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While bacteria divide clonally, horizontal gene transfer followed by homologous recombination
is now recognized as an important and sometimes even dominant contributor to their evolution.
However, the details of how the competition between clonal inheritance and recombination shapes
genome diversity, population structure, and species stability remains poorly understood. Using a
computational model, we find two principal regimes in bacterial evolution and identify two composite
parameters that dictate the evolutionary fate of bacterial species. In the divergent regime, charac-
terized by either a low recombination frequency or strict barriers to recombination, cohesion due to
recombination is not sufficient to overcome the mutational drift. As a consequence, the divergence
between any pair of genomes in the population steadily increases in the course of their evolution. The
species as a whole lacks genetic coherence with sexually isolated clonal sub-populations continuously
formed and dissolved. In contrast, in the metastable regime, characterized by a high recombination
frequency combined with low barriers to recombination, genomes continuously recombine with the
rest of the population. The population remains genetically cohesive and stable over time. The
transition between these two regimes can be affected by relatively small changes in evolutionary
parameters. Using the Multi Locus Sequence Typing (MLST) data we classify a number of well-
studied bacterial species to be either the divergent or the metastable type. Generalizations of our
framework to include fitness and selection, ecologically structured populations, and horizontal gene
transfer of non-homologous regions are discussed.

Significance statement: Homologous recombination
is now recognized as an important contributor to evolu-
tionary dynamics and intra-species genetic diversity in
many bacterial species. However, the circumstances un-
der which these species can for the most part maintain
their clonal population structure in the presence of re-
combination remains unknown. In this work, we identify
and explore two composite evolutionary parameters giv-
ing rise to two distinct dynamic evolutionary regimes of
bacterial populations and show that bacteria can belong
to either of the regimes.

Introduction: Bacterial genomes are extremely vari-
able, comprising both a consensus ‘core’ genome which
is present in the majority of strains in a population, and
an ‘auxiliary’ genome, comprising genes that are shared
by some but not all strains (1–7).

Multiple factors shape the diversification of the core
genome. Bacteria divide clonally thereby inheriting the
entirety of their mother’s genome. The balance between
this vertical inheritance and random fixation of single
nucleotide polymorphisms (SNPs), generated at a rate
µ per base pair per generation, limits the typical pop-
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ulation diversity to θ = 2µNe where Ne is the effective
population size of the species (8).

During the last two decades, the genetic exchange be-
tween closely related organisms integrated into the chro-
mosome via homologous recombination has also been rec-
ognized as a significant factor in evolution (5, 6, 9–14).
Similar to mutations, recombination events attempted
at a rate ρ per base pair per generation, do not hap-
pen at every cell division. Notably recombination be-
tween genetically distant bacteria is suppressed, so that
the probability psuccess ∼ e−δ/δTE of successful recombi-
nation of foreign DNA into a recipient genome decays
exponentially with δ, the local divergence between the
donor DNA and the recipient (12, 15–18). The effective
barrier δTE to successful recombination, referred here as
the transfer efficiency, is shaped at least in part by the re-
striction modification (RM), the mismatch repair (MMR)
systems, and the biophysical mechanisms of homologous
recombination (15, 16).

While vertical inheritance along with point mutations
imposes a clonal structure on the population, recombina-
tion acts as an homogenizing force, bringing individual
strain genomes closer to each other and potentially de-
stroying the genetic signatures of clonality (6, 17, 18).
There are two principal components to the interplay be-
tween mutations and recombinations. First is the compe-

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2016. ; https://doi.org/10.1101/067942doi: bioRxiv preprint 

https://doi.org/10.1101/067942


2

tition between the diversity within the population θ and
the maximal diversity δTE within a single sub-population
uniformly capable of successful recombinations. If δTE <
θ, one expects spontaneous fragmentation of the entire
population into several transient sexually isolated sub-
populations that rarely exchange genetic material be-
tween each other. In contrast, if δTE > θ, unhindered
exchange of genetic fragments may result in a single co-
hesive population. Second is the competition between the
recombination transfer rate ρ and the mutation rate µ.
Consider a pair of strains diverging from each other. The
average time between consecutive recombination events
affecting a given small genomic region in these two strains
is 1/(2ρltr) where ltr is the average length of transferred
regions. At the same time, the total divergence accumu-
lated in this region due to mutations in either of the two
genomes is δmut ∼ 2µ/2ρltr. If δmut � δTE, the pair of
genomes is likely to become sexually isolated from each
other in this region over time separating two successive
recombination events. In contrast, if δmut < δTE, fre-
quent recombination events would delay sexual isolation
resulting in a more homogeneous population.

What qualitative dynamical regimes in bacterial evolu-
tion emerge from the competition between these two fac-
tors and which evolutionary parameters dictate the fate
of genome diversification and population structure re-
mains poorly understood. Importantly, even the question
of whether bacteria can retain their clonal inheritance in
the presence of recombination and whether signatures of
clonal structure and recombination can be inferred from
population genetic data is still heavily debated (18–21).

