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While bacteria divide clonally, occasional homologous recombination is known to be an important
contributor to their evolution. However, the details of how the competition between clonal inheri-
tance and recombination shapes genome diversification, population structure, and species stability
remains poorly understood. Using a computational model, we propose two evolutionary regimes
and identify two composite parameters that dictate the fate of bacterial species. In the divergent
regime, characterized by either a low recombination frequency or strict barriers to recombination,
cohesion due to recombination is not sufficient to overcome the mutational drift. As a consequence,
the divergence between any pair of genomes in the population steadily increases in the course of
evolution. The species as a whole lacks coherence at the population level with sub-populations
continuously formed and dissolved. In contrast, in the metastable regime, characterized by a high
recombination frequency combined with low barriers to recombination, genomes continuously re-
combine with the rest of the population. The population remains genetically cohesive and stable
over time. We demonstrate that the transition between these two regimes can be affected by rela-
tively small changes in evolutionary parameters. Using the data from Multi Locus Sequence Typing
(MLST) analysis we classify a number of well-studied bacterial species to be either the divergent
or the metastable type. Mechanisms that allow bacterial species to transition from one regime
to another are discussed. Generalizations of the framework to understand adaptive populations,
horizontal gene transfer of non-homologous regions, and spatial correlations in diversity along the
chromosome are also discussed.

Introduction: Bacterial genomes are extremely vari-
able, comprising both a consensus ‘core’ genome which
is present in the majority of strains in a population, and
an ‘auxiliary’ genome, comprising genes that are shared
by some but not all strains (1–7).

Multiple factors shape the diversification of the core
bacterial genome. Bacteria divide clonally thereby inher-
iting the entirety of their mother’s genome. The balance
between this vertical inheritance and random fixation of
single nucleotide polymorphisms (SNPs), generated at a
rate µ per base pair per generation, limits the typical
population diversity to θ = 2µNe where Ne is the ef-
fective population size of the species (8). During the last
two decades, genetic exchange between closely related or-
ganisms through homologous recombination, attempted
at a rate ρ per base pair per generation, has also been
recognized as a significant factor in evolution (5, 6, 9–14).
Notably recombination between genetically distant bac-
teria is suppressed, the probability psuccess ∼ e−δ/δTE of
successful recombination of foreign DNA into a recipient
genome decays exponentially with δ, the local divergence
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between the donor DNA and the recipient (12, 15–17).
The effective barrier δTE to successful recombination, re-
ferred here as the transfer efficiency, is shaped at least
in part by the biophysical mechanisms of homologous re-
combination (15, 16).

While clonal inheritance with mutations imposes a
clonal structure on the population, recombination acts
as an homogenizing force, keeping populations homoge-
neous and potentially destroying the genetic signatures of
clonality (6, 17, 18). There are two principal components
to the interplay between mutations and recombinations.
First is the competition between the diversity within the
population θ and the maximal diversity within one sub-
population δTE uniformly capable of successful recombi-
nation. If δTE < θ, one expects spontaneous fragmenta-
tion of the entire population into several transient sexu-
ally isolated sub-populations that rarely exchange genetic
material between each other. In contrast, if δTE > θ, un-
hindered exchange of genetic fragments may result in a
single cohesive population. Second is the competition be-
tween the recombination transfer rate ρ and the mutation
rate µ. The typical time between consecutive recombi-
nation events in any local genomic region is 1/2ρ × ltr
where ltr is the typical length of transferred regions. In
the same time, the total divergence accumulated in this
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region is δmut ∼ 2µ/2ρ× ltr). If δmut � δTE, the pair of
genomes may become sexually isolated from each other
between successive recombination events. In contrast, if
δmut < δTE, frequent recombination events may disallow
sexual isolation resulting in a homogeneous population.

What qualitative dynamical regimes in bacterial evo-
lution emerge from the competition and balance between
these two factors and which evolutionary parameters dic-
tate the evolutionary fate of bacterial genome diversifica-
tion remains poorly understood. Importantly, even the
question of whether bacteria can retain their clonal in-
heritance in the presence of recombination and whether
signatures of clonal structure and recombination can be
inferred from population genetic data is still heavily de-
bated (17, 19–21).

