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Abstract

The conditions under which the Michaelis–Menten equation accurately cap-
tures the steady-state kinetics of a simple enzyme-catalyzed reaction is con-
trasted with the conditions under which the same equation can be used to
estimate parameters, KM and V , from progress curve data. Validity of the
underlying assumptions leading to the Michaelis–Menten equation are shown
to be necessary, but not sufficient to guarantee accurate estimation of KM

and V . Detailed error analysis and numerical “experiments” show the re-
quired experimental conditions for the independent estimation of both KM

and V from progress curves. A timescale, tQ, measuring the portion of the
time course over which the progress curve exhibits substantial curvature pro-
vides a novel criterion for accurate estimation of KM and V from a progress
curve experiment. It is found that, if the initial substrate concentration is
of the same order of magnitude as KM , the estimated values of the KM and
V will correspond to their true values calculated from the microscopic rate
constants of the corresponding mass-action system, only so long as the initial
enzyme concentration is less than KM .
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1. Introduction1

The fundamental equation of enzyme kinetics is the Michaelis–Menten2

(MM) equation, which relates the rate of an enzyme-catalyzed reaction to3

the concentration of substrate [1, 2]. The MM equation is typically derived4

using the steady-state assumption as proposed by Briggs and Haldane [3]. It5

is characterized by two parameters: the Michaelis constant, KM , which acts6

as an apparent dissociation constant under the assumption of steady-state,7

and the limiting rate, V (or the catalytic constant, kcat if the enzyme concen-8

tration is known) [4]. These parameters are often viewed as thermodynamic9

properties of an enzyme–substrate pair, and hence depend on conditions10

such as pH and temperature, but not on time-dependent enzyme nor sub-11

strate concentrations [5]. As a result, measuring KM and V are essential to12

characterizing enzymatic reactions [6]. However, the treatment of KM and13

V as constants with respect to enzyme and substrate concentrations relies14

on simplifying assumptions relating to the quasi-steady-state of the interme-15

diate complex formed by the enzyme and substrate [7]. If conditions for the16

reaction lie outside the range for which the simplifying assumptions are valid,17

KM becomes dependent on the concentration of the substrate, and hence, on18

time. Experiments to estimate KM must be conducted under conditions for19

which the MM equation is valid [7, 8]. This can be problematic since it is20

generally necessary to know KM a priori in order to insure the experimental21

conditions meet the requirements for the using MM equation. Additionally,22

values of KM and V measured under valid experimental conditions can only23

be transferred to cases that also meet the requirements. Since this is often24

not the case in vivo, using values of KM and V measured in vitro to predict25

the activity of an enzyme in living organisms can often be seriously unreliable26

[9].27

The range of substrate and enzyme concentrations over which the MM28

equation can be applied has long history of theoretical investigation [see 8,29

for a recent review], and requires two assumptions be valid. The first, called30

the steady-state assumption, implies that the timescale for the formation of31

the intermediate complex is much faster than that of the conversion of the32

substrate into product [10]. The second, called the reactant-stationary as-33

sumption, implies that the fast, transient period in which the steady-state34

population of intermediate complex first forms, depletes only a negligible35
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amount of substrate [11]. It has been shown that the reactant-stationary as-36

sumption is more restrictive and, if valid, the reaction velocity (after the ini-37

tial transient period) will follow the MM equation and be well-characterized38

by the parameters KM and V [10, 12, 8].39

At first sight, it is tempting to assume that, when the MM equation is40

valid, experimental data should also yield accurate estimates of KM and V41

[13, 14]. However, the conditions for the validity of the steady-state and42

reactant-stationary assumptions are based on a forward problem, i.e. one in43

which the parameters are known. Estimating parameters from experimental44

data, on the other hand, is an inverse problem [15]. Extracting true values of45

parameters from data requires a stable and unique inverse mapping that is46

not guaranteed by the existence of a solution to the forward problem [see 16,47

for example]). Hence, even in cases where the assumptions underlying the48

MM equation are valid, and the MM equation accurately fits an experimental49

progress curve, the values of KM and V estimated from the data may differ50

significantly from their true values.51

Understanding the conditions for which the inverse problem is well posed52

is crucial for the effective and efficient design of experiments. When designing53

enzyme progress-curve experiments, one typically must choose the initial con-54

centrations of the substrate and enzyme (although the enzyme concentration55

may not always be adjustable), as well as the time span and sampling fre-56

quency for data collection [17]. Hence, useful experiments require conditions57

that both satisfy the conditions for which MM kinetics are to be expected,58

and lead to the most informative set of data for constraining parameter val-59

ues. Early use of progress curves to determine kinetic parameters focused on60

linearization of the rate equations or efficient integration and optimization61

algorithms for fitting parameters [18, 19, 20, 21, 22]. As these algorithms62

evolved, computational tools for analysis of progress curve data increased63

the accessibility and popularity of progress curve experiments [23, 24, 25].64

However, less attention has been paid to the design of progress curve ex-65

periments. Initial research applied sensitivity analysis [26], and information-66

theoretic approaches [27] to estimate optimal initial substrate concentrations67

and the most sensitive portion of the progress curve, and hence, the most use-68

ful portion for parameter estimation. Vandenberg et al. [26] found that the69

largest feasible substrate concentration and the section of the progress curve70

for which the substrate concentration is between 60-80% of the initial value71

maximized the sensitivity of the fitted parameters. However, maximizing the72

sensitivity of the data collection range does not necessarily guarantee min-73
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imization of the errors in the fitted parameters. To address this, Duggleby74