Some aspects of this interplay have been explored be-
fore. In their pioneering study Vetsigian and Golden-
feld (22) investigated the effects of a non-recombining
segment (for example, an insertion of an auxiliary ge-
nomic island via horizontal transfer or a large-scale ge-
nomic inversion event) on recombination in its chromo-
somal neighborhood and how it may result in two prop-
agating waves spreading the divergence along the chro-
mosome. Falush et al. (23) suggested that a low transfer
efficiency δTE leads to sexual isolation in Salmonella en-
terica. Fraser et al. (17), working with θ = 0.4% (lower
than the value typically observed in bacterial species) and
the transfer efficiency δTE ≈ 2.4% concluded that sexual
isolation in bacterial species is insufficient to cause speci-
ation with realistic recombination frequencies. Doroghazi
and Buckley (24), working with a fixed transfer efficiency
and a very small population size (limit of θ → 0 of our
study), studied how the competition between mutations
and recombination affects the cohesion vs divergence of
two isolated subpopulations.

In this work, using a computational model and math-
ematical calculations, we show that the two composite
parameters identified above, θ/δTE and δmut/δTE, de-
termine qualitative evolutionary dynamics of bacterial
species. Furthermore, we identify two principal regimes
of this dynamics. In the divergent regime, characterized
by a high δmut/δTE, local genomic regions acquire mul-

tiple mutations between successive recombination events
and rapidly isolate themselves from the rest of the pop-
ulation. The population remains mostly clonal where
transient sexually isolated sub-populations are continu-
ously formed and dissolved. In contrast, in the metastable
regime, characterized by a low δmut/δTE and a low
θ/δTE), local genomic regions recombine repeatedly be-
fore ultimately escaping the pull of recombination (hence
the name “metastable”). At the population level, in this
regime all genomes can exchange genes with each other
resulting in a genetically cohesive and temporally stable
population. Notably, our analysis suggests that only a
small change in evolutionary parameters can have a sub-
stantial effect on evolutionary fate of bacterial genomes
and populations.

We also show how to classify bacterial species using
the conventional measure of the relative strength of re-
combination over mutations, r/m (defined as the ratio of
the number of single nucleotide polymorphisms (SNPs)
brought by recombinations and those generated by point
mutations in a pair of closely related strains), and our sec-
ond composite parameter θ/δTE. Based on our analysis
of the existing MLST data, we find that different real-life
bacterial species belong to either divergent or metastable
regimes. We discuss possible molecular mechanisms and
evolutionary forces that decide the role of recombination
in a species’ evolutionary fate. We also discuss possi-
ble extensions of our analysis to include adaptive evolu-
tion, effects of ecological niches, and genome modifica-
tions such as insertions, deletions, and inversions.

The computational model: We consider a popula-
tion of Ne co-evolving bacterial strains. The population
evolves with non-overlapping generations and in each new
generation each of the strains randomly chooses its par-
ent (8). Strain genomes have G indivisible and non-
overlapping transferable units. For simplicity, in what
follows we refer to these units as genes but note that
while the average protein-coding gene in bacteria is about
∼ 1000 base pairs (bp) long, genomes in our simula-
tions we exchange segments of ltr = 5000bp mimicking
genetic transfers longer than individual protein-coding
genes (6, 10). These genes acquire point mutations at a
rate µ per base pair per generation and recombinations
into a recipient genome from a randomly selected donor
genome in the population are attempted at a rate ρ per
base pair per generation. The mutations and recombina-
tion events are assumed to have no fitness effects (later on
we discuss how this assumption can be relaxed). Finally,
the probability of a successful integration of a donor gene
decays exponentially, psuccess ∼ e−δ/δTE , with the local
divergence δ between the donor and the recipient.

The effective population sizes for real bacteria are usu-
ally too large to allow direct simulation of our model
with realistic parameters. In what follows we overcome
this constraint by employing an approach we had pro-
posed earlier (6). It allows us to simulate the evolu-
tionary dynamics of only two genomes labeled X and
Y , while treating the impact of the rest of the pop-
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ulation in a self-consistent manner (reminiscent of the
self-consistent Hartree-Fock approximation in physics).
X and Y start diverging from each other as identi-
cal twins at time t = 0 (when their mother divides).
We denote by δi(t), the average sequence divergence
of the ith gene between X and Y at time t and by
∆(t) = 1/G

∑
i δi(t) the genome-wide mean divergence

averaged across all genes. Based on population-genetic
and biophysical considerations, we derive the probability
E(δa|δb) = 2µM(δa|δb) + 2ρltrR(δa|δb) (a for after and b
for before) that the divergence in any gene changes from
δb to δa in one generation (see supplementary materials
for details) (6). Briefly, there are two components to the
probability, M and R. Point mutations in either of two
strains, represented by M(δa|δb), occur at a rate 2µ per
base pair per generation and increase the divergence in a
gene by 1/ltr. Unlike point mutations, after a recombina-
tion event (represented by R(δa|δb)), the divergence can
change suddenly, taking values either larger or smaller
than the current divergence (6). Note that recombina-
tions from highly diverged members in the population
are suppressed exponentially and consequently not all
recombination attempts are successful. Intuitively, the
time evolution of p(δ|t) of the probability of observing a
divergence δ in a gene at time t can be written as