Nonetheless, some aspects of this interplay have been
explored before. In their pioneering study Vetsigian
and Goldenfeld (22) investigated the effects of non-
recombining segments (for example, a large scale in-
version or insertion) on recombination events in their
chromosomal neighborhoods’ vicinity and how it may
result in divergence spreading along the chromosome.
Falush et al. (23) suggested that a low transfer effi-
ciency δTE leads to sexual isolation in Salmonella en-
terica. Fraser et al. (18), working with a θ = 0.4% (lower
than those observed in typical bacterial species) and a
transfer efficiency δTE ≈ 2.4% concluded that realistic
values of sexual isolation in bacterial species is insuf-
ficient to cause speciation with realistic recombination
frequencies. Doroghazi and Buckley (24), working with
a fixed transfer efficiency but a very small population size
(limit of θ → 0), studied how the competition between
mutations and recombination affects the cohesion of two
isolated subpopulations.

In this work, using a computational model and math-
ematical calculations, we show that the two compos-
ite parameters identified above, θ/δTE and δmut/δTE,
determine qualitative evolutionary dynamics of a given
bacterial species. Furthermore, we identify two princi-
pal regimes of this dynamics. In the divergent regime,
characterized by a high δmut/δTE, local genomic regions
acquire multiple mutations between successive recombi-
nation events and rapidly isolate themselves from the
rest of the population. The population remains mostly
clonal where transient sexually isolated sub-populations
are continuously formed and dissolved. In contrast, in
the metastable regime, characterized by a low δmut/δTE

and a low θ/δTE), local genomic regions recombine re-
peatedly before ultimately escaping the pull of recombi-
nation (hence the name “metastable”). At the popula-
tion level, in this regime all genomes can exchange genes
with each other resulting in a sexually cohesive and tem-
porally stable population. Notably, our analysis suggests
that only a small change in evolutionary parameters can
have a substantial effect on evolutionary fate of bacterial
genomes and populations.

We also show how to classify bacterial species using
the conventional measure of the relative strength of re-

combination over mutations, r/m (defined as the ratio of
the number of single nucleotide polymorphisms (SNPs)
brought by recombinations and those brought by point
mutations in a pair of closely related strains), and our
second composite parameter θ/δTE. Based on our anal-
ysis of the existing MLST data, we find that different
bacterial species bacteria belong to either divergent and
metastable regimes. We discuss possible molecular mech-
anisms and evolutionary forces that decide the role of re-
combination in a species’s evolutionary fate. We also dis-
cuss possible extensions of our analysis to include adap-
tive evolution and genome modifications such as inser-
tions, deletions, and inversions.

The computational model: We consider a pop-
ulation of Ne strains. The population evolves with
non-overlapping generations and in each generation the
strains choose their parents randomly (8). The genome of
each strain has G indivisible and non-overlapping trans-
ferable units. For simplicity, in what follows we refer to
these units as genes but note that while protein coding
genes in a typical bacteria are ∼ 1000 base pair long,
we use ltr = 5000 base pairs mimicking genetic trans-
fers longer than individual protein coding genes (6, 10).
These genes acquire point mutations at a rate µ per base
pair per generation and recombinations are attempted
on a recipient genome from a randomly selected donor in
the population at a rate ρ per base pair per generation.
The mutations and recombination events are assumed to
have no fitness effects. Finally, the probability of a suc-
cessful integration of a donor gene decays exponentially,
psuccess ∼ e−δ/δTE , with the local divergence δ between
the donor and the recipient.