and Clarke [17] assessed the optimal initial substrate concentration and data75

spacing under the criterion of minimal standard error of KM . The optimal76

design of Duggleby and Clarke differs from that of Vandenberg et al. in that77

an initial substrate concentration 2 to 3 times KM is recommended. It was78

also found that data should be collected until the extent of the reaction is79

90%. These recommendations have become the de facto “rule of thumb” for80

progress curve experimental design. In determining these recommendations,81

the authors evaluated their parameter estimates in comparison to parame-82

ter values obtained through initial rate experiments on the same enzymatic83

systems, and to simulated progress curves calculated by integrating the MM84

equation and adding random fluctuations. Hence, no connection was made to85

the underlying microscopic rate constants describing the mass-action kinetics86

of the systems, meaning the accuracy of the estimates could not be assessed87

relative to the “true” values of KM and V as defined in terms of microscopic88

rate constants. A similar approach was later taken to evaluate the capacity89

of a closed-form solution to the MM equation to fit progress curves [28].90

The work of Duggleby and colleagues provide guidance for when the pa-91

rameters in the MM equation, KM and V , are most robustly estimated from92

progress curve experiments, but do not assess whether the fitted parame-93

ters are the same as those defined in terms of microscopic rate constants.94

With improved fitting algorithms and greater computational power, interest95

has grown in the direct determination of microscopic rate constants through96

fitting of progress curves with numerically-integrated rate equations [29].97

Although appealing, this approach can only provide accurate estimates for98

parameters that are sensitive to the given experimental conditions. Under99

experimental conditions for which the mass-action rate equations reduce to100

the MM equation, this procedure will necessarily lead to overfitting. Design-101

ing experiments from which KM and V can be unambiguously determined102

requires assessing the experimental conditions in terms of the requirements103

for the validity and uniqueness of the MM equation. Moreover, given the104

massive amounts of data generated by the biomedical science community,105

scientists must be cognizant of the strengths and weakness of quantitative106

approaches in order to guarantee the reproducibility of published research107

data.108

In this work, we seek to address the issue of estimating parameters from109

progress curves of single-substrate, single-enzyme-catalyzed reactions quanti-110

tatively. In Section 2, we review the validity of the steady-state and reactant-111
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stationary assumptions, and quantify errors incurred by making these as-112

sumptions. In Section 3, we discuss the inverse problem associated with esti-113

mating parameters based on the MM equation. In doing so, we derive a new114

condition based on time-scale separation of the linear and nonlinear portions115

of the progress curve that indicates when both KM and V can be estimated116

from a single experiment. Numerical experiments are then conducted in Sec-117

tion 4 to verify and quantify the range of experimental conditions that allow118

for veracious estimations of KM and V . We conclude with a discussion of119

the results in Section 5.120

2. The forward problem: the Michaelis–Menten equation and the121

conditions for its validity122

In the simplest, single-enzyme and single-substrate reaction, the enzyme
E reacts with the substrate S to form and intermediate complex C, which
then, under the action of the enzyme, forms a product P and releases the
enzyme,

E + S
k1



k−1

C
kcat

→ E + P (1)

where k1 and k−1 are microscopic rate constants, and kcat is the catalytic
constant [4]. Applying the law of mass action to reaction mechanism (1)
yields four rate equations

ė = −k1es+ k−1c+ kcatc (2a)

ṡ = −k1es+ k−1c (2b)

ċ = k1es− k−1c− kcatc (2c)

ṗ = kcatc, (2d)

where lowercase letters represent concentrations of the corresponding up-123

percase species. Typically, in test tube enzyme binding assays the initial124

conditions are taken to be125

(e, s, c, p) |t=0 = (e0, s0, 0, 0) . (3)

Additionally, the system obeys two conservation laws, the enzyme and sub-
strate conservation laws,

e (t) + c (t) = e0 (4a)

s (t) + c (t) + p (t) = s0. (4b)
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Using (4a) to decouple the enzyme concentrations, the redundancies in the
system (2) are eliminated to yield

ṡ = −k1 (e0 − c) s+ k−1c (5a)

ċ = k1 (e0 − c) s− (k−1 + kcat) c (5b)

where e(t) and p(t) are readily calculated once s(t) and c(t) are known. If,126

after an initial, rapid buildup of c, the rate of depletion of c approximately127

equals its rate of formation, c is assumed to be in a quasi-steady state [3],128

i.e.129

ċ ≈ 0 for t > tc, (6)

where tc is the timescale associated with the initial transient buildup of c
[10]. The steady-state assumption (6), in combination with (5), leads to

c =
e0s

KM + s
(7a)

ṡ = − V s

KM + s
, (7b)

where V = kcate0 and KM = (k−1 + kcat) /k1. Hence, the system (2) is re-130

duced to an algebraic-differential equation systems with one single differen-131

tial equation for s. However, since (7) is only valid after the initial transient132

time period, tc, a boundary condition for s at t = tc must be supplied. To133

do this, it is assumed that very little substrate is consumed during the initial134

transient period (the reactant-stationary assumption) such that135

s(t < tc) ≈ s0, (8)

which provides an initial condition for (5a) under the variable transformation136

t→ t−tc. Substituting (7a) into (2d), one obtains, the rate of the reaction (1)137