∂p(δ|t)
∂t

= −2µ
∂p(δ|t)
∂δ

+ 2ρltr

∫
R(δ|δb)× p(δb|t)dδb︸ ︷︷ ︸

entry into δ

− 2ρltr

∫
R(δa|δ)× p(δ|t)dδa︸ ︷︷ ︸

exit from δ

. (1)

Evolution of local divergence has large fluctu-
ations: Fig. 1 shows a typical evolutionary trajectory
of the local divergence δ(t) of a single gene in a pair of
genomes. We have used θ = 1.5% and δTE = 1%, similar
to values typically observed in bacterial species (6, 17).
To keep the simulation times manageable, mutation and
recombination rates used in our simulations were 4-5 or-
ders of magnitude higher compared to those observed
in real bacteria (µ = 10−5 per base pair per genera-
tion and ρ = 5 × 10−6 per base pair per generation,
δmut/δTE = 0.04) (25, 26) while keeping the ratio of the
rates realistic (5, 6, 13, 27). Alternatively, one may in-
terpret it as one time step in our simulations being con-
siderably longer than a single bacterial generation.

The time evolution of δ(t) is noisy; mutational drift
events that gradually increase the divergence linearly
with time (red) are frequently interspersed with homolo-
gous recombination events (green if they increase δ(t) and
blue if they decrease it) that suddenly change the diver-
gence to typical values seen in the population (see Eq. A1
in the appendix). Eventually, either through the gradual
mutational drift or a sudden recombination event, δ(t) in-
creases beyond the integration barrier set by the transfer
efficiency, δ(t)� δTE. Beyond this point, this particular
gene in our two strains splits into two different sexually
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FIG. 1. A typical evolutionary trajectory of the local diver-
gence δ(t) within a single gene between a pair of strains. We
have used µ = 10−5, ρ = 5 × 10−6 per base pair per gen-
eration, θ = 1.5% and δTE = 1%. Red tracks indicate the
divergence increasing linearly, at a rate 2µ per base pair per
generation, with time due to mutational drift. Green tracks
indicate recombination events that suddenly increase the di-
vergence and blue tracks indicate recombination events that
suddenly decrease the divergence. Eventually, the divergence
increases sufficiently and the local genomic region escapes the
pull of recombination (red stretch at the right).

isolated sub-clades. Any further recombination events in
this region in each of two strains would be limited to
their sub-clades and thus would not further change the
average divergence within this gene. Conversely, the mu-
tational drift in this region will continue to drive them
further apart indefinitely.

Genome-wide divergence: Since genes in our model
evolve independently of each other, the genome-wide av-
erage divergence ∆(t) can be calculated as the mean of
G independent realizations of the local divergences δ(t).
Since the number G� 1 of genes in the genome is large,
the law of large numbers implies that the fluctuations in
the dynamics of ∆(t) are substantially suppressed com-
pared to a more noisy time course of δ(t) seen in Fig. 1.

In Fig. 2, we plot the time evolution of ∆(t) between
a pair of genomes (as % difference). We have used
θ = 0.25%, δTE = 1%, and δmut/δTE = 2, 0.5, 0.04, and
2 × 10−3 respectively. When δmut/δTE is large (either a
due to low ρ or a low δTE), in any local genomic region,
multiple mutations are acquired between two successive
recombination events. Consequently, individual genes es-
cape the pull of recombination rapidly and ∆(t) increases
roughly linearly with time at a rate 2µ. For smaller val-
ues of δmut/δTE, the rate of change of ∆(t) in the long
term decreases as many of the individual genes repeat-
edly recombine with the population. However, even then
the fraction of genes that have escaped the integration
barrier slowly increases over time, leading to a linear in-
crease in ∆(t) with time albeit with a slope different than
2µ. Thus, the repeated resetting of individual δ(t)s after
homologous recombination (see Fig. 1) generally results
in a ∆(t) that increases linearly (albeit extremely slowly)
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with time. The rate of increase of divergence in the long
time limit likely somewhat underestimates true rate of es-
cape from the barrier in the metastable regime. Indeed,
since individual genes in our model evolve in isolation,
they also escape the integration barrier independent from
each other. In other words in our current model, there
are no correlations, long or short range order in the distri-
bution of local divergences along the chromosome beyond
the level of a single gene. As we discuss below, a more
realistic model that allows overlaps between transferred
regions, for example, the one studied numerically by Vet-
sigian and Goldenfeld (22), would offer a more accurate
estimate of the escape rate.

At the shorter time scale, the trends in genome diver-
gence are opposite to those at the longer time scale. At
a fixed θ, a low value of δmut/δTE implies faster diver-
gence and vice versa. When recombination rate is high,
genomes of strains quickly ‘equilibrate’ with the popu-
lation and the genome-wide average divergence between
a pair of strains reaches the population average diver-
sity ∼ θ (see the red trajectory in Fig. 2). From here,
any new mutations that increase the divergence are con-
stantly wiped out through repeated recombination events
with the population.