In order to avoid simulating extremely large bacterial
population sizes, we focus on the evolution of divergence
between two randomly chosen genomes labeled X and
Y in a co-evolving population. X and Y start diverg-
ing from each other as identical twins at time t = 0
(when their mother divides). We denote by δi(t), the
divergence in the ith gene between X and Y at time t
and by ∆(t) = 1/G

∑
i δi(t) the average genome-wide

divergence. Based on population genetic and biophysi-
cal considerations, we derive the probability E(δa|δb) =
2µM(δa|δb) + 2ρltrR(δa|δb) (a for after and b for be-
fore) that the divergence in any gene changes from δb
to δa in one generation (see supplementary materials for
details) (6). Briefly, there are two components to the
probability, M and R. Point mutations, represented by
M(δa|δb), occur at a rate 2×µ per base pair per genera-
tion and increase the divergence in a gene by 1/ltr. Un-
like point mutations, after a recombination event (repre-
sented by R(δa|δb)), the divergence can change suddenly,
taking values either larger or smaller than the current
divergence (6). Note that recombinations from highly
diverged members in the population are suppressed ex-
ponentially and consequently not all recombination at-
tempts are successful. Intuitively, the time evolution of
p(δ|t) of the probability of observing a divergence δ in a

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 5, 2016. ; https://doi.org/10.1101/067942doi: bioRxiv preprint 

https://doi.org/10.1101/067942


3

gene at time t can be written as

∂p(δ|t)
∂t

= −2µ
∂p(δ|t)
∂δ

+ 2ρltr

∫
R(δ|δb)× p(δb|t)dδb︸ ︷︷ ︸

entry into δ

− 2ρltr

∫
R(δa|δ)× p(δ|t)dδa︸ ︷︷ ︸

exit from δ

. (1)

Evolution of local divergence has large fluctua-
tions: In Fig. 1 we show a color-coded typical trajectory
of evolution of the local divergence δ(t) of a single gene in
a pair of genomes. We have used θ = 1.5% and δTE = 1%,
values typically observed in bacterial species (6, 18). To
keep the simulation times manageable, the mutation and
the recombination rates used here are 4-5 orders of mag-
nitude higher compared to those observed in real bacteria
(µ = 10−5 per base pair per generation and ρ = 5×10−6

per base pair per generation, δmut/δTE = 0.04) (25, 26)
while keeping the ratio of the rates realistic (5, 6, 13, 27).
Alternatively, the unit of time in these simulations is con-
siderably longer than one single generation.

The time evolution of δ(t) is noisy; mutational drift
events that gradually increase the divergence linearly
with time (red) are frequently interspersed with homolo-
gous recombination events (green if they increase δ(t) and
blue if they decrease it) that suddenly change the diver-
gence to typical values seen in the population (see Eq. A1
in the appendix). Eventually, either through the gradual
mutational drift or a sudden recombination event, δ(t) in-
creases beyond the integration barrier set by the transfer
efficiency, δ(t)� δTE. Beyond this point, the two strains
belong to two different sexually isolated sub-clades. Any
further recombination events on any one of the strains
are limited to their own sub-clades and do not change
the divergence between the two strains. Consequently,
the mutational drift keeps on driving them further apart
indefinitely.

Genome-wide divergence: Because genomic re-
gions in our model evolve independently of each other,
the genome-wide average divergence ∆(t) can be calcu-
lated as the mean of G independent realizations local
divergences δ(t). Consequently, since the number G of
genes in the genome is large, the law of large numbers
implies that the fluctuations in the dynamics of ∆(t)
are substantially suppressed compared to more noisy δ(t)
seen in Fig. 1.

In Fig. 2, we plot the time evolution of ∆(t) between a
pair of strains (as % difference). We have used θ = 0.25%,
δTE = 1%, and δmut/δTE = 2, 0.5, 0.04, and 2× 10−3 re-
spectively. When δmut/δTE is large (either a due to low
ρ or a low δTE), in any local genomic region, multiple
mutations are acquired between two successive recombi-
nation events. Consequently, individual genes escape the
pull of recombination rapidly and ∆(t) increases roughly
linearly with time at a rate 2µ. For smaller values of
δmut/δTE, the rate of change of ∆(t) in the long term
decreases as many of the individual genes repeatedly re-
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FIG. 1. A typical evolutionary trajectory of the local diver-
gence δ(t) of a single gene between a pair of strains. We have
used µ = 10−5, ρ = 5 × 10−6 per base pair per generation,
θ = 1.5% and δTE = 1%. Red tracks indicate divergence in-
creasing linearly, at a rate 2µ per base pair per generation,
with time due to mutational drift. Green tracks indicate re-
combination events that suddenly increase the divergence and
blue tracks indicate recombination events that suddenly de-
crease the divergence. Eventually, the divergence increases
sufficiently and the local genomic region escapes the pull of
recombination.