ṗ = v =
V s

KM + s
, (9)

relating the rate of product formation to the substrate concentration. Equa-138

tion (9) is the MM equation, and the system of equations (7a ), (7b), and139

(9) govern the dynamics the complex, substrate, and product, respectively,140

under the steady-state assumption.141
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The conditions under which the steady-state assumption (6) and reactant-142

stationary assumption (8) are valid have been extensively studied. Segel [10]143

showed that the steady-state assumption is valid so long as144

e0
KM + s0

�
(

1 +
KS

K

)(
1 +

s0
KM

)
, (10)

where KS = k−1/k1, and K = kcat/k1. For the reactant-stationary assump-145

tion to be valid, they derived the condition146

e0
KM

�
(

1 +
s0
KM

)
, (11)

which is more stringent than condition (10), and hence dictates the condi-147

tions under which the MM equation can be applied. Interestingly, it has148

been shown that condition (11) is independent from (10) for several enzyme149

catalyzed reactions [11].150

2.1. Quantitative analysis of the errors induced by the steady-state and reactant-151

stationary assumptions152

To gain a quantitative understanding of the inequalities expressed in (10)153

and (11), an accurate assessment of the difference between the solution to154

system (5) and the reduced equations (7) is required. For our analysis, we155

compare progress curves of the substrate calculated with numerical solutions156

to the exact law of mass action system (5a) and the reduced equation (7b)157

under the steady-state assumption. Note that the reduced rate equation (7b)158

is effectively the MM equation for the substrate depletion. The concentration159

error as a function of time is calculated as160

error(t) =

∣∣∣∣s(t)− sMM(t)

s0

∣∣∣∣ , (12)

where sMM is the substrate concentration calculated using the reduced equa-161

tion (7b) and | · | denotes the absolute value. To form a scalar measure of162

the error, we use the maximal value of the concentration error over the time163

course of the reaction. Contours of the maximum concentration error in the164

plane of initial enzyme and substrate concentrations (normalized by KM) are165

shown in Fig. 1. Additionally, conditions (10) and (11) are plotted for the166

cases when the right-hand sides are ten times the left-hand sides to represent167

the much less condition numerically. For all values of κ = k−1/kcat = KS/K,168
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condition (11) is sufficient to guarantee small errors when using the MM169

equation. However, Fig. 1A shows that when κ is small – implying the170

reverse step in reaction (1) is negligible – small values of s0/KM yield small171

errors, regardless of the initial enzyme concentration.172

The observed errors can be understood by considering the influence of173

small κ and s0/KM on the system (5). When κ � 1, reaction (1) strongly174

favors the production for P from C as opposed to the disassociation of C back175

to E and S. This reduces the reaction mechanism (1) to the van Slyke–Cullen176

mechanism [30] as KM ≈ K. The requirement s0/KM � 1 implies that the177

formation of C is slow compared to the formation P and the disassociation of178

C. Taken together, these two requirements provide an ordering of timescales179

such that the formation of C is slow compared to the action of the enzyme180

to form P , but fast compared to the disassociation of the intermediate com-181

plex, effectively reducing the rate equation for the substrate depletion (5a) to182

ṡ ≈ −k1e0s. Similarly, under the same condition, the MM equation for sub-183

strate (7b) reduces to the same expression. Hence, under these conditions,184

the MM equation accurately represent the system dynamics, even though185

condition (11) is violated.186

The condition for the validity of the reactant-stationary assumption (11)187

is a sufficient condition for the MM equation to be valid. In essence, this says188

that for a known set of parameter values, if the reactant-stationary assump-189

tion is valid, the dynamics of the reduced system (7) will closely approximate190

the dynamics of the full system (5). However, the MM equation is often used191

to estimate KM and V from experimental data, which requires solving an192

inverse problem. Solutions to the forward problem do not guarantee the193

existence or uniqueness of the inverse problem, hence it is not clear that194

the conditions for the validity of the reduced forward problem correspond to195

the conditions required to accurately estimate rate constants. This issue is196

investigated in the following section.197

3. The inverse problem: Estimation of KM and V198

The experimental estimation of the parameters KM and V is used to199

characterize enzyme-catalyzed reactions. In general, KM and V can be esti-200

mated through either initial rate experiments [see 31, for a recent review] or201

direct analysis of time course data [28]. In initial rate experiments, a series202

of enzyme assays with differing substrate concentrations are performed and203

initial reaction rates are calculated from the linear portion of the progress204
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curve (after the initial fast transient, tc, and before substrate depletion be-205

comes influential). The MM equation for either substrate or product is then206

fit to the initial rates as a function of initial substrate concentration, yielding207