Computational algorithms that build phylogenetic
trees from multiple sequence alignments often rely on the
assumption that the sequence divergence, for example be-
tween a pair of strains (at the level of individual genes
or at the level of genomes), faithfully represents the time
that has elapsed since their Most Recent Common An-
cestor (MRCA). However, Fig. 1 and Fig. 2 serve as a
cautionary tale. Notably, after just a single recombina-
tion event the local divergence at the level of individual
genes does not at all reflect time elapsed since divergence
but rather depends on statistics of divergence within a re-
combining population (see (6) for more details). At the
level of genomes, when δmut/δTE is large (e.g. the blue
trajectory in Fig. 2), the time since MRCA of two strains
is directly correlated with the number of mutations that
separate their genomes. In contrast, when δmut/δTE is
small (see pink and red trajectories in Fig. 2), frequent
recombination events repeatedly erase the memory of the
clonal ancestry. Nonetheless, individual genomic regions
slowly escape the pull of recombination at a fixed rate.
Thus, the time since MRCA is reflected not in the to-
tal divergence between the two genomes but in the frac-
tion of the length of the total genomes that has escaped
the pull of recombination. One will have to use a very
different rate of accumulation of divergence to estimate
evolutionary time from genome-wide average divergence.

Quantifying metastability: How does one quantify
the metastable behavior described above? At the level of
individual genes it is manifested through constant reset-
ting of δ(t) to typical population values and at the level
of entire genomes through a very slow increase in ∆(t)
when δmut/δTE is small. Fig. 2 suggests that high rates of
recombination prevent pairwise divergence from increas-
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FIG. 2. Genome-wide divergence ∆(t) as a function of time
at θ/δTE = 0.25. We have used δTE = 1%, θ = 0.25%,
µ = 5 × 10−6 per base pair per generation and ρ = 2.5 ×
10−8, 2.5×10−7, 1.25×10−6, and 2.5×10−5 per base pair per
generation corresponding to δmut/δTE = 2 (blue), 0.2, 0.04
(shades of purple), and 2 × 10−3 (red) respectively.

ing beyond the typical population divergence ∼ θ at the
whole-genome level. Thus, for any set of evolutionary
parameters, µ, ρ, θ, and δTE, the time it takes for a pair
of genomes to diverge far beyond the typical population
diversity θ can serve as a quantifier for metastability.

In Fig. 3, we plot the number of generations tdiv
(in units of the effective population size Ne) required
for the genome-wide average divergence ∆(t) between
a pair of genomes to exceed 2 × θ (twice the typical
intra-population diversity) as a function of θ/δTE and
δmut/δTE. Note that in the absence of recombination,
it takes tdiv = 2Ne generations before ∆(t) exceeds
2θ = 4µNe. Our results remain qualitatively the same
for other thresholds k× θ provided that k > 1. The four
cases explored in Fig. 2 are marked with green diamonds
in Fig. 3.

We observe two distinct regimes in the behavior of
tdiv as a function of θ/δTE and δmut/δTE. In the di-
vergent regime, after a few recombination events, the di-
vergence δ(t) at the level of individual genes quickly es-
capes the integration barrier and increases indefinitely.
Consequently, ∆(t) increases linearly with time (see e.g.
δmut/δTE = 2 in Fig. 2 and Fig. 3) and reaches ∆(t) = 2θ
within ∼ 2Ne generations. In contrast for smaller values
of δmut/δTE in the metastable regime, it takes extremely
long time for ∆(t) to reach 2θ. In this regime genes
get repeatedly exchanged with the rest of the popula-
tion and ∆(t) remains nearly constant over long periods
of time (see e.g. δmut/δTE = 2 × 10−3 in Fig. 2 and
Fig. 3). Notably, near the boundary region between the
two regimes a small perturbation in the evolutionary pa-
rameters could change the evolutionary dynamics from
divergent to metastable and vice versa.

Population structure: Can we understand the phy-
logenetic structure of the entire population by studying
the evolutionary dynamics of just a single pair of strains?
Or using a quote from William Blake, is it possible ”to
see a World in a Grain of Sand”?

Given sufficient amount of time every pair of genomes

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2016. ; https://doi.org/10.1101/067942doi: bioRxiv preprint 

https://doi.org/10.1101/067942


5

0.1 0.316 1 3.16
0.001

0.01

0.1

1

10

θ/δ TE

δ  m
ut

/δ
 T

E

2

4

8

16
> 20

 / Ne

Divergent

Metastable

tdiv

δmut/δTE = 2

δmut/δTE = 0.2

δmut/δTE = 0.04

δmut/δTE = 0.002

FIG. 3. The number of generations tdiv (in units of the effec-
tive population size Ne) required for a pair of genomes to di-
verge well beyond the average intra-population diversity (see
main text). We calculate the time it takes for the genome-
wide average divergence to reach 2θ as a function of θ/δTE

and δmut/δTE. We used δTE = 1%, µ = 10−5 per base pair
per generation. In our simulations we varied ρ and θ to scan
the (θ/δTE, δmut/δTE) space. The green diamonds represent
four populations shown in Fig. 2 and Fig. 4 (see below).