combine with the population. However, even then the
fraction of genes that have escaped the integration bar-
rier slowly increases over time, eventually leading to a
linear increase in ∆(t) with time albeit with a slope dif-
ferent than 2µ. The repeated resetting of δ(t) after ho-
mologous recombination (see Fig. 1) generally results in
a ∆(t) that increases extremely slowly with time.

At the shorter time scale, the trends in genome diver-
gence are opposite of those at the longer time scale. At
a fixed θ, a low value of δmut/δTE implies faster diver-
gence and vice versa. When recombination rate is high,
genomes of strains quickly ‘equilibrate’ with the popu-
lation and the genome-wide average divergence between
a pair of strains reaches the population average diver-
sity ∼ θ (see the red trajectory in Fig. 2). From here,
any new mutations that increase the divergence are con-
stantly wiped out through repeated recombination events
with the population. Over time, a rare event, wherein
mutations accumulate and no recombinations take place
for a sufficiently long time, allows individual ‘genes’ to
escape the pull of recombination. Subsequently, genes on
any pair of genomes escape the pull of recombination one
after the other and the genomes can diverge indefinitely.

Computational algorithms that build phylogenetic
trees from multiple sequence alignments often rely on the
assumption that the sequence divergence, for example be-
tween a pair of strains (at the level of individual genes
or at the level of genomes), faithfully represents the time
that has elapsed since their most recent common ancestor
(MRCA). However, Fig. 1 and Fig. 2 serve as a caution-
ary tale. Notably, after just a single recombination event
the local divergence at the level of individual genes does
not at all reflect time elapsed since divergence but rather
depends on statistics of divergence within a recombin-
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FIG. 2. Genome-wide divergence ∆(t) as a function of time at
θ/δTE = 0.25. We have used δTE = 1%, µ = 5×10−6 per base
pair per generation and ρ = 2.5×10−8, 2.5×10−7, 1.25×10−6,
and 2.5× 10−5 per base pair per generation corresponding to
δmut/δTE = 2, 0.2, 0.04, and 2×10−3 respectively. The dashed
black lines at ∆ = 0.25% and ∆ = 0.5% show θ and 2 × θ.

ing population (see (6) for more details). At the level
of genomes, when δmut/δTE is large (e.g. the blue tra-
jectory in Fig. 2), the time since MRCA of two strains
is directly correlated with the number of mutations that
separate their genomes. In contrast, when δmut/δTE is
small (see pink and red trajectories in Fig. 2), frequent
recombination events repeatedly erase the memory of the
clonal ancestry. Nonetheless, individual genomic regions
slowly escape the pull of recombination at a fixed rate.
Thus, the time since MRCA is reflected not in the total
divergence between the two genomes but in the fraction
of the length of the total genomes that has escaped the
pull of recombination. As described above one uses a very
different rate of accumulation of divergence to estimate
evolutionary time from genome-wide average divergence.

Quantifying metastability: How does one quantify
the metastable behavior described above? At the level of
individual genes it is manifested through constant reset-
ting of δ(t) to typical population values and at the level
of entire genomes through a very slow increase in ∆(t)
when δmut/δTE is small. Fig. 2 suggests that high rates of
recombination prevent pairwise divergence from increas-
ing beyond the typical population divergence ∼ θ at the
whole-genome level. Thus, for any set of evolutionary
parameters, µ, ρ, θ, and δTE, the time it takes for a pair
of genomes to diverge far beyond the typical population
diversity θ can serve as a quantifier for metastability.

