding the conditions for which the inverse problem is well posed
s3 is crucial for the effective and efficient design of experiments. When designing
54 enzyme progress-curve experiments, one typically must choose the initial con-
s centrations of the substrate and enzyme (although the enzyme concentration
ss may not always be adjustable), as well as the time span and sampling fre-
57 quency for data collection [17]. Hence, useful experiments require conditions
ss that both satisfy the conditions for which MM kinetics are to be expected,
5o and lead to the most informative set of data for constraining parameter val-
oo ues. Early use of progress curves to determine kinetic parameters focused on
&1 linearization of the rate equations or efficient integration and optimization
2 algorithms for fitting parameters [18, 19, 20, 21, 22]. As these algorithms
&3 evolved, computational tools for analysis of progress curve data increased
s the accessibility and popularity of progress curve experiments [23, 24, 25].
ss However, less attention has been paid to the design of progress curve ex-
e periments. Initial research applied sensitivity analysis [26], and information-
v theoretic approaches [27] to estimate optimal initial substrate concentrations
s¢ and the most sensitive portion of the progress curve, and hence, the most use-
e ful portion for parameter estimation. Vandenberg et al. [26] found that the
70 largest feasible substrate concentration and the section of the progress curve
7 for which the substrate concentration is between 60-80% of the initial value
72 maximized the sensitivity of the fitted parameters. However, maximizing the
73 sensitivity of the data collection range does not necessarily guarantee min-
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72 imization of the errors in the fitted parameters. To address this, Duggleby
75 and Clarke [17] assessed the optimal initial substrate concentration and data
7 spacing under the criterion of minimal standard error of Kj;. The optimal
77 design of Duggleby and Clarke differs from that of Vandenberg et al. in that
7 an initial substrate concentration 2 to 3 times K, is recommended. It was
7 also found that data should be collected until the extent of the reaction is
so 90%. These recommendations have become the de facto “rule of thumb” for
s1  progress curve experimental design. In determining these recommendations,
&2 the authors evaluated their parameter estimates in comparison to parame-
&3 ter values obtained through initial rate experiments on the same enzymatic
s systems, and to simulated progress curves calculated by integrating the MM
&s equation and adding random fluctuations. Hence, no connection was made to
s the underlying microscopic rate constants describing the mass-action kinetics
g7 of the systems, meaning the accuracy of the estimates could not be assessed
s relative to the “true” values of Kj; and V as defined in terms of microscopic
g0 rate constants. A similar approach was later taken to evaluate the capacity
o of a closed-form solution to the MM equation to fit progress curves [28].

o1 The work of Duggleby and colleagues provide guidance for when the pa-
e rameters in the MM equation, Kj; and V', are most robustly estimated from
03 progress curve experiments, but do not assess whether the fitted parame-
o ters are the same as those defined in terms of microscopic rate constants.
s With improved fitting algorithms and greater computational power, interest
o has grown in the direct determination of microscopic rate constants through
o fitting of progress curves with numerically-integrated rate equations [29].
s Although appealing, this approach can only provide accurate estimates for
o parameters that are sensitive to the given experimental conditions. Under
wo experimental conditions for which the mass-action rate equations reduce to
1w the MM equation, this procedure will necessarily lead to overfitting. Design-
102 ing experiments from which Kj; and V' can be unambiguously determined
03 requires assessing the experimental conditions in terms of the requirements
s for the validity and uniqueness of the MM equation. Moreover, given the
10s massive amounts of data generated by the biomedical science community,
s Scientists must be cognizant of the strengths and weakness of quantitative
w7 approaches in order to guarantee the reproducibility of published research
ws data.

109 In this work, we seek to address the issue of estimating parameters from
no  progress curves of single-substrate, single-enzyme-catalyzed reactions quanti-
m  tatively. In Section 2, we review the validity of the steady-state and reactant-
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2 stationary assumptions, and quantify errors incurred by making these as-
uz sumptions. In Section 3, we discuss the inverse problem associated with esti-
us  mating parameters based on the MM equation. In doing so, we derive a new
us condition based on time-scale separation of the linear and nonlinear portions
ue of the progress curve that indicates when both Kj; and V' can be estimated
w7 from a single experiment. Numerical experiments are then conducted in Sec-
us tion 4 to verify and quantify the range of experimental conditions that allow
1o for veracious estimations of K;; and V. We conclude with a discussion of
10 the results in Section 5.

