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Abstract 
Understanding how stochastic molecular fluctuations affect cell behavior requires the 
quantification of both behavior and protein numbers in the same cells. Here, we combine 
automated microscopy with in situ hydrogel polymerization to measure single-cell protein 
expression after tracking swimming behavior. We characterized the distribution of non-genetic 
phenotypic diversity in Escherichia coli motility, which affects single-cell exploration. By 
expressing fluorescently tagged chemotaxis proteins (CheR and CheB) at different levels, we 
quantitatively mapped motile phenotype (tumble bias) to protein numbers using thousands of 
single-cell measurements. Our results disagreed with established models until we incorporated the 
role of CheB in receptor deamidation and the slow fluctuations in receptor methylation. Beyond 
refining models, our central finding is that changes in numbers of CheR and CheB affect the 
population mean tumble bias and its variance independently. Therefore, it is possible to adjust the 
degree of phenotypic diversity of a population by adjusting the global level of expression of 
CheR and CheB while keeping their ratio constant, which, as shown in previous studies, confers 
functional robustness to the system. Since genetic control of protein expression is heritable, our 
results suggest that non-genetic diversity in motile behavior is selectable, supporting earlier 
hypotheses that such diversity confers a selective advantage. 
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Introduction 
Cell behavior is controlled by biochemical signaling networks. Because network dynamics 
depend on the number of each protein involved, the dynamical and functional properties of 
signaling pathways—and ultimately cell survival—are sensitive to random fluctuations in protein 
numbers. Such fluctuations are expected because the molecular components of signaling 
pathways are typically present in small numbers [1]. Various mechanisms that cause molecular 
fluctuations have been identified, including stochastic protein expression or unequal partitioning 
of components between daughter cells [2,3]. 

Selective pressure to maintain robust performance against inherent molecular fluctuations is 
likely to have played a significant role in the evolution of biological networks [4–7]. In 
fluctuating environments, however, non-genetic phenotypic variability can be an advantageous 
strategy for clonal populations raising the possibility that the distribution of different phenotypes 
within the population has a functional role beyond the mean phenotype [2,8–13].  

Investigating how variability in protein number controls the distribution of cell performances 
requires experiments that can measure both behavior and protein numbers in individual cells. At 
the same time, accurate characterization of the distribution of protein numbers, phenotypes, and 
performances in a population requires high-throughput experiments to obtain sufficient statistics. 
Fluorescent reporters paired with video-microscopy or flow cytometry have enabled the detailed 
characterization of phenotypic variability and cellular response dynamics in many systems [1,14–
19]. Microfluidics have given substantial control over experimental conditions, allowing 
researchers to probe single-cell responses to perturbations over extended periods of time [20–26]. 
However, due to the relatively long exposure times required to measure fluorescence signal from 
a small number of molecules, current experimental techniques are fundamentally limited by the 
requirement that cells to be stationary, making it difficult to correlate fluorescent reporters 
directly with cell behaviors in the same cells. 

We developed a high-throughput experimental method, FAST (Fluorescence Analysis with 
Single-cell Tracking), to correlate directly the individual behaviors of freely swimming cells and 
the numbers of proteins in the signaling pathway of each cell. FAST overcomes the conflicting 
requirements of tracking cell motile behavior over a large field of view with fluorescence imaging 
of stationary cells at high magnification. FAST uses in situ hydrogel polymerization to ‘freeze’ 
cells in place after the tracking period to allow automated single-cell fluorescence imaging. 
Therefore, the navigational performance of individual cells, such as exploration of an 
environment, was directly measured as a function of long-term motile behavior and intracellular 
protein numbers. 

Here, we demonstrate FAST on the chemotaxis pathway of Escherichia coli, a model system for 
the study of cellular behavior. Motile E. coli cells explore their environment by alternating 
periods of relatively straight swimming (runs) with brief changes of direction (tumbles). Tumbles 
are caused by a reversal of the flagellar motor rotation from counter-clockwise to clockwise 
direction. The activity of the chemotaxis receptor cluster controls the frequency at which the cell 
tumbles by controlling the kinase activity of CheA, which phosphorylates the response regulator 
CheY. The probability to tumble — the tumble bias — increases when the phosphorylated form 
of CheY (CheY-P) binds the motor. The kinase activity decreases when the receptors bind 
attractant. As a result, the CheY-P concentration is decreased by the constitutive phosphatase 
CheZ and the tumble bias is reduced. If attractant concentrations remain steady, tumble bias 
returns to pre-stimulus level due to the activity of CheR and CheB. CheR methylates inactive 
receptors, which increases the activity of the kinase, whereas CheB demethylates active receptors, 
reducing kinase activity [27]. Theoretical studies predict that this resting tumble bias is an 
important determinant of the chemotactic performance of E. coli and that the fitness of a 
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population of cells might depend not only on its mean tumble bias but also on the population 
variability in tumble bias [12,13].  