In Fig. 3, we plot the time tdiv required for the genome-
wide average divergence ∆(t) between a pair of genomes
to exceed twice the typical population diversity 2× θ as
a function of θ/δTE and δmut/δTE. Note that in the ab-
sence of recombination, it takes tdiv = 2Ne generations
before ∆(t) exceeds 2θ. While we work with an arbitrary
threshold of twice the average diversity, we do not expect
that our results will change for any other non-typical di-
vergences > θ.

We observe two distinct regimes in the behavior of
tdiv as a function of θ/δTE and δmut/δTE. In the di-
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FIG. 3. The time tdiv required for a pair of genomes to di-
verge beyond the typical population diversity ∼ θ (see main
text). We calculate the time taken for the genome-wide av-
erage divergence to reach 2 × θ as a function of θ/δTE and
δmut/δTE. We used δTE = 1%, µ = 10−5 per base pair per
generation. We changed ρ and θ to scan the (θ/δTE, δmut/δTE)
space. The green diamonds represent four populations shown
in Fig. 2 and Fig. 4 (see below).

vergent regime, after a few recombination events, the di-
vergence δ(t) at the level of individual genes quickly es-
capes the integration barrier and increases indefinitely.
Consequently, ∆(t) increases linearly with time (see
δmut/δTE = 2 in Fig. 2) and reaches ∆(t) = 2θ within
∼ 2Ne generations. In contrast, it takes extremely
long for ∆(t) to reach 2θ as δmut/δTE decreases in the
metastable regime. Here, genes get repeatedly exchanged
with the population and ∆(t) between a pair of strains
appears to remain constant over large periods of time (see
δmut/δTE = 2 × 10−3 in Fig. 2). Notably, a small per-
turbation in evolutionary parameters can change evolu-
tionary dynamics from divergent to metastable and vice
versa near the boundary region between the two regimes.

Population structure: Can we understand the phy-
logenetic structure of the population by studying the
dynamics of evolution of divergence between a pair of
strains in the population? Every pair of genomes diverges
indefinitely when sufficient amount of time has elapsed
since their MRCA. But, in a finite population of size
Ne, the average probability of observing a pair of strains
whose MRCA existed t generations ago is exponentially
distributed, pc(t) ∼ e−t/Ne (the line indicates averaging
over multiple realizations of the coalescent process) (28–
30). Thus, while it may be possible a pair of genomes
considered above to diverge indefinitely from each other
(see Fig. 2), it becomes more and more unlikely to find
such a a pair in a finite sized population.

Let us define π(∆) as the probability that the genomes
of two randomly picked strains in a population have di-
verged from each other by ∆. Let π(∆) be the time
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average of π(∆). We have

π(∆) =

∫ ∞
0

pc(t)× p(∆|t)dt and

π(∆) =

∫ ∞
0

pc(t)× p(∆|t)dt

=
1

Ne

∫ ∞
0

e−t/Ne × p(∆|t)dt (2)

In Eq. 2, pc(t) is the probability of that a pair of strains
share their MRCA t generations ago in any time snap-
shot of the population and p(∆|t) is the probability that
a pair of strains have diverged by ∆ at time t. Given
that ∆(t) is the average of G � 1 independent realiza-
tions of δ(t), we can approximate it as a Gaussian dis-
tribution with average 〈δ(t)〉G =

∫
δ × p(δ|t)dδ and vari-

ance σ2 = 1
G

(
〈δ(t)2〉G − 〈δ(t)〉2G

)
. The angular brackets

and the subscript G indicate an average over the entire
genome.

Unlike the time averaged distribution π(∆), the in-
stantaneous distribution π(∆) is accessible from genome
sequences. However, we expect substantial differences
between the two distributions even in the large popula-
tion limit given that pc(t) is extremely noisy and does not

resemble its long-time average pc(t) ∼ e−t/Ne (29, 30).
In panels a) to d) of Fig. 4, we show π(∆) for the four
cases shown in Fig. 2. We fixed the population size to
Ne = 500. We changed δmut/δTE by changing the recom-
bination rate ρ. The solid lines represent a time snap-
shot obtained by numerically sampling pc(t) in a Fisher-
Wright population of size Ne = 500. The dashed black
line represents the time average π(∆).