21 2. The forward problem: the Michaelis—Menten equation and the
122 conditions for its validity

In the simplest, single-enzyme and single-substrate reaction, the enzyme
E reacts with the substrate S to form and intermediate complex C', which
then, under the action of the enzyme, forms a product P and releases the

enzyme,
k’l kcat
E+S =C — E+P (1)
k_1

where k; and k_; are microscopic rate constants, and k., is the catalytic
constant [4]. Applying the law of mass action to reaction mechanism (1)
yields four rate equations

e = —kies + k_ic+ keaC (2a)
§ = —kies + k_ic (2b)
¢ =kies — k_ic — kearC (2¢)
P = keatc, (2d)

123 where lowercase letters represent concentrations of the corresponding up-
124 percase species. Typically, in test tube enzyme binding assays the initial
125 conditions are taken to be

(€7$7C7p) |t=0 = (607307070) . (3)
Additionally, the system obeys two conservation laws, the enzyme and sub-
strate conservation laws,

e(t)+c(t) =ep (4a)
s(t)+c(t)+p(t) = so. (4b)
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Using (4a) to decouple the enzyme concentrations, the redundancies in the
system (2) are eliminated to yield

§=—ki(eg—c)s+k_qc (5a)
¢=ki(ep—c)s— (k-1 + keat) (5b)

s where e(t) and p(t) are readily calculated once s(t) and c(t) are known. If]
127 after an initial, rapid buildup of ¢, the rate of depletion of ¢ approximately
s equals its rate of formation, ¢ is assumed to be in a quasi-steady state [3],
120 1.€e.

¢~0 for t>t,, (6)

where t. is the timescale associated with the initial transient buildup of ¢
[10]. The steady-state assumption (6), in combination with (5), leads to

o €oS
ol ToP (Ta)
Vs
.___ Vs b
N f(M—l-S7 (7 )

o where V' = keareo and Ky = (k1 + keat) /k1. Hence, the system (2) is re-
1 duced to an algebraic-differential equation systems with one single differen-
132 tial equation for s. However, since (7) is only valid after the initial transient
133 time period, t., a boundary condition for s at ¢ = ¢, must be supplied. To
13a do this, it is assumed that very little substrate is consumed during the initial
135 transient period (the reactant-stationary assumption) such that

S(t < tc) ~ S0, <8>

13 which provides an initial condition for (5a) under the variable transformation
w t — t—t.. Substituting (7a) into (2d), one obtains, the rate of the reaction (1)

Vs

=" 9
T ©)

p=v
s relating the rate of product formation to the substrate concentration. Equa-
1o tion (9) is the MM equation, and the system of equations (7a ), (7b), and
1w (9) govern the dynamics the complex, substrate, and product, respectively,
w1 under the steady-state assumption.
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142 The conditions under which the steady-state assumption (6) and reactant-
s stationary assumption (8) are valid have been extensively studied. Segel [10]
s showed that the steady-state assumption is valid so long as

€o Kg 50
_— 1+ == 1+ — 10
KM+50<<(+K)(+KM)7 (10)

s where Kg = k_1/k, and K = keu/k;. For the reactant-stationary assump-
s tion to be valid, they derived the condition

€o So
— 14+ — 11
" < ( + KM)’ (11)

17 which is more stringent than condition (10), and hence dictates the condi-
us tions under which the MM equation can be applied. Interestingly, it has
1o been shown that condition (11) is independent from (10) for several enzyme
150 catalyzed reactions [11].

51 2.1. Quantitative analysis of the errors induced by the steady-state and reactant-
152 stationary assumptions

153 To gain a quantitative understanding of the inequalities expressed in (10)
s« and (11), an accurate assessment of the difference between the solution to
155 system (5) and the reduced equations (7) is required. For our analysis, we
156 compare progress curves of the substrate calculated with numerical solutions
157 to the exact law of mass action system (5a) and the reduced equation (7b)
158 under the steady-state assumption. Note that the reduced rate equation (7b)
150 is effectively the MM equation for the substrate depletion. The concentration
1o error as a function of time is calculated as

S(t) — SMM(t>

e (12)

error(t) =

161 where sy is the substrate concentration calculated using the reduced equa-
12 tion (7b) and |- | denotes the absolute value. To form a scalar measure of
13 the error, we use the maximal value of the concentration error over the time
164 course of the reaction. Contours of the maximum concentration error in the
165 plane of initial enzyme and substrate concentrations (normalized by K)/) are
16s shown in Fig. 1. Additionally, conditions (10) and (11) are plotted for the
17 cases when the right-hand sides are ten times the left-hand sides to represent
165 the much less condition numerically. For all values of k = k_1 /keay = K/ K,

7
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160 condition (11) is sufficient to guarantee small errors when using the MM
o equation. However, Fig. 1A shows that when  is small — implying the
1 reverse step in reaction (1) is negligible — small values of so/ K, yield small
2 errors, regardless of the initial enzyme concentration.

173 The observed errors can be understood by considering the influence of
e small k and sq/K); on the system (5). When k < 1, reaction (1) strongly
s favors the production for P from C as opposed to the disassociation of C' back
e to Eand S. This reduces the reaction mechanism (1) to the van Slyke-Cullen
177 mechanism [30] as Ky ~ K. The requirement sq/K ), > 1 implies that the
s formation of C'is slow compared to the formation P and the disassociation of
o C. Taken together, these two requirements provide an ordering of timescales
1o such that the formation of C' is slow compared to the action of the enzyme
1 to form P, but fast compared to the disassociation of the intermediate com-
1,2 plex, effectively reducing the rate equation for the substrate depletion (5a) to
183§ &~ —kjeps. Similarly, under the same condition, the MM equation for sub-
e strate (7b) reduces to the same expression. Hence, under these conditions,
1ss. the MM equation accurately represent the system dynamics, even though
s condition (11) is violated.