KM and V . When time course data is used, the integrated implicit [32] or208

closed-form [33] of the MM equations are fit directly to time series through209

nonlinear regression, providing estimates forKM and V . Although initial rate210

experiments are more commonly used, they require numerous assays with dif-211

ferent substrate concentrations to determine KM and V . Alternatively, time212

course analyses have the advantage that KM and V can be estimated from213

a single experiment, making them potentially much cheaper when expensive214

reactants are required, and less time consuming [34, 35, 36, 7]. Hence, in215

this work, we consider the problem of parameter estimation directly from216

progress curves, specifically, those for the concentration of substrate.217

Inverse problems are typically formulated in terms of an operator, F ,218

mapping the space of parameters, Q, to the space of observations, Y , i.e.219

F (q) = y, (13)

where q ∈ Q is a vector of parameters, and y ∈ Y is a vector of observed220

quantities. In general, F = G ◦ H is a composite of the solution operator221

S, which maps a parameter vector q to a solution vector ȳ of the underlying222

ordinary differential equation for the rate equations, and and the observation223

operator R, which takes ȳ to the observable y [37]. For example, if fluorescent224

markers are used to tag substrate molecules, and fluorescent intensity is225

measured at times ti, G is then the mapping between the fluorescent intensity226

at times ti and substrate concentration, and H is the solution to the rate227

equations (7). G effectively samples the solution to the rate equation model at228

the observation times and converts those concentrations to the experimental229

observables.230

For the present study, we assume the concentrations are observed directly,231

henceG is simply a sampling of the integrated rate equations (5). Specifically,232

we consider the case in which the concentration of the substrate is measured233

at discrete times ti and H is the solution to (7). The inverse problem consists234

of finding a parameter vector q solving (13). However, (13) is generally ill-235

posed due to experimental noise. Even in the absence of experimental error,236

the inverse problem will be ill-posed, because the MM equation only approx-237

imates the mass action rate equations (5), even when the steady-state and238

reactant-stationary assumptions are valid. The exact inverse problem must239
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then be reformulated as a least-squares optimization problem to minimize240

the function241

||y − F (q)||2Y , (14)

where || · ||Y is the L2 norm on Y . The sensitivity of (14) to changes in242

parameter values is measured by the local condition number for the first243

order optimality condition. The condition number is given by the ratio of244

the maximum and minimum eigenvalues of the matrix245

J∗ (q∗) J (q∗) . (15)

In the above expression, J is the Jacobian of the mapping F , q∗ is the246

“true” parameter vector and J∗ denotes the conjugate transpose of J . Ill-247

conditioning implies small errors in the data (or model) can result in large248

errors in the estimated parameters. Although many features of a problem249

can affect the conditioning (such as proper choice of units) [38], of particular250

importance when fitting the MM equation is the correlation of the parame-251

ters. When the parameters are highly correlated the model is incapable of252

uniquely determining the parameters because, as the correlation coefficient253

tends toward 1, the parameters become linearly dependent. In this case,254

at least one column of J will be approximately a linear combination of the255

others, and hence not invertible.256

Effectively, this dictates when the mass action model (5), which depends257

on three parameters (k1,k−1,kcat), reduces to the MM model (7) with param-258

eters (KM ,V ). Under experimental conditions for which the reactant station-259

ary assumption is valid, it is not possible to estimate all three rate constants260

from the mass action model using time course data. Similarly, within the re-261

gion of validity for the reactant stationary assumption, there are sub-regions262

in which columns of J become nearly linearly dependent, and hence prohibit263

estimation of both KM and V from time course data. To see where this rank264

deficiency occurs we consider two regions in the s0/KM–e0/KM plane. In265

both, the conditions for the validity of the reactant stationary assumption266

are met. Additionally, in the first case s0 � KM . Since s < s0 for all t, we267

can expand (5a) in powers of s/KM . Truncating this expansion at order two268

leads to269

ṡ = − V s

KM

(
1− s

KM

)
. (16)

To lowest order, ṡ depends only on the ratio of V to KM , and hence the270

inverse problem of finding both parameters from time course data will become271

extremely ill-conditioned at small substrate concentrations (see, Fig. 2A).272
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Next, consider the case in which the substrate is in great excess, i.e.273

s0 � KM . Initially, s ≈ s0, allowing for an expansion of ṡ in powers of274

KM/s0, which, to second order, gives275

ṡ ≈ −V
(

1− KM

s

)
. (17)

Hence, so long as s� KM , the substrate concentration will decrease linearly276

with rate −V . Eventually, the progress curve must deviate from the initial277

linearity, and presumably, this curvature should contain information about278

KM , allowing for both parameters to be estimated. However, if the time over279

which the progress curve is nonlinear is small, or equivalently, the initial linear280

regime very nearly approaches substrate depletion, parameter estimation will281

fail. Large s0/KM can be shown to imply this by comparing the timescale282

for significant substrate depletion, tS, with the timescale of high curvature,283

tQ. The substrate depletion timescale is given by [10]284

tS =
∆s

|ṡmax|
=
KM + s0

V
. (18)

The high-curvature timescale can be estimated with the aid of the second285

derivative of the substrate concentration,286

s̈ =
V 2KMs

(KM + s)3
. (19)

tQ is defined as the ratio of the total change in velocity of the reaction to the287

maximum acceleration. The maximum acceleration, found by equating (19)288

with zero, occurs when s = KM/2 for s0 ≥ KM/2, and s0 otherwise. Since289

the present analysis concerns high s0/KM , the high-curvature timescale is290

given by291

tQ =
∆V

s̈|s=KM/2

=
27KMs0

4V (KM + s0)
, (20)

where ∆V is the change in reaction velocity through the region of curvature292

and is equal to V . As shown in Fig. 2A, tQ measures the time over which293

the progress curve has significant curvature. Estimation of parameters from294

time course data will not be possible when tQ � tS, or, upon substitution of295
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(18) and (20), when296