In the divergent regime of Fig. 3, at high δmut/δTE

values, the instantaneous snapshot distribution π(∆) has
multiple peaks indicating the spontaneous formation of
clonal sub-populations even in a homogeneous population
that exchange genetic material within the clade but not
outside of it, either because of a low recombination fre-
quency or because of a low transfer efficiency. In this
case, the time averaged distribution π(∆) has a long ex-
ponential tail and, as expected, does not agree with the
instantaneous distribution π(∆).

Notably, in the metastable regime, at lower values of
δmut/δTE, the exponential tail shrinks into a Gaussian-
like peak. The width of this peak relates to fluctuations
in ∆(t) around its mean value which in turn are related
to the total number of genes G. Moreover, the difference
between the instantaneous and the time averaged distri-
butions decreases as well. In this limit, all strains in the
population exchange genetic material with each other.
Thus, in the metastable regime, frequent recombination
events can successfully eiliminate the clonal structure of
the population leading to a sexually cohesive and tempo-
rally stable population.

Analysis of bacterial species: How are bacterial
species placed on the divergent-metastable diagram? In-
stead of δmut/δTE as defined here, population genetic
studies of bacteria quantify the relative ‘strength’ of re-
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FIG. 4. Distribution of genome-wide divergence in a co-
evolving population for increasing values of δmut/δTE. In

all 4 panels, dashed black lines represent π(∆), the time av-
eraged distribution of genome-wide diversity in the popula-
tion. The solid lines represent an instance of the distribution
π(∆) at one snap shot. The time averaged and the snapshot
distributions were estimated by sampling 5 × 105 pairwise
coalescent times from the time averaged coalescent distribu-
tion p ∼ e−t/Ne and the instantaneous coalescent distribution
pc(t).

combination over mutations as r/m. In our framework,
r/m can be estimated as r/m = ρsucc/µ× ltr× δtr where
ρsucc < ρ is the rate of successful recombination events
and δtr is the average divergence in transferred regions.
Both ρsucc and δtr depend on the evolutionary parame-
ters (see appendix for a detailed description of the calcu-
lations).

In Fig. 5, we re-plot the ‘phase diagram’ in Fig. 3
in terms of θ/δTE and r/m and place multiple bacte-
rial species on it. We estimated θ from MLST data (31)
and used r/m values that were determined previously by
Vos and Didelot (13). We assumed that the transfer effi-
ciency δTE was approximately equal to δTE ∼ 2.26% (18).
There are three striking features. First, our analysis
identifies both r/m and θ/δTE as important evolution-
ary parameters and suggests that individually r/m or
θ/δTE alone cannot determine population structure. Sec-
ond, the sharp transition between the divergent and the
metastable phase is also observed in the modified phase
diagram as well, implying that a small change in either
r/m or θ/δTE can change the evolutionary fate of a bac-
terial species. And finally, we observe that real bac-
terial species can indeed be both divergent as well as
metastable.

Can bacteria change their evolutionary fates? There
are multiple biophysical and ecological processes by
which bacterial species may move from the metastable
to the divergent regime and vice versa in Fig. 3. For ex-
ample, if population size remains constant, a change in
mutation rate changes δmut/δTE as well as θ. A change in
the expression of the mismatch repair (MMR) system or
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the type of the MMR system can change δTE (15). Loss
of co-infecting phages or the SOS system and the number
of restriction-modification (RM) systems (32) can change
the rate of recombination.

Adaptive and ecological events are regularly inferred
from population genomics data only after rejecting mod-
els of neutral evolution. However, the range of qual-
itative behaviors explained by the neutral models of
recombination-driven evolution of bacterial species was
not entirely quantified leading to potentially unwarranted
conclusions, as illustrated in (33).