in our model would diverge indefinitely. However, in a
finite population of size Ne, the average probability of
observing a pair of strains whose MRCA existed t gen-
erations ago is exponentially distributed, pc(t) ∼ e−t/Ne

(here and below we use the bar to denote averaging over
multiple realizations of the coalescent process, or long-
time average over population dynamics) (28–30). Thus,
while it may be possible for a pair of genomes considered
above to diverge indefinitely from each other (see Fig. 2),
it becomes more and more unlikely to find such a pair in
a finite-sized population.

Let π(∆) to denote the probability distribution of ∆

for all pairs of genomes in a given population, while π(∆)
stands for the same distribution averaged over long time
or multiple realizations of the population. One has

π(∆) =

∫ ∞
0

pc(t)× p(∆|t)dt and

π(∆) =

∫ ∞
0

pc(t)× p(∆|t)dt

=
1

Ne

∫ ∞
0

e−t/Ne × p(∆|t)dt (2)

In Eq. 2, pc(t) is the probability that a pair of strains
in the current population shared their MRCA t gen-
erations ago and p(∆|t) is the probability that a pair
of strains have diverged by ∆ at time t. Given that
∆(t) is the average of G � 1 independent realizations
of δ(t), we can approximate p(∆|t) as a Gaussian distri-
bution with average 〈δ(t)〉G =

∫
δ × p(δ|t)dδ and vari-

ance σ2 = 1
G

(
〈δ(t)2〉G − 〈δ(t)〉2G

)
. Here and below angu-

lar brackets and the subscript G denote the average of a
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FIG. 4. Distribution of all pairwise genome-wide diver-
gences δij in a co-evolving population for decreasing values
of δmut/δTE: 2 in a), 0.2 in b), 0.04 in c) and 0.002 in d)
In all 4 panels, dashed black lines represent time-averaged
distributions π(∆), while solid lines represent typical “snap-
shot” distributions π(∆) in a single population. Colors of
solid lines match those in Fig. 2 for the same values of pa-
rameters. Time-averaged and snapshot distributions were es-
timated by sampling 5×105 pairwise coalescent times from the
time-averaged coalescent distribution p ∼ e−t/Ne and the in-
stantaneous coalescent distribution pc(t) correspondingly (see
text for details).

quantity over the entire genome.

Unlike the time- or realization- averaged distribution
π(∆), only the instantaneous distribution π(∆) is acces-
sible from genome sequences stored in databases. In-
deed, we rarely have the luxury of observing real-life bac-
terial populations over evolutionary significant stretches
of time. Even for large populations these two distribu-
tions could be significantly different from each other. In-
deed, pc(t) in any given population is extremely noisy
due to multiple peaks from clonal subpopulations and
does not resemble its smooth long-time average profile
pc(t) ∼ e−t/Ne (29, 30). In panels a) to d) of Fig. 4, we
show π(∆) for the four cases shown in Fig. 2 (also marked
by green diamonds in Fig. 3). We fixed the population
size to Ne = 500. We changed δmut/δTE by changing
the recombination rate ρ. The solid lines represent a
time snapshot obtained by numerically sampling pc(t) in
a Fisher-Wright population of size Ne = 500. The dashed
black line represents the time average π(∆).

In the divergent regime of Fig. 3, at high values of
δmut/δTE = µ/(ρltrδTE), the instantaneous snapshot dis-
tribution π(∆) has multiple peaks corresponding to di-
vergence distances between several spontaneously formed
clonal sub-populations present even in a homogeneous
population. These sub-populations rarely exchange ge-
netic material with each other, either because of a low
recombination frequency ρ or due to strict barriers for
recombination (small δTE). In this regime, the time av-

eraged distribution π(∆) has a long exponential tail and,
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as expected, does not at all agree with the instantaneous
distribution π(∆).

Notably, in the metastable regime, at lower values of
δmut/δTE, the exponential tail shrinks into a Gaussian-
like peak. The width of this peak relates to fluctuations
in ∆(t) around its mean value which in turn are depen-
dent on the total number of genes G. Moreover, the
difference between the instantaneous and the time av-
eraged distributions decreases as well. In this limit, all
strains in the population exchange genetic material with
each other. Thus, in the metastable regime, frequent re-
combination events successfully eliminate multiple peaks
due to clonal subs-populations thus forming a genetically
cohesive and temporally stable population.

Analysis of bacterial species: Where are real-life
bacterial species located on the divergent-metastable di-
agram? Instead of δmut/δTE as defined here, population
genetic studies of bacteria usually quantify the relative
strength of recombination over mutations as r/m, the ra-
tio of the number of SNPs brought in by recombination
relative to those generated by point mutations in a pair of
closely related strains (6, 9, 13). In our framework, r/m
is defined as r/m = ρsucc/µ× ltr × δtr where ρsucc < ρ is
the rate of successful recombination events and δtr is the
average divergence in transferred regions. Both ρsucc and
δtr depend on the evolutionary parameters (see appendix
for a detailed description of our calculations). r/m is
closely related (but not equal) to the inverse of δmut/δTE

used in our previous plots.