27
s0

KM

4

(
1 +

s0

KM

)2 � 1. (21)

Therefore, as the initial substrate concentration is increased, the proportion297

of the time course that can yield information about KM decreases, and mea-298

surements will require greater resolution in both time and concentration.299

Fig. 2B shows the condition number and the ratio of the substrate deple-300

tion timescale to the high-curvature timescale for a large range of s0/KM .301

At small values of s0/KM , ill-conditioning makes parameter extraction in-302

tractable, while at large s0/KM , measurements must be increasingly precise.303

Thus, substrate concentrations close to KM are desirable when determining304

parameters.305

4. Numerical experiments306

To demonstrate and quantify the regions in which the conditioning of the307

inverse problem is poor, and the necessary measurements become intractable,308

we present a systematic numerical analysis of progress curve experiments in309

this section.310

4.1. Methodology for numerical progress curve experiments311

Numerical experiments consist of first generating progress curve data from312

the mass action rate equations with a known set of rate constants. Then, the313

values of KM and V corresponding to those rate constants are estimated by314

fitting the MM equations to the progress curve. To generate experimental315

progress curves it is necessary to choose a set of rate constants (k1, k−1, kcat),316

and experimental protocol. The experimental protocol consists of defining317

initial conditions, (s0, e0, c0, p0), a time span for the experimental observation,318

tobs, and a sampling frequency ω. The system of equations (5) are integrated319

numerically from t ∈ [0, tobs] and substrate concentrations are recorded every320

ω−1 time units, leading to tobs ω data points {si (ti)}.321

The data is then fitted using the numerically integrated form of (5a). The
nonlinear regression used to calculate the parameters (KM , V ) is performed
using the Levenberg–Marquardt algorithm as implemented in SciPy (version
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0.17.1, http://www.scipy.org). In many cases, supplying good initial condi-
tions for the optimizer used for the regression is crucial to finding accurate
parameter estimates. Since, in actual experiments the values of KM and V
are not known a priori, we attempt to roughly estimate their values from
the time course data to provide initial conditions for the optimization. To
do this, {si (ti)} is differentiated numerically by central differences to give
approximate rates {ṡi (ti)}. Then, using (5a), data at any two time points,
ti and tj can be used to estimate the parameters through

KM =
(ṡj − ṡi) sisj
ṡisj − ṡjsi

(22)

V = ṡi

(
KM

si
+ 1

)
. (23)

In theory, any two points can be used to estimate KM and V , however, it322

is best to use data for which the velocity is changing at that greatest rate.323

Hence, we additionally numerically calculate {s̈i (ti)} and choose the times324

directly on either side of the maximum to substitute into (22) and (23). To325

avoid using data points in the transient regime before the system reaches a326

quasi-steady state, we consider only the regime for which s(ti) < s0/2. For327

actual experiments, noise can make calculations of derivatives subject to large328

errors, hence smoothing techniques must be used. Additionally, numerous329

pairs of data points can be used to generate a distribution of estimates, which330

can then be averaged to give initial conditions for the optimization, similar to331

[39]. Once the initial conditions for the optimization routine are established,332

the best-fit values of KM and V can be systematically estimated.333

We note that when experimental conditions do not lie in a region for334

which the reactant stationary assumption is valid, the above technique will335

naturally provide poor estimates for KM and V . In these regions, we have336

also used the true values KM and V , calculated from the known rate con-337

stants, as initial conditions. Both methods provide qualitatively similar re-338

sults throughout the regions of parameter space investigated here, and quan-339

titatively agree in the region for which the reactant stationary assumption is340

valid.341

4.2. Errors in parameter estimates can be large even when the reactant sta-342

tionary assumption is valid343

Despite the validity of the reactant stationary assumption being sufficient344

for the MM equation to closely align with the solution to the mass action345
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governing equations, the inverse problem does not provide accurate estimates346

for parameters within the same range. Fig. 3 shows errors in estimates of KM347

and V for a wide range of e0/KM and s0/KM . Below and above the range348

plotted for s0/KM , the solutions become numerically unstable due to the349

conditioning problems discussed in Section 3. It is clear however, that even350

within the range defined by large and small values of s0/KM , significant errors351

are present. At high s0/KM and e0/KM , V can be accurately determined,352

but KM begins to show significant deviation. This is anticipated from the353

high-s0/KM approximation of the substrate rate equation, which depends354

only on V . Additionally, when s0/KM < 1, the error contours follow a line355

for which e0 ≈ s0. The condition that enzyme concentration is small relative356

to that of the substrate was one of the earliest conditions for the validity of357

the MM equations derived from singular perturbation theory [40]. For the358

forward problem, Segel [10] showed this condition to be overly restrictive, yet359

it appears to be appropriate for the inverse problem.360

An explanation for the condition e0 � s0 can be found by comparing the361

integrated form of the MM substrate equation with an exponential progress362

curve that is the limiting solution to the MM equations as s0/KM approaches363

zero. The integrated closed-form of (7b), known as the Schnell–Mendoza364

equation [33], can be written explicitly in terms of the Lambert-W function365

[41]366

s (t)

s0
=

(
s0

KM

)−1

W

 s0

KM

e

 s0

KM

−
V

KM

t


 . (24)