Consider E. coli as an example. Known strains of E.
coli are usually grouped into 5-6 different sub-clades. It
is thought that inter-clade sexual exchange is lower com-
pared to intra-clade exchange (6, 27). Ecological niche
separation and/or selective advantage are usually impli-
cated as initiators of such putative speciation events (17).
In our previous analysis of 32 fully sequenced E. coli
strains, we estimated θ/δTE > 3 and r/m ∼ 8 − 10 (6)
implying that E. coli resides in the divergent regime in
Fig. 5. Thus, the analysis presented here indicates that
E. coli strains should spontaneously form sexually iso-
lated sub-populations even in the absence of selective
pressures or ecological niche separation. Consequently,
careful analysis is needed to reject neutral models of evo-
lution in the study of population genetics of bacteria.

Conclusions: While recombination is now recognized
as the chief contributor to the observed genome diver-
sity in many bacterial species(5, 6, 9–13), its effect on
population structure and species stability is still heavily
debated (17–21).

In this work, we have shown that recombination-driven
bacterial genome evolution can be understood as a bal-
ance between two important competitions. We identified
the two dimensionless parameters θ/δTE and δmut/δTE

that dictate this balance and result in two qualitatively
different regimes in bacterial evolution, separated by a
sharp transition.

As seen in Fig. 3 and Fig. 5, in the divergent regime,
the pull of recombination is insufficient to homogenize
individual genes and entire genomes leading to a tem-
porally unstable and sexually fragmented population.
Notably, understanding divergence between a pair of
genomes allows us to study the structure of the popu-
lation as well. As shown in Fig. 4, genomes of members
of divergent population form a clonal population struc-
ture. On the other hand, in the metastable regime, indi-
vidual genomes repeatedly recombine genetic fragments
with each other leading to a sexually cohesive and tempo-
rally stable population. As seen in Fig. 5, real bacterial
species appear to belong to both of these regimes as well
as in the cross-over region between the regimes.

Extending the framework: Recombination in bac-
terial species is thought to be essential in order to mini-
mize the fitness loss due to Muller’s ratchet (34) and to
minimize clonal interference (35). Thus, it is likely that
both recombination frequency and transfer efficiency are
under selection (34, 36). Could one include fitness effects
in our theoretical framework? Here, we considered the
dynamics of neutrally evolving bacterial population of ef-
fective population size Ne. The effective population size
is incorporated in our framework via the coalescent time
distribution of a neutral population, exp(−T/Ne) (see
supplementary materials). Neher and Hallatschek (37)
recently showed that while pairwise coalescent times in
adaptive populations are not exponentially distributed,
this distribution has a pronounced exponential tail with
an effective population size Ne weakly related to the ac-
tual population size and largely determined by the vari-
ance of mutational fitness effects (37). Our results could
be generalized for adaptive populations by incorporating
the effects of such non-exponential coalescent time dis-
tribution.

In this work, we assumed that in a recipient genome,
recombinations bring non-overlapping segments of length
ltr that recombine in their entirety. In real bacteria,
different recombined segments have variable lengths and
partially overlap with each other thereby creating a mo-
saic of clonal and transferred regions along a chromo-
some (6, 10, 11). Overlapping transfers can affect evo-
lutionary dynamics. In particular, when a local region
within a genome has diverged above the threshold im-
posed by transfer efficiency δTE it reduces the likelihood
of successful homologous recombination near both of its
boundaries leading to a gradual expansion of the highly
diverged region along the chromosome (22). Vetsigian
and Goldenfeld proposed (22) that non-core genome seg-
ments e.g. horizontally acquired pathogenicity genomic
islands could nucleate such propagating fronts of diver-
sity and ultimately give rise to a new species. Genome
rearrangements such as large-scale inversions are also ex-
pected to reduce the local rate of recombination in their
vicinity. One expects that a long stretch of a genome
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that diverged above transfer efficiency threshold can also
result in two propagating wave fronts of divergence along
the chromosome. In our future studies we plan to explore
these and other extensions on top of the basic mathemat-

ically tractable model described here.
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A1. APPENDIX

A. The computational model

We consider a model population of Ne bacteria. The
population evolves with non-overlapping generations. In
each generations, offsprings choose their parent ran-
domly. Genome of every bacteria consists of G genes.
The genes can mutate and can be transferred one at
a time in their entirety. The genes in this model are
in fact indivisible units of homologous recombination.
We denote by ltr the length of each gene. We use
ltr = 5000 base pairs reflecting transfers larger than indi-
vidual genes (6, 10). The mutation rate is µ per base pair
per generation and the rate at which recombinations are
attempted is ρ per base pair per generation. We assume
that recombinations always start at the first base pair of
each gene.