In Fig. 5, we re-plotted the “phase diagram” shown in
Fig. 3 in terms of θ/δTE and r/m and attempted to place
several real-life bacterial species on it. To this end we es-
timated θ from the MLST data (31) and used r/m values
that were determined previously by Vos and Didelot (13).
As a first approximation, we assumed that the transfer
efficiency δTE is the same for all species considered and
is given by δTE ∼ 2.26% used in Ref. (17). However, as
mentioned above, the transfer efficiency δTE depends in
part on the RM and the MMR systems. Given that these
systems vary a great deal across bacterial species includ-
ing minimal barriers to recombination observed e.g. in
Helicobacter Pylori (11) or different combinations of mul-
tiple RM systems reported in Ref. (32). Thus one ex-
pects transfer efficiency δTE might also vary across bac-
teria. Further work is needed to collect the extent of this
variation in a unified format and location. One possible
bioinformatics strategy is to use the slope of the expo-
nential tail in SNP distribution (p(δ|∆) in our notation)
to infer the transfer efficiency δTE as described in Ref.
(6).

Fig. 5 allows one to draw the following conclusions.
First, it confirms that both r/m and θ/δTE are impor-
tant evolutionary parameters and suggests that each of
them alone cannot fully classify a species as either diver-
gent or metastable. Second, it predicts a sharp transition
between the divergent and the metastable phases imply-
ing that a small change in r/m or θ/δTE can change the
evolutionary fate of the species. And finally, one can
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FIG. 5. Approximate position of several real-life bacte-
rial spaces on the metastable-divergent phase diagram (see
text for details). Abbreviations of species names are as fol-
lows: FP: Flavobacterium psychrophilum, VP: Vibrio para-
haemolyticus, SE: Salmonella enterica, VV: Vibrio vulnifi-
cus, SP1: Streptococcus pneumoniae, SP2: Streptococcus pyo-
genes, HP: Haemophilus parasuis, HI: Haemophilus influen-
zae, BC: Bacillus cereus, EF: Enterococcus faecium, and EC:
Escherichia coli.

see that different bacterial species use diverse evolution-
ary strategies straddling the divide between these two
regimes.

Can bacteria change their evolutionary fate? There are
multiple biophysical and ecological processes by which
bacterial species may move from the metastable to the
divergent regime and vice versa in Fig. 3. For example, if
the effective population size remains constant, a change
in mutation rate changes both δmut/δTE as well as θ.
A change in the level of expression of the MMR genes,
changes in types or presence of MMR, SOS, or restriction-
modification (RM) systems, loss or gain of co-infecting
phages, all could change δTE or the rate of recombina-
tion (15, 32) thus changing the placement of the species
on the phase diagram shown in Fig. 5.

Adaptive and ecological events should be inferred from
population genomics data only after rejecting the hypoth-
esis of neutral evolution. However, the range of behav-
iors consistent with the neutral model of recombination-
driven evolution of bacterial species was not entirely
quantified up till now, leading to potentially unwarranted
conclusions as illustrated in (33). Consider E. coli as an
example. Known strains of E. coli are usually grouped
into 5-6 different evolutionary sub-clades (groups A,
B1, B2, E1, E2, and D). It is thought that inter-clade
sexual exchange is lower compared to intra-clade ex-
change (6, 27). Ecological niche separation and/or se-
lective advantages are usually implicated as initiators of
such putative speciation events (18). In our previous
analysis of 32 fully sequenced E. coli strains, we esti-
mated θ/δTE > 3 and r/m ∼ 8 − 10 (6) implying that

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 31, 2016. ; https://doi.org/10.1101/067942doi: bioRxiv preprint 

https://doi.org/10.1101/067942


7

E. coli resides deeply in the divergent regime in Fig. 5.
Thus, based on the analysis presented above one expects
E. coli strains to spontaneously form transient sexually-
isolated sub-populations even in the absence of selective
pressures or ecological niche separation. In conclusion,
a more careful analysis is needed to reject neutral mod-
els of evolution in the studies of population genetics of
bacteria.

Conclusions: While recombination is now recognized
as an important and sometimes even dominant contrib-
utor to patterns of genome diversity in many bacterial
species(5, 6, 9–13), its effect on population structure and
stability is still heavily debated (17–21). In this work, we
have shown that recombination-driven bacterial genome
evolution can be understood as a balance between two
important competing processes. We identified the two
dimensionless parameters θ/δTE and δmut/δTE that dic-
tate this balance and result in two qualitatively different
regimes in bacterial evolution, separated by a sharp tran-
sition.