Expanding the above expression about zero and truncating at first order367

leads to368

s(t)

s0
≈ e

−
kcate0t

KM

1−
s0

kcate0t


, (25)

where we have used the definition of V to explicitly show the dependence on369

e0. The exponential solution takes the form370

sexp (t)

s0
= e

−
kcate0t

KM . (26)
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Comparing (25) and (26) shows that the correction provided by the MM so-371

lution over the exponential progress curve becomes decreasingly significant372

as e0/s0 becomes large. Fig 4A compares the mean concentration errors373

between the best-fit solutions and the “true” solutions for both the MM374

equation and an exponential fit. At small values of e0/s0, the MM equation375

provides a distinctly better fit than the exponential solution, allowing both376

KM and V to be estimated from a single progress curve. As e0/s0 increases,377

the two fitting functions eventually provide the identical fits. This corre-378

sponds to an exponential increase in the variance of the estimated parame-379

ters (Fig. 4B), and indicates that only the ratio V/KM can be determined380

in this range.381

4.3. Fitting the initial substrate concentration does not significantly alter es-382

timates of KM and V383

Even when the reactant stationary assumption is valid, a small amount384

of substrate will be consumed in the initial transient period. Hence, the sub-385

strate concentration at the start of the reaction may not exactly correspond386

to that at the start of the quasi-stead-state phase. Although this difference387

is small, it is not clear whether this can noticeably alter the estimation of388

KM and V . Additionally, time course measurements often employ optical389

techniques to collect concentration data. Without time consuming calibra-390

tion curve experiments to relate the fluorescent intensity to concentration391

directly, only relative concentrations are known. For these reasons, s0 can be392

treated as an additional unknown parameter for the regression analysis [42].393

Fig. 5 shows error contours for estimates of KM , V and s0 for different394

experimental conditions. Similar to when s0 is assumed known, the errors395

in KM and V follow lines of constant e0/s0 at low substrate concentration.396

Additionally, Fig. 5C shows that the best-fit value of s0 corresponds to397

the true value of the initial substrate concentration for conditions where the398

reactant stationary assumption is valid. These results indicate that including399

s0 as a free parameter can yield similar information about the constants KM400

and V , even in those cases when no definite concentrations are known.401

4.4. Data noise further reduces the range of conditions providing accurate402

estimates of KM and V403

In any physical experiment, some finite amount of measurement error will404

be present. To understand how signal noise affects the estimation of KM and405
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V , we add noise to the numerically-calculated solution of (5a) such that the406

data becomes407

{si(ti)}δ = {si(ti)}+ η (δ) , (27)

where η is a pseudo-random number drawn from a Gaussian distribution of408

mean zero and standard deviation δ. The data is then fitted as described in409

Section 4.1. However, the noise in the data precludes the use of the method410

described for estimating good initial conditions for the solver. Without a411

smoothing procedure, the difference formulas (22) and (23) can lead to large412

errors. In order to eliminate possible uncertainty arising from the determi-413

nation of good initial guesses from experimental data, we chose the “true”414

values of KM and V as the starting point for the optimization algorithm.415

Contour plots of the errors in the estimated values of KM and V for the416

case of δ = 0.01 are shown in Fig. 6. Qualitatively, they exhibit the same417

behavior as the noise-free error contours (Fig. 3), and display a negligible in-418

crease in the magnitude of the error. However, a meaningful characterization419

of the quality of a fit is the variance in the estimated model parameters. To420

calculate the variance of KM and V , the covariance matrix is first calculated421

as422

Cov =
(
J̄T J̄

)−1
, (28)

where J̄ is the Jacobian evaluated numerically at the terminal point of the423

optimization. The variance for KM and V are then the diagonal elements424

of Cov. As shown in Fig. 7, the range of experimental conditions leading425

to precise estimates of KM becomes significantly constrained when even a426

small amount of measurement error is present. Only in the region where427

s0/KM ≈ 1 and e0/KM � 1 are the estimated KM values robust. At larger428

initial substrate concentrations, the noise in the data sufficiently smears the429

sharply curved region of the substrate progress curve, making extraction430

of KM prone to uncertainty. At small initial substrate concentrations, the431

added noise reduces the distinction between the exponential and MM solution432

branches shown in Fig. 4A, making independent determination of KM and V433

more difficult. Hence, even with only slight measurement error the reliability434

of estimated parameters falls significantly as the ratio s0/KM departs from435

unity.436

5. Discussion437

In this work, we have carried out a systematic analysis of the forward and438

inverse problems of the MM equation for the single substrate, single enzyme439
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catalyzed reaction. For the forward problem, it is widely believe that the440