187 The condition for the validity of the reactant-stationary assumption (11)
188 is a sufficient condition for the MM equation to be valid. In essence, this says
19 that for a known set of parameter values, if the reactant-stationary assump-
o tion is valid, the dynamics of the reduced system (7) will closely approximate
w1 the dynamics of the full system (5). However, the MM equation is often used
12 to estimate Ky and V' from experimental data, which requires solving an
103 inverse problem. Solutions to the forward problem do not guarantee the
14 existence or uniqueness of the inverse problem, hence it is not clear that
15 the conditions for the validity of the reduced forward problem correspond to
106 the conditions required to accurately estimate rate constants. This issue is
7 investigated in the following section.

18 3. The inverse problem: Estimation of K,; and V

199 The experimental estimation of the parameters Kj,; and V is used to
20 characterize enzyme-catalyzed reactions. In general, K,; and V' can be esti-
20 mated through either initial rate experiments [see 31, for a recent review| or
200 direct analysis of time course data [28]. In initial rate experiments, a series
203 of enzyme assays with differing substrate concentrations are performed and
204 initial reaction rates are calculated from the linear portion of the progress
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205 curve (after the initial fast transient, t., and before substrate depletion be-
206 comes influential). The MM equation for either substrate or product is then
207 fit to the initial rates as a function of initial substrate concentration, yielding
208 Ky and V. When time course data is used, the integrated implicit [32] or
200 closed-form [33] of the MM equations are fit directly to time series through
210 nonlinear regression, providing estimates for K, and V. Although initial rate
o experiments are more commonly used, they require numerous assays with dif-
212 ferent substrate concentrations to determine K, and V. Alternatively, time
213 course analyses have the advantage that K, and V' can be estimated from
2 a single experiment, making them potentially much cheaper when expensive
25 reactants are required, and less time consuming [34, 35, 36, 7]. Hence, in
216 this work, we consider the problem of parameter estimation directly from
217 progress curves, specifically, those for the concentration of substrate.

218 Inverse problems are typically formulated in terms of an operator, F,
210 mapping the space of parameters, (), to the space of observations, Y, i.e.
F(q) =v, (13)

20 where ¢ € () is a vector of parameters, and y € Y is a vector of observed
21 quantities. In general, F' = (G o H is a composite of the solution operator
22 S, which maps a parameter vector ¢ to a solution vector ¢ of the underlying
23 ordinary differential equation for the rate equations, and and the observation
24 operator R, which takes y to the observable y [37]. For example, if fluorescent
25 markers are used to tag substrate molecules, and fluorescent intensity is
26 measured at times ¢;, G is then the mapping between the fluorescent intensity
27 at times t; and substrate concentration, and H is the solution to the rate
2 equations (7). G effectively samples the solution to the rate equation model at
29 the observation times and converts those concentrations to the experimental
230 observables.

231 For the present study, we assume the concentrations are observed directly,
22 hence G is simply a sampling of the integrated rate equations (5). Specifically,
213 we consider the case in which the concentration of the substrate is measured
2 at discrete times ¢; and H is the solution to (7). The inverse problem consists
255 of finding a parameter vector ¢ solving (13). However, (13) is generally ill-
236 posed due to experimental noise. Even in the absence of experimental error,
23 the inverse problem will be ill-posed, because the MM equation only approx-
23 imates the mass action rate equations (5), even when the steady-state and
230 reactant-stationary assumptions are valid. The exact inverse problem must
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20 then be reformulated as a least-squares optimization problem to minimize
2 the function

ly = F(a)lly (14)

22 where || - ||y is the Ly norm on Y. The sensitivity of (14) to changes in
a3 parameter values is measured by the local condition number for the first
aa  order optimality condition. The condition number is given by the ratio of
25 the maximum and minimum eigenvalues of the matrix

J"(q.) J (q.) - (15)
us In the above expression, J is the Jacobian of the mapping F', ¢, is the
a7 “true” parameter vector and J* denotes the conjugate transpose of J. Ill-
2 conditioning implies small errors in the data (or model) can result in large
a9 errors in the estimated parameters. Although many features of a problem
250 can affect the conditioning (such as proper choice of units) [38], of particular
1 importance when fitting the MM equation is the correlation of the parame-
2 ters. When the parameters are highly correlated the model is incapable of
3 uniquely determining the parameters because, as the correlation coefficient
s tends toward 1, the parameters become linearly dependent. In this case,
s at least one column of J will be approximately a linear combination of the
»6  others, and hence not invertible.