As seen in Fig. 3 and Fig. 5, in the divergent regime,
the pull of recombination is insufficient to homogenize
individual genes and entire genomes leading to a tempo-
rally unstable and sexually fragmented species. Notably,
understanding the time course of divergence between a
single pair of genomes allows us to study the structure
of the entire population. As shown in Fig. 4, species in
the divergent regime are characterized by multi-peaked
clonal population structure. On the other hand, in the
metastable regime, individual genomes repeatedly recom-
bine genetic fragments with each other leading to a sexu-
ally cohesive and temporally stable population. As seen
in Fig. 5, real bacterial species appear to belong to both
of these regimes as well as in the cross-over region sepa-
rating them from each other.

Extending the framework: Throughout this study
we used three main assumptions greatly simplifying the
problem and allowing for exact mathematical analysis:
i) exponentially decreasing probability of successful in-
tegration of foreign DNA into a recipient genome as a
function of the local sequence divergence, ii) exponen-
tially distributed pairwise coalescent time distribution of
a neutrally evolving well-mixed population, and iii) inde-
pendent evolution of non-overlapping “genes” or larger
indivisible units of horizontal genetic transfer. Here we
discuss how one can generalize the developed framework
to incorporate phenomena violating assumptions.

(i) A wide variety of barriers to foreign DNA entry
exist in bacteria (12). For example, Helicobacter py-
lori, is thought to have relatively free import of foreign
DNA (11) while other bacteria may have multiple RM
systems that either act in combination or are turned
on and off randomly (32) leading to potentially non-
exponential dependence of the probability of successful
integration on local genetic divergence. One can incorpo-
rate these variations within our framework by appropri-
ately modifying the functional relationship between the
probability of successful integration and local sequence

divergence or even by allowing it to change with time (e.g.
relax recombination barriers in the presence of stress).

(ii) Bacteria belong to ecological niches defined by en-
vironmental factors such as availability of specific nutri-
ent sources, host-bacterial interactions, and geographical
characteristics. Bacteria in different environments may
rarely compete with each other for resources and conse-
quently may not belong to the same effective population
and may have lowered frequency of DNA exchange com-
pared to bacteria sharing the same niche. How can one
capture the effect of ecological niches on genome evolu-
tion? Geographically and/or ecologically structured pop-
ulations exhibit a coalescent structure (and thus a pair-
wise coalescence time distribution) that depends on the
nature of niche separation (34, 35). Within our frame-
work, niche-related effects can be incorporated by ac-
counting for pairwise coalescent times of niche-structured
populations (34, 35) and niche dependent recombination
frequencies. For example, one can consider a model with
two or more subpopulations with different probabilities
for intra- and inter-population DNA exchange describing
geographical or phage-related barriers to recombination.

While most point mutations in bacterial genomes are
thought to have insignificant fitness effect, the evolution-
ary dynamics of bacterial species is driven by rare ad-
vantageous mutations and thus is far from being neutral.
Recombination in bacterial species is thought to be es-
sential for their evolution in order to minimize the fitness
loss due to Muller’s ratchet (36) and to minimize the im-
pact of clonal interference (37). Thus, it is likely that
both recombination frequency and transfer efficiency are
under selection (36, 38, 39). How could one include fit-
ness effects in our theoretical framework? Above, we con-
sidered the dynamics of neutrally evolving bacterial pop-
ulations. The effective population size is incorporated
in our framework only via the coalescent time distribu-
tion exp(−T/Ne) and consequently the intra-species di-
versity exp(−δ/θ) (see supplementary materials). Neher
and Hallatschek (40) recently showed that while pair-
wise coalescent times in adaptive populations are not ex-
actly exponentially distributed, this distribution has a
pronounced exponential tail with an effective population
size Ne weakly related to the actual census population
size and largely determined by the variance of mutational
fitness effects (40). In order to modify the recombination
kernel R(δa|δb) one needs to know the 3-point coales-
cence distribution for strains X, Y , and the donor strain
D (see Supplementary Materials here and in Ref. (6) for
details). Once such 3-point coalescence distribution is
available in either analytical or even numerical form our
results could be straightforwardly generalized for adap-
tive populations (assuming most genes remain neutral).
We expect the phase diagram of thus modified adaptive
model to be similar to its neutral predecessor considered
here, given that the pairwise coalescent time distribu-
tion in adaptive population has an exponential tail as
well (40), and for our main results to remain qualita-
tively unchanged.
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(iii) Finally, in this work, we assumed that in a recip-
ient genome, recombinations mix non-overlapping seg-
ments of length ltr that always recombine in their en-
tirety. In real bacteria, different recombined segments
have variable lengths and partially overlap with each
other thereby creating a mosaic of clonal and transferred
regions along a chromosome (6, 10, 11, 22). Overlap-
ping transfers can affect the evolutionary dynamics. In
particular, when a local region within a genome has di-
verged above the threshold imposed by the transfer effi-
ciency δTE it reduces the likelihood of successful homol-
ogous recombination near both of its boundaries lead-
ing to a gradual expansion of the highly diverged region
along the chromosome (22). Vetsigian and Goldenfeld
proposed (22) that non-core genome segments e.g. hor-
izontally acquired pathogenicity genomic islands could
nucleate such propagating fronts of diversity and ulti-
mately give rise to new species. Genome rearrangements

such as large-scale inversions are also expected to reduce
the local rate of recombination in their vicinity. One
expects that a long stretch of a genome that diverged
above the transfer efficiency threshold can similarly re-
sult in two propagating wave fronts of divergence along
the chromosome. Our analytical results are rather simi-
lar to numerical findings of Ref. (22) indicating that such
propagating fronts do not qualitatively change the two
regimes of the evolutionary dynamics explored above.