In this co-evolving population, we focus on the diver-
gence between a pair of strains X and Y that at time
t = 0 start as identical twins. The divergence δ(t) on any
one of the genes between these two pairs evolves stochas-
tically as a function of time. With probability 2µ, the
divergence increases by 1/ltr. Recombinations are at-
tempted from the population into one of the genomes
(say X) at a rate 2× ρ. The divergence after a recombi-
nation δa (a for after) event can either remain the same,
decrease, or increase compared to the divergence before
recombination δb (b for before). The three probabilities
are given by (see Fig. A1 for an illustration).

p=(δa|δb) =
1− e−

δb
δTE
− 2δb

θ

2 + θ/δTE
×Di(δa − δb),

p<(δa|δb) =
e
− 2δa

θ −
δb
δTE

θ
×H(δb − δa) and,

p>(δa|δb) =
e
− δa
δTE
− δa+δb

θ

θ
×H(δa − δb). (A1)

Here, Di(x) is the Dirac Delta function and H(x) is the
Heaviside theta function. The full evolutionary kernel
E(δa|δb) is the combination of mutational events and re-
combination events.

B. Estimating r/m

As mentioned in the main text, r/m is defined in a pair
of strains as the ratio of SNPs brought in by recombina-
tion events and the SNPs brought in by point mutations.
Clearly, r/m will depend on a strain-to-strain compari-
son however, usually it is reported as an average over all
pairs of strains. How do we compute r/m in our frame-
work? We have

r/m = ρsucc/µ× ltr × δtr (A2)

Thus, in order to compute r/m, we need two quan-
tities. First, we need to compute the rate of successful

FIG. A1. Three possible outcomes of gene transfer that
change the divergence δ. XD, Y D, XY , and XYD are the
most recent common ancestors of the strains. The divergence
δb before transfer and δa after transfer are shown in red and
blue respectively.

recombinations ρsucc < ρ. We can calculate ρsucc as

ρsucc =

∫ ∫
1

Ne
ρe−t/Ne × psucc(δ)p(δ|t)dδdt (A3)

where psucc is the success probability that a gene that has
diverged by δ will have a successful recombination event.
The integration over exponentially distributed pairwise
coalescent times averages over the population. psucc can
be computed from Eq. A1 by integrating over all possible
scenarios of successful recombinations. We have

psucc(δ) = e−
δ∗(2+θ∗)

θ∗ ×
(

1

1 + 3θ∗ + θ∗ × θ∗
− 1

2

)
+
e−δ

∗

2
+

1

2 + θ∗
(A4)

where δ∗ = δ/δTE and θ∗ = θ/δTE are normalized diver-
gences and p(δ|t) is the distribution of local divergences
at time t. In practice, r/m can only estimated by ana-
lyzing statistics of distribution of SNPs on the genomes
of closely related strain pairs where both clonally inher-
ited and recombined parts of the genome can be identi-
fied (6, 27). Here, we limit the time-integration in Eq. A3
to times t < min(Ne = θ/2µ, δTE/2µ).

Second, we need to compute the average divergence in
transferred segments, δtr. We have

δtr =
1

Ne

∫ ∫
e−t/Ne × δt(δ)p(δ|t)dtdδ (A5)

where δt(δ) is the average divergence after a recombina-
tion event if the divergence before transfer was δ.

C. Computing θ from MLST data

Except for E. coli where we used our previous analy-
sis (6), we downloaded MLST sequences of multiple or-
ganisms from the MLST database (31). For each of the
7 genes present in the MLST database, we performed a
pairwise alignment between strains. θ for each gene was
calculated as the average of pairwise SNPs. The θ for the
species was estimated as average of the θs calculated for
each of the 7 genes.
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