257 Effectively, this dictates when the mass action model (5), which depends
23 on three parameters (ki,k_1,kcat), reduces to the MM model (7) with param-
20 eters (Kpr,V'). Under experimental conditions for which the reactant station-
%0 ary assumption is valid, it is not possible to estimate all three rate constants
1 from the mass action model using time course data. Similarly, within the re-
%2 gion of validity for the reactant stationary assumption, there are sub-regions
%3 in which columns of J become nearly linearly dependent, and hence prohibit
264 estimation of both Ky and V from time course data. To see where this rank
25 deficiency occurs we consider two regions in the so/Kjy—eo/ Ky plane. In
6 both, the conditions for the validity of the reactant stationary assumption
»7  are met. Additionally, in the first case sg < K. Since s < sg for all ¢, we
s can expand (ba) in powers of s/ K. Truncating this expansion at order two

260 leads to v
s s
§= ——— (1 — — | . 1
$ " ( KM) (16)

a0 'To lowest order, s depends only on the ratio of V' to Kj;, and hence the
on - inverse problem of finding both parameters from time course data will become
o extremely ill-conditioned at small substrate concentrations (see, Fig. 2A).

10
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273 Next, consider the case in which the substrate is in great excess, i.e.
s Sg > K. Initially, s =~ sg, allowing for an expansion of § in powers of
25 Kr/so, which, to second order, gives

é%—V(l—K—). (17)

S

s Hence, so long as s > K, the substrate concentration will decrease linearly
o7 with rate —V. Eventually, the progress curve must deviate from the initial
s linearity, and presumably, this curvature should contain information about
a0 Ky, allowing for both parameters to be estimated. However, if the time over
250 which the progress curve is nonlinear is small, or equivalently, the initial linear
21 regime very nearly approaches substrate depletion, parameter estimation will
x fail. Large sq/K)j; can be shown to imply this by comparing the timescale
23 for significant substrate depletion, tg, with the timescale of high curvature,
2 tg. The substrate depletion timescale is given by [10]

~ As Ky + 50
B ’smax| B V

ts (18)
s The high-curvature timescale can be estimated with the aid of the second
286 derivative of the substrate concentration,

VQK MS

= et (19)

27 tg is defined as the ratio of the total change in velocity of the reaction to the
263 maximum acceleration. The maximum acceleration, found by equating (19)
20 with zero, occurs when s = K, /2 for s9 > K);/2, and sy otherwise. Since
20 the present analysis concerns high so/K), the high-curvature timescale is
201 given by

b — AV B 2TK MSO
7 Sk AV (Ka+s0)

22 where AV is the change in reaction velocity through the region of curvature
s and is equal to V. As shown in Fig. 2A, ty measures the time over which
2 the progress curve has significant curvature. Estimation of parameters from
205 time course data will not be possible when ¢ < tg, or, upon substitution of

(20)

11
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206 (18) and (20), when

S < 1. (21)

207 Therefore, as the initial substrate concentration is increased, the proportion
208 Of the time course that can yield information about K,; decreases, and mea-
200 surements will require greater resolution in both time and concentration.
w0 Fig. 2B shows the condition number and the ratio of the substrate deple-
;0 tion timescale to the high-curvature timescale for a large range of so/ K.
32 At small values of so/Kyy, ill-conditioning makes parameter extraction in-
w3 tractable, while at large so/Kjs, measurements must be increasingly precise.
ss ' Thus, substrate concentrations close to K, are desirable when determining
305 parameters.

s 4. Numerical experiments

307 To demonstrate and quantify the regions in which the conditioning of the
38 inverse problem is poor, and the necessary measurements become intractable,
30 We present a systematic numerical analysis of progress curve experiments in
a0 this section.

sn 4.1. Methodology for numerical progress curve experiments

312 Numerical experiments consist of first generating progress curve data from
a3 the mass action rate equations with a known set of rate constants. Then, the
s values of K, and V' corresponding to those rate constants are estimated by
a5 fitting the MM equations to the progress curve. To generate experimental
u6  progress curves it is necessary to choose a set of rate constants (ki, k_1, kcat),
sz and experimental protocol. The experimental protocol consists of defining
us  initial conditions, (s, eq, o, Po), a time span for the experimental observation,
39 tobs, and a sampling frequency w. The system of equations (5) are integrated
2o numerically from t € [0, t,,s] and substrate concentrations are recorded every
21 w™! time units, leading to f,ps w data points {s; (¢;)}.
The data is then fitted using the numerically integrated form of (5a). The
nonlinear regression used to calculate the parameters (K, V') is performed
using the Levenberg—-Marquardt algorithm as implemented in SciPy (version
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0.17.1, http://www.scipy.org). In many cases, supplying good initial condi-
tions for the optimizer used for the regression is crucial to finding accurate
parameter estimates. Since, in actual experiments the values of K, and V
are not known a priori, we attempt to roughly estimate their values from
the time course data to provide initial conditions for the optimization. To
do this, {s; (t;)} is differentiated numerically by central differences to give
approximate rates {$; (¢;)}. Then, using (5a), data at any two time points,
t; and ?; can be used to estimate the parameters through
(85 — 5i) sis;