MM equation accurately captures the kinetics of simple enzyme-catalyzed441

reactions when the reactant-stationary assumption holds true. Through a442

concentration error analysis, we find that satisfying the reactant-stationary443

assumption is a sufficient condition for the validity of the MM equation to444

describe the time course of the enzyme catalyzed reaction. However, the445

MM equation can accurately describe the reaction dynamics, even when the446

reactant-stationary assumption is invalid when KS/K � 1 and s0/KM � 1447

(see, Fig. 1A).448

As we have shown in this paper, the validity of the MM equation to de-449

scribe the dynamics of the enzyme catalyzed reaction does not imply that KM450

and V can be obtained from experimental progress curves conducted within451

the parameter constraints established by the reactant stationary assumption.452

This highlights an important problem encountered in parameter estimation.453

Even when the MM equation very accurately fits the experimental data, the454

fitted parameters may not accurately represent their true values. Without455

a thorough analysis of the inverse problem, it is not possible to distinguish456

between good fits that provide poor parameter estimates, and good fits that457

accurately estimate parameters.458

Most of the research done on the analysis of enzyme progress curves has459

focused on the nonlinear regression analysis and algorithms to fit progress460

curve data [43, 35, 28, 44]. Additional research has investigated the design of461

progress curve experiments from a computational and theoretical standpoint462

[17]. In these works, either experimental data is collected, or artificial data is463

generated by adding noise to numerical solutions the integrated MM equation464

for prescribed values of KM and V . Then, the artificial data is fitted in465

order to estimate KM and V . Although this procedure can identify values466

of KM and V for which progress curves can be well-fit by the integrated467

MM equation, it makes no connection to the underlying microscopic rate468

constants. Hence, these studies do not directly assess whether the predicted469

values of KM and V are connected to their microscopic definitions. In the470

present study we have addressed this issue through two approaches. We471

first considered the asymptotic behavior of the MM equation under distinct472

experimental conditions (Section 3). Then, we extracted data from numerical473

solutions to the underlying mass-action system for prescribed microscopic474

rate constants, comparing the predicted values of KM and V with those475

derived from the prescribed values of k1, k−1, and kcat.476

The detailed error analysis presented in Section 4 provides guidelines for477
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the ranges of experimental conditions allowing for true parameter estimation.478

Specifically, we see that, in order for both KM and V to be derived from479

substrate progress curve measurements:480

1. The initial substrate concentration must be within approximately an481

order of magnitude of the Michaelis constant, that is s0 = O(KM),482

especially when significant noise is present in the data. When the initial483

substrate concentration is in great excess of the Michaelis constant, that484

is s0 � KM , a linear fit to the initial velocity will yield V , but provide485

no information about KM . When the initial substrate concentration486

is small compared to the Michaelis constant, that is s0 � KM , an487

exponential fit to the progress curve will provide an estimate for the488

ratio of V to KM , but neither parameter independently.489

2. The initial enzyme concentration must be smaller than the Michaelis490

constant, that is e0/KM � 1, especially when significant noise is491

present in the data.492

3. Data points should be collected around the time point where the time493

course curvature is at it highest. The length of the high-curvature494

region is quantified through the timescale tQ = 27KMs0/4V (KM + s0).495

tQ must not be significantly smaller than tS if both KM and V are496

to be estimated from a single progress curve. Theoretically, any two497

points could be used to estimate KM and V , but empirical statistical498

analysis carried out elsewhere [14] shows that a minimum of 12 points499

is ideal for nonlinear regression analysis. These points should sample500

the region around the point of maximum curvature defined by tQ (see,501

Fig. 2A).502

The above points address important questions necessary to design exper-503

iments: What initial substrate concentrations should be used? What initial504

enzyme concentration should be used? At what time point should data be505

collected? How many data points should be collected along the curve?506

Interestingly, only the first recommendation coincides with previous anal-507

ysis done by Duggleby and Clarke [17], who recommend an initial substrate508

concentration of approximately 2.5KM . However, we additionally provide509

error contours for parameters estimated from experiments conducted under510

conditions far from this optimal value. This analysis shows that reasonable511

estimates can be expected so long as the initial substrate concentration is512

within an order of magnitude of the optimal value, that is 0.25–25 KM . Fur-513

thermore, noise in the data restricts this range to be significantly smaller514
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than the theoretical range for the validity of the MM equation.515

The current experimental practice for data collection is that measure-516

ments should be made until the extent of the reaction reaches 90%. Dug-517

gleby and Clarke [17] finds that there is no advantage of extending beyond518

this point. In our analysis, we discovered that errors in KM and V are min-519

imized when data is collected in the region around the point of maximum520

curvature defined by tQ (see, Figure 2A).521

In general, since these requirements listed above depend on KM , they can-522

not be assessed before conducting an experiment. However, they do provide523

useful checks that can reduce the number of experiments required, especially524

when compared to parameter estimation based on initial rate experiments.525

If a progress curve for a given initial substrate concentration cannot be fitted526

by an exponential, and has a curvature that can be resolved, nonlinear regres-527

sion of the progress curve will provide accurate estimates of both KM and V .528

If, say, the progress curve can reasonably be fit by an exponential, a second529

experiment with substantially larger initial substrate concentration should530

be performed. Then, the second progress curve, so long as the increase in531

initial substrate concentration is great enough to surpass the substrate range532

for with the kinetics are exponential, should yield either a curve from which533

both parameters can be estimated, or a curve from which V can be estimated.534

Hence, the two experiments are sufficient to make preliminary estimates of535

both KM and V . This is in contrast to initial rate experiments, which re-536

quire a large number of experiments such that a curve of the initial reaction537

velocity as a function of s0 can be produced. For accurate measurement538

of KM and V from initial rate experiments, both large and small values of539

the substrate (relative to KM) must be used [14, 31]. Hence, progress curve540

analysis will always require fewer experiments than initial rate experiments.541

Additionally, if initial rate experiments are used, progress curve analysis can542