In our future studies we plan to explore these and other
extensions on top of the basic mathematically tractable
model described here.
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A1. APPENDIX

A. The computational model

We consider a model population of Ne bacteria. The
population evolves with non-overlapping generations. In
each generation, the parent of an offsprings is chosen ran-
domly from the previous generation. Genome of every
bacteria consists of G genes. The genes can mutate and
can be transferred one at a time in their entirety. The
genes in this model are in fact indivisible units of homolo-
gous recombination. We denote by ltr the length of each
gene. We use ltr = 5000 base pairs reflecting transfers
larger than individual genes (6, 10). The mutation rate
is µ per base pair per generation and the rate at which
recombinations are attempted is ρ per base pair per gen-
eration. We assume that recombinations always start at
the first base pair of each gene.

In this co-evolving population, we focus on the diver-
gence between a pair of strains X and Y that at time
t = 0 start as identical twins. The divergence δ(t) on any
one of the genes between these two pairs evolves stochas-
tically as a function of time. With probability 2µ, the
divergence increases by 1/ltr. Recombinations are at-
tempted from the population into one of the genomes
(say X) at a rate 2× ρ. The divergence after a recombi-
nation δa (a for after) event can either remain the same,
decrease, or increase compared to the divergence before
recombination δb (b for before). The three probabilities
are given by (see Fig. A1 for an illustration).

p=(δa|δb) =
1− e−

δb
δTE
− 2δb

θ

2 + θ/δTE
×Di(δa − δb),

p<(δa|δb) =
e
− 2δa

θ −
δb
δTE

θ
×H(δb − δa) and,

p>(δa|δb) =
e
− δa
δTE
− δa+δb

θ

θ
×H(δa − δb). (A1)

Here, Di(x) is the Dirac Delta function and H(x) is the
Heaviside theta function. The full evolutionary kernel
E(δa|δb) is the combination of mutational events and re-
combination events.

B. Estimating r/m

As mentioned in the main text, r/m is defined in a pair
of strains as the ratio of SNPs brought in by recombina-
tion events and the SNPs brought in by point mutations.
Clearly, r/m will depend on a strain-to-strain compari-
son however, usually it is reported as an average over all
pairs of strains. How do we compute r/m in our frame-
work? We have

r/m = ρsucc/µ× ltr × δtr (A2)

Thus, in order to compute r/m, we need two quan-
tities. First, we need to compute the rate of successful

FIG. A1. Three possible outcomes of gene transfer that
change the divergence δ. XD, Y D, XY , and XYD are the
most recent common ancestors of the strains. The divergence
δb before transfer and δa after transfer are shown in red and
blue respectively.

recombinations ρsucc < ρ. We can calculate ρsucc as

ρsucc =

∫ ∫
1

Ne
ρe−t/Ne × psucc(δ)p(δ|t)dδdt (A3)

where psucc is the success probability that a gene that has
diverged by δ will have a successful recombination event.
The integration over exponentially distributed pairwise
coalescent times averages over the population. psucc can
be computed from Eq. A1 by integrating over all possible
scenarios of successful recombinations. We have

psucc(δ) = e−
δ∗(2+θ∗)

θ∗ ×
(

1

1 + 3θ∗ + θ∗ × θ∗
− 1

2

)
+
e−δ

∗

2
+

1

2 + θ∗
(A4)

where δ∗ = δ/δTE and θ∗ = θ/δTE are normalized diver-
gences and p(δ|t) is the distribution of local divergences
at time t. In practice, r/m can only estimated by ana-
lyzing statistics of distribution of SNPs on the genomes
of closely related strain pairs where both clonally inher-
ited and recombined parts of the genome can be identi-
fied (6, 27). Here, we limit the time-integration in Eq. A3
to times t < min(Ne = θ/2µ, δTE/2µ).

Second, we need to compute the average divergence in
transferred segments, δtr. We have

δtr =
1

Ne

∫ ∫
e−t/Ne × δt(δ)p(δ|t)dtdδ (A5)

where δt(δ) is the average divergence after a recombina-
tion event if the divergence before transfer was δ.

C. Computing θ from MLST data

Except for E. coli where we used our previous analy-
sis (6) (we used θ/δTE ∼ 3 and r/m = 12), we down-
loaded MLST sequences of multiple organisms from the
MLST database (31). For each of the 7 genes present in
the MLST database, we performed a pairwise alignment
between strains. θ for each gene was calculated as the
average of pairwise SNPs. The θ for the species was es-
timated as average of the θs calculated for each of the 7
genes.
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