Ky=-——"%"—-= (22)
SiSj — SjSi

V= (KM +1). (23)

Si

322 In theory, any two points can be used to estimate Kj,; and V', however, it
23 is best to use data for which the velocity is changing at that greatest rate.
2 Hence, we additionally numerically calculate {§; (¢;)} and choose the times
»s directly on either side of the maximum to substitute into (22) and (23). To
»s avoid using data points in the transient regime before the system reaches a
27 quasi-steady state, we consider only the regime for which s(t;) < so/2. For
»s  actual experiments, noise can make calculations of derivatives subject to large
39 errors, hence smoothing techniques must be used. Additionally, numerous
;0 pairs of data points can be used to generate a distribution of estimates, which
s can then be averaged to give initial conditions for the optimization, similar to
32 [39]. Once the initial conditions for the optimization routine are established,
;3 the best-fit values of K); and V' can be systematically estimated.

334 We note that when experimental conditions do not lie in a region for
15 which the reactant stationary assumption is valid, the above technique will
16 naturally provide poor estimates for K, and V. In these regions, we have
;37 also used the true values K,; and V, calculated from the known rate con-
18 stants, as initial conditions. Both methods provide qualitatively similar re-
130 sults throughout the regions of parameter space investigated here, and quan-
a0 titatively agree in the region for which the reactant stationary assumption is
1 valid.

sz 4.2. FErrors in parameter estimates can be large even when the reactant sta-
343 tionary assumption is valid

344 Despite the validity of the reactant stationary assumption being sufficient
us for the MM equation to closely align with the solution to the mass action
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us governing equations, the inverse problem does not provide accurate estimates
w7 for parameters within the same range. Fig. 3 shows errors in estimates of K,
us and V for a wide range of ey/ Ky and so/ K. Below and above the range
10 plotted for sg/Ky, the solutions become numerically unstable due to the
0 conditioning problems discussed in Section 3. It is clear however, that even
31 within the range defined by large and small values of s¢/ Ky, significant errors
32 are present. At high so/Kj and eg/Ky, V' can be accurately determined,
33 but Ky begins to show significant deviation. This is anticipated from the
3 high-so/K); approximation of the substrate rate equation, which depends
35 only on V. Additionally, when so/K); < 1, the error contours follow a line
16 for which ey ~ sg. The condition that enzyme concentration is small relative
7 to that of the substrate was one of the earliest conditions for the validity of
3ss  the MM equations derived from singular perturbation theory [40]. For the
30 forward problem, Segel [10] showed this condition to be overly restrictive, yet
0 it appears to be appropriate for the inverse problem.

361 An explanation for the condition ey < s¢ can be found by comparing the
w2 integrated form of the MM substrate equation with an exponential progress
33 curve that is the limiting solution to the MM equations as so/ K s approaches
s¢  zero. The integrated closed-form of (7b), known as the Schnell-Mendoza
s equation [33], can be written explicitly in terms of the Lambert-W function

366 [41]
» (3_0 L)
s (1) 50 50 KM_KMt
o (2wl

7 Expanding the above expression about zero and truncating at first order

e leads to
kcateot 50
S(t) - KM . kcateot

S0

, (25)

30 where we have used the definition of V' to explicitly show the dependence on
s eg. The exponential solution takes the form

kcat €0t

ex t o
So (D) _ "Ry (26)
S0
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s Comparing (25) and (26) shows that the correction provided by the MM so-
sz lution over the exponential progress curve becomes decreasingly significant
w3 as eg/sy becomes large. Fig 4A compares the mean concentration errors
s between the best-fit solutions and the “true” solutions for both the MM
w5 equation and an exponential fit. At small values of eq/sg, the MM equation
srs  provides a distinctly better fit than the exponential solution, allowing both
s K and V to be estimated from a single progress curve. As eg/sq increases,
s the two fitting functions eventually provide the identical fits. This corre-
;9 sponds to an exponential increase in the variance of the estimated parame-
w0 ters (Fig. 4B), and indicates that only the ratio V/ K, can be determined
;1 in this range.