be used as a check the accuracy of the estimates. Values of KM and V ob-543

tained from fitting (5a) to the initial rate data should correspond to those544

values obtained from progress curve analysis of the experiments for which545

the initial rates are intermediate between 0 and V .546

In conclusion, this work both advocates and cautions the use of progress547

curve analysis in modeling and determining kinetic parameters for enzymatic548

reactions. Progress curve assays can greatly reduce the number of exper-549

iments (and hence the cost and quantity of reagents) needed, while still550

providing accurate measurements. However, it is essential to not conflate an551

accurate fit with an accurate estimate of KM and V . If this is kept in mind,552
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progress curve analysis has significant advantages over the use of initial rate553

experiments.554
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Figure 1: Concentration error contours in the e0/KM–s0/KM plane. The maximal
concentration errors are plotted in the plane of initial enzyme and substrate concentrations,
normalized by KM . The dashed black line corresponds to the condition for steady-state
assumption (10), while the solid black line corresponds to the reactant stationary condi-
tion (11). Each panel shows different values of KS and K, while KM = 1 for all cases.
Panel A: KS = 0.1, K = 0.9; Panel B: KS = 0.5, K = 0.5; Panel C: KS = 0.9, K = 0.1.
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Figure 2: (A) Substrate progress curves for high, intermediate and low initial
substrate concentrations. Substrate concentrations for differing values of s0/KM are
plotted as a function of time. When the initial substrate concentration is large (s0 =
100KM , dot-dashed line) the substrate depletion is linear until nearly all substrate has been
depleted. With low initial substrate concentration (s0 = KM , dotted line), the depletion
follows a simple exponential. At intermediate values (s0 = 10KM , bold solid line), the
concentration follows the full hyperbolic rate law and both KM and V can be uniquely
identified through regression. The non-shaded region marks the timescale tQ for the bold
curve, centered at the point of maximal curvature for the time course. Inset shows the
curvature of the bold progress curve as a function of time, with the tQ-region demarcated
by dashed lines. Parameters for the case shown are: (k1, k−1, kcat) = (1.0, 0.5, 0.5), s0 =
10KM , e0 = KM . (B) Condition number (solid line) and timescale ratio tS/tQ
(dashed line) as functions of the s0/KM . At small values of s0/KM , the inverse
problem becomes ill-conditioned. At large values of s0/KM , the region of the progress
curve providing information about KM becomes increasingly small.
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Figure 3: Error contours of the estimated values KM and V . Errors in the predicted
values of KM and V for different initial substrate and enzyme concentrations are shown to
deviate from the conditions for the validity of the reactant stationary assumption (shown
as the solid line). The dashed line corresponds to condition (10). For s0/KM values
lower than 10−2 and greater than 102, the fitting algorithm becomes unstable. Note
that the color bar scale is logarithmic, showing errors can be significant. In this figure,
KS = K = 10.
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Figure 4: (A) Mean concentration error, and (B) Mean variance in estimated
parameters for the Michaelis–Menten equation and an exponential model. For
initial enzyme concentrations smaller than initial substrate concentrations, the Michaelis–
Menten equation provides a noticeably better approximation of the true progress curve
than does the exponential model, allowing for both V and KM to be uniquely deter-
mined. Parameters for the case shown are: (k1, k−1, kcat) = (1.0, 0.5, 0.5), tobs = 3ts,
ω = tobs/1000, s0 = 1.

26

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2016. ; https://doi.org/10.1101/068015doi: bioRxiv preprint 

https://doi.org/10.1101/068015
http://creativecommons.org/licenses/by-nd/4.0/


P
red

iction
E

rror
P

red
iction

E
rror

P
red

ictio
n

E
rro

r

Figure 5: Error contours when initial substrate concentration, s0, is estimated
from data. KM and V prediction errors (panels A and B, respectively) are qualitatively
the same as those found when s0 is known a priori. The error contours in estimating
s0 (panel C) follows the reactant stationary condition, and show accurate estimation is
possible when initial enzyme concentration is high and initial substrate concentration
is low. Parameters for the case shown are: (k1, k−1, kcat) = (1.0, 0.5, 0.5), tobs = 3ts,
ω = tobs/100.
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Figure 6: Error contours for data with Gaussian noise. When noise is added to the
simulated data (δ = 0.01), errors in the estimated parameters worsen compared to noise-
free data. Parameters for the case shown are: (k1, k−1, kcat) = (1.0, 0.5, 0.5), tobs = 3ts,
ω = tobs/1000.
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Figure 7: Computed parameter variance for noisy and noise-free data. Estimated
variance in the parameters KM (Panels A and C) and V (Panels B and D) for cases with
δ = 0.01 (A and B) and no noise (C and D). Even a small amount of noise restricts the
range of conditions providing robust parameter estimates. Parameters for the case shown
are: (k1, k−1, kcat) = (1.0, 0.5, 0.5), tobs = 3ts, ω = tobs/1000.

29

.CC-BY-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 6, 2016. ; https://doi.org/10.1101/068015doi: bioRxiv preprint 

https://doi.org/10.1101/068015
http://creativecommons.org/licenses/by-nd/4.0/