2 4.3. Fitting the initial substrate concentration does not significantly alter es-
383 timates of Ky and V

384 Even when the reactant stationary assumption is valid, a small amount
ss  of substrate will be consumed in the initial transient period. Hence, the sub-
;6 strate concentration at the start of the reaction may not exactly correspond
ss7 to that at the start of the quasi-stead-state phase. Although this difference
;s 1s small, it is not clear whether this can noticeably alter the estimation of
0 Ky and V. Additionally, time course measurements often employ optical
s0 techniques to collect concentration data. Without time consuming calibra-
s tion curve experiments to relate the fluorescent intensity to concentration
s2  directly, only relative concentrations are known. For these reasons, sy can be
.3 treated as an additional unknown parameter for the regression analysis [42].
304 Fig. 5 shows error contours for estimates of Kj;, V and sy for different
ss  experimental conditions. Similar to when s( is assumed known, the errors
w6 in Ky and V follow lines of constant ey/sy at low substrate concentration.
;7 Additionally, Fig. 5C shows that the best-fit value of sy corresponds to
w8 the true value of the initial substrate concentration for conditions where the
30 reactant stationary assumption is valid. These results indicate that including
wo  So as a free parameter can yield similar information about the constants K,
1 and V', even in those cases when no definite concentrations are known.

w2 4.4. Data noise further reduces the range of conditions providing accurate
403 estimates of Ky and V

404 In any physical experiment, some finite amount of measurement error will
ws be present. To understand how signal noise affects the estimation of Kj; and
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ws V', we add noise to the numerically-calculated solution of (5a) such that the

w07 data becomes
{si(t:)}s = {si(t:)} +m (9), (27)

ws  where 7 is a pseudo-random number drawn from a Gaussian distribution of
w0 mean zero and standard deviation 6. The data is then fitted as described in
a0 Section 4.1. However, the noise in the data precludes the use of the method
s described for estimating good initial conditions for the solver. Without a
sz smoothing procedure, the difference formulas (22) and (23) can lead to large
a3 errors. In order to eliminate possible uncertainty arising from the determi-
s nation of good initial guesses from experimental data, we chose the “true”
a5 values of Ky and V' as the starting point for the optimization algorithm.
416 Contour plots of the errors in the estimated values of K, and V' for the
a7 case of § = 0.01 are shown in Fig. 6. Qualitatively, they exhibit the same
ss  behavior as the noise-free error contours (Fig. 3), and display a negligible in-
a0 crease in the magnitude of the error. However, a meaningful characterization
w20 of the quality of a fit is the variance in the estimated model parameters. To
w1 calculate the variance of K, and V', the covariance matrix is first calculated
422 as

Cov = (J_TJ_Y1 : (28)
2 where J is the Jacobian evaluated numerically at the terminal point of the
w24 optimization. The variance for K,; and V' are then the diagonal elements
w5 of Cov. As shown in Fig. 7, the range of experimental conditions leading
w6 to precise estimates of Kj; becomes significantly constrained when even a
w27 small amount of measurement error is present. Only in the region where
ws So/Ky ~ 1 and ey/ Ky < 1 are the estimated Kj; values robust. At larger
»0 initial substrate concentrations, the noise in the data sufficiently smears the
a0 sharply curved region of the substrate progress curve, making extraction
a1 of Ky prone to uncertainty. At small initial substrate concentrations, the
.2 added noise reduces the distinction between the exponential and MM solution
33 branches shown in Fig. 4A, making independent determination of K, and V'
s more difficult. Hence, even with only slight measurement error the reliability
a5 of estimated parameters falls significantly as the ratio sq/K); departs from
436 unity.

47 B. Discussion

438 In this work, we have carried out a systematic analysis of the forward and
30 inverse problems of the MM equation for the single substrate, single enzyme
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ao catalyzed reaction. For the forward problem, it is widely believe that the
w1 MM equation accurately captures the kinetics of simple enzyme-catalyzed
w2 reactions when the reactant-stationary assumption holds true. Through a
w3 concentration error analysis, we find that satisfying the reactant-stationary
aa assumption is a sufficient condition for the validity of the MM equation to
ws describe the time course of the enzyme catalyzed reaction. However, the
«s MM equation can accurately describe the reaction dynamics, even when the
w7 reactant-stationary assumption is invalid when Kg/K < 1 and so/ Ky > 1
us  (see, Fig. 1A).

449 As we have shown in this paper, the validity of the MM equation to de-
w0 scribe the dynamics of the enzyme catalyzed reaction does not imply that K,
1 and V' ocan be obtained from experimental progress curves conducted within
s2 the parameter constraints established by the reactant stationary assumption.
ss3 This highlights an important problem encountered in parameter estimation.
e Even when the MM equation very accurately fits the experimental data, the
5 fitted parameters may not accurately represent their true values. Without
6 a thorough analysis of the inverse problem, it is not possible to distinguish
7 between good fits that provide poor parameter estimates, and good fits that
w3 accurately estimate parameters.

459 Most of the research done on the analysis of enzyme progress curves has
wo focused on the nonlinear regression analysis and algorithms to fit progress
w1 curve data [43, 35, 28, 44]. Additional research has investigated the design of
w2 progress curve experiments from a computational and theoretical standpoint
w3 [17]. In these works, either experimental data is collected, or artificial data is
we  generated by adding noise to numerical solutions the integrated MM equation
w5 for prescribed values of K, and V. Then, the artificial data is fitted in
ws order to estimate Kj; and V. Although this procedure can identify values
w7 of Ky and V' for which progress curves can be well-fit by the integrated
ws MM equation, it makes no connection to the underlying microscopic rate
w0 constants. Hence, these studies do not directly assess whether the predicted
a0 values of K, and V' are connected to their microscopic definitions. In the
an present study we have addressed this issue through two approaches. We
a2 first considered the asymptotic behavior of the MM equation under distinct
a3 experimental conditions (Section 3). Then, we extracted data from numerical
s solutions to the underlying mass-action system for prescribed microscopic
a5 rate constants, comparing the predicted values of Kj; and V' with those
as  derived from the prescribed values of ki, k_1, and k.q.

ar7 The detailed error analysis presented in Section 4 provides guidelines for
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ars the ranges of experimental conditions allowing for true parameter estimation.
a0 Specifically, we see that, in order for both Kj,; and V to be derived from
w0 substrate progress curve measurements:

481 1. The initial substrate concentration must be within approximately an
482 order of magnitude of the Michaelis constant, that is so = O(Ky),
483 especially when significant noise is present in the data. When the initial
aga substrate concentration is in great excess of the Michaelis constant, that
485 is sg > Ky, a linear fit to the initial velocity will yield V', but provide
486 no information about Kj;. When the initial substrate concentration
ag7 is small compared to the Michaelis constant, that is so < Ky, an
488 exponential fit to the progress curve will provide an estimate for the
489 ratio of V' to K, but neither parameter independently.

490 2. The initial enzyme concentration must be smaller than the Michaelis
201 constant, that is eg/Kjy < 1, especially when significant noise is
492 present in the data.

403 3. Data points should be collected around the time point where the time
404 course curvature is at it highest. The length of the high-curvature
495 region is quantified through the timescale tg = 27K p50/4V (K + o).
496 to must not be significantly smaller than tg if both K, and V are
a07 to be estimated from a single progress curve. Theoretically, any two
498 points could be used to estimate Kj; and V', but empirical statistical
499 analysis carried out elsewhere [14] shows that a minimum of 12 points
500 is ideal for nonlinear regression analysis. These points should sample
501 the region around the point of maximum curvature defined by t¢ (see,
502 Fig. 2A)

503 The above points address important questions necessary to design exper-

soa iments: What initial substrate concentrations should be used? What initial
sos enzyme concentration should be used? At what time point should data be
so6 collected? How many data points should be collected along the curve?

507 Interestingly, only the first recommendation coincides with previous anal-
sos ysis done by Duggleby and Clarke [17], who recommend an initial substrate
so0 concentration of approximately 2.5K,,. However, we additionally provide
s error contours for parameters estimated from experiments conducted under
su conditions far from this optimal value. This analysis shows that reasonable
s12 estimates can be expected so long as the initial substrate concentration is
513 within an order of magnitude of the optimal value, that is 0.25-25 K};. Fur-
su thermore, noise in the data restricts this range to be significantly smaller
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si5 than the theoretical range for the validity of the MM equation.

516 The current experimental practice for data collection is that measure-
sz ments should be made until the extent of the reaction reaches 90%. Dug-
sis gleby and Clarke [17] finds that there is no advantage of extending beyond
s10 this point. In our analysis, we discovered that errors in Kj; and V' are min-
s20 imized when data is collected in the region around the point of maximum
s curvature defined by g (see, Figure 2A).

522 In general, since these requirements listed above depend on K, they can-
523 not be assessed before conducting an experiment. However, they do provide
s2a - useful checks that can reduce the number of experiments required, especially
s when compared to parameter estimation based on initial rate experiments.
s26 1f a progress curve for a given initial substrate concentration cannot be fitted
s27 by an exponential, and has a curvature that can be resolved, nonlinear regres-
s28  sion of the progress curve will provide accurate estimates of both K,; and V.
so0 If, say, the progress curve can reasonably be fit by an exponential, a second
s experiment with substantially larger initial substrate concentration should
s be performed. Then, the second progress curve, so long as the increase in
s initial substrate concentration is great enough to surpass the substrate range
533 for with the kinetics are exponential, should yield either a curve from which
s both parameters can be estimated, or a curve from which V' can be estimated.
s Hence, the two experiments are sufficient to make preliminary estimates of
s both Ky and V. This is in contrast to initial rate experiments, which re-
s37  quire a large number of experiments such that a curve of the initial reaction
s38 velocity as a function of sy can be produced. For accurate measurement
s of Ky and V' from initial rate experiments, both large and small values of
s20 the substrate (relative to Kj;) must be used [14, 31]. Hence, progress curve
s analysis will always require fewer experiments than initial rate experiments.
se2  Additionally, if initial rate experiments are used, progress curve analysis can
si3 be used as a check the accuracy of the estimates. Values of K,; and V' ob-
s« tained from fitting (5a) to the initial rate data should correspond to those
ss5  values obtained from progress curve analysis of the experiments for which
ss6  the initial rates are intermediate between 0 and V.

547 In conclusion, this work both advocates and cautions the use of progress
sis  curve analysis in modeling and determining kinetic parameters for enzymatic
sa0 rTeactions. Progress curve assays can greatly reduce the number of exper-
ss0 iments (and hence the cost and quantity of reagents) needed, while still
ss1 providing accurate measurements. However, it is essential to not conflate an
ss2 accurate fit with an accurate estimate of K, and V. If this is kept in mind,
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53 progress curve analysis has significant advantages over the use of initial rate
55 experiments.
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Figure 1: Concentration error contours in the e¢y/Ky—so/ Ky plane. The maximal
concentration errors are plotted in the plane of initial enzyme and substrate concentrations,
normalized by Kj,;. The dashed black line corresponds to the condition for steady-state
assumption (10), while the solid black line corresponds to the reactant stationary condi-
tion (11). Each panel shows different values of Kg and K, while Kj; = 1 for all cases.
Panel A: Kg =0.1, K = 0.9; Panel B: Kg = 0.5, K = 0.5; Panel C: Kg =0.9, K =0.1.
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Figure 2: (A) Substrate progress curves for high, intermediate and low initial
substrate concentrations. Substrate concentrations for differing values of so/K)s are
plotted as a function of time. When the initial substrate concentration is large (sop =
100K 5y, dot-dashed line) the substrate depletion is linear until nearly all substrate has been
depleted. With low initial substrate concentration (sqg = Ky, dotted line), the depletion
follows a simple exponential. At intermediate values (sg = 10Ky, bold solid line), the
concentration follows the full hyperbolic rate law and both K,; and V can be uniquely
identified through regression. The non-shaded region marks the timescale tg for the bold
curve, centered at the point of maximal curvature for the time course. Inset shows the
curvature of the bold progress curve as a function of time, with the {g-region demarcated
by dashed lines. Parameters for the case shown are: (ki,k_1,kcat) = (1.0,0.5,0.5), so =
10Ky, eo = Ky. (B) Condition number (solid line) and timescale ratio tg/tg
(dashed line) as functions of the sy/Kj;. At small values of so/Kjs, the inverse
problem becomes ill-conditioned. At large values of sg/Kjs, the region of the progress
curve providing information about Kj; becomes increasingly small.
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Figure 3: Error contours of the estimated values Kj; and V. Errors in the predicted
values of K; and V for different initial substrate and enzyme concentrations are shown to
deviate from the conditions for the validity of the reactant stationary assumption (shown
as the solid line). The dashed line corresponds to condition (10). For sg/Kjps values
lower than 1072 and greater than 102, the fitting algorithm becomes unstable. Note
that the color bar scale is logarithmic, showing errors can be significant. In this figure,

Ks = K = 10.
A, 0.06 \ \ B. 0.10
— Michaelis-Menten
0.0sl| ~- exponential
0.08}
_ 0.04f ﬁc'f
e & 0.06
—_ ——
L —_
L © ’
- 0.03 8 ,'
©
S S S 0.04 )
= 002 %’ N
1
1
0.02} N
0.01} ,
’
’
.
0.00 : s 0.00 - =l
1073 1072 10 10° 10! 107 1072 10 10° 10!
€0/ so €o/s0

Figure 4: (A) Mean concentration error, and (B) Mean variance in estimated
parameters for the Michaelis—Menten equation and an exponential model. For
initial enzyme concentrations smaller than initial substrate concentrations, the Michaelis—
Menten equation provides a noticeably better approximation of the true progress curve
than does the exponential model, allowing for both V and Kj; to be uniquely deter-
mined. Parameters for the case shown are: (ki,k_1,kcat) = (1.0,0.5,0.5), tons = 3ts,
w = tobs/1000, so = 1.
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Figure 5: Error contours when initial substrate concentration, sg, is estimated
from data. K, and V prediction errors (panels A and B, respectively) are qualitatively
the same as those found when sy is known a priori. The error contours in estimating
s0 (panel C) follows the reactant stationary condition, and show accurate estimation is
possible when initial enzyme concentration is high and initial substrate concentration
is low. Parameters for the case shown are: (ki,k_1,kecat) = (1.0,0.5,0.5), tops = 3ts,
w = tobs/l()().
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Figure 6: Error contours for data with Gaussian noise. When noise is added to the
simulated data (6 = 0.01), errors in the estimated parameters worsen compared to noise-
free data. Parameters for the case shown are: (ki,k_1,kcat) = (1.0,0.5,0.5), tops = 3ts,
w = tobs/1000.
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Figure 7: Computed parameter variance for noisy and noise-free data. Estimated
variance in the parameters K, (Panels A and C) and V' (Panels B and D) for cases with
d = 0.01 (A and B) and no noise (C and D). Even a small amount of noise restricts the
range of conditions providing robust parameter estimates. Parameters for the case shown

are: (k1,k_1,kcat) = (1.0,0.5,0.5), tops = 3ts, w = tobs/1000.

29


https://doi.org/10.1101/068015
http://creativecommons.org/licenses/by-nd/4.0/