Early studies revealed a substantial amount of cell-to-cell variability in the motility behavior of 
clonal cells adapted to a uniform environment [28,29]. However, the molecular origin and 
functional consequences of this variability remain unclear. Because CheR and CheB are engaged 
in a futile cycle of methylation and demethylation of the chemoreceptors, the balance between the 
actions of CheR and CheB is an important factor in determining the resting activity of the 
receptor cluster [27]. Consequently, variations in the numbers of CheR and CheB are expected to 
affect the tumble bias of single cells. How changes in the levels of expression of CheR and CheB 
affect the distribution of the tumble bias in a clonal population of cells is unknown. It also 
remains unclear if the mean and the variance of the tumble bias distribution can be controlled 
independently from each other. Here, we examine these questions experimentally by quantifying 
in vivo how variations in the numbers of CheR and CheB in single cells shape the distributions of 
swimming phenotypes and exploration capabilities E. coli. 

Results 

Cell-to-cell variability in motile behavior within a clonal population of E. coli cells. 

We recorded trajectories of freely swimming cells to determine the distribution of swimming 
phenotypes in an isogenic population. Following established protocols, E. coli RP437 cells were 
grown to mid-exponential phase in minimal medium then suspended in motility buffer in which 
the motile behavior remains constant for more than one hour and identical to the behavior 
observed in the growth medium (S1 Fig.) [30]. Therefore, the characterization of single-cell 
motile behavior was done without confounding effects from cell growth or protein turnover 
(Methods). Cells were imaged at low-density using phase contrast microscopy at 10X 
magnification in an isotropic liquid environment. Individual trajectories were reconstructed over a 
large field of view using a multiple-particle tracking algorithm [31] to enable the quantitative 
characterization of individual cell behavior (Fig. 1A, S2 Fig.). We constructed a probabilistic 
model using the instantaneous velocity, acceleration, and angular acceleration to describe the 
behavior of each cell along their trajectories and identify tumbling events (Fig. 1B, S3 Fig. AB). 
We then calculated the tumble bias (defined as the time spent tumbling over the total trajectory 
time) of each cell. The average cell behavior obtained from more than 6,000 cell trajectories was 
consistent with previously published, population-averaged results from E. coli RP437 cells. 
Specifically, the average tumble bias was 0.24 (Fig. 1C) with an average swimming speed of 33 
µm/s (S3 Fig. D) [29,32,33]. 

Single-cell trajectories revealed the variability in behavior within the isogenic population. The 
distribution of tumble biases was unimodal with mode at 0.2 and a standard deviation of 0.093 
(Fig. 1C). These values are consistent with the previously reported distribution of single flagellar 
motor biases from tethered cells [29] and taking into account the effect of multiple flagella that 
increases the cell tumble bias relative to the clockwise bias of single motors [34,35]. As expected, 
we observed very few cells with tumble biases outside the 0.1 to 0.4 range because the robust 
architecture of the chemotaxis pathway ensures that the population tumble bias is maintained 
within a functional range [7,36–40]. However, our experiment shows that there is still substantial 
phenotypic diversity among cells consistent with prior observations [28]. 

Phenotypic variability in tumble bias and swimming speed can result in large differences in how 
efficiently cells explore their environment. We calculated the diffusion coefficient of each cell by 
simultaneously fitting the mean square displacement and the velocity autocorrelation (S3 Fig. 
EFG) of the trajectories to the Green-Kubo relations [41,42]. This analysis revealed that the 
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effective diffusion coefficients of individual cells vary over more than one order of magnitude 
within the isogenic population in spite of the pathway robustness (Fig. 1D). 

 

 
Fig. 1. Measuring phenotypic diversity in motile behavior of E. coli RP437. (A) Representative trajectories 
of cells swimming in a liquid environment recorded using phase contrast microscopy at 10X magnification 
in a pseudo-2D environment. (B) Example of a 60 seconds single-cell trajectory where detected tumbles are 
marked with red dots. (C) Probability distribution of cell tumble biases in the isogenic population. (D) 
Probability distribution of individual cell diffusion coefficients (Deff) in the population. The distributions 
were calculated from about 6,000 individual trajectories combined from three independent experiments. 

 

Controlling motile behavior using fluorescently labeled CheR and CheB. 

The tumble bias of individual cells is determined in part by the numbers of the two receptor 
modification enzymes: CheR and CheB [12,29,38,43]. It has been previously observed that 
ectopic expression of CheR increases the cell tumble bias on average [29,38]. Transcriptional and 
translational coupling in the expression of CheR and CheB provides robustness to the system 
against uncorrelated stochastic fluctuations in protein numbers to maintain good chemotactic 
performance [7,44]. In addition, because of the slow exchange of the modification proteins 
between the cytoplasm and the cluster of receptors, the numbers of CheR and CheB affect 
signaling noise, which results in slow fluctuations of the cell tumble bias [29,45,46]. To 
understand the consequences of variations in the numbers of CheR and CheB on the swimming 
phenotype of E. coli, we sought to make a detailed quantitative map of motile behavior as a 
function of protein numbers. 

We genetically constructed the fluorescent protein fusions CheB-mYFP and mCherry-CheR, 
which have been previously shown to be functional proteins [47]. To explore a large dynamic 
range of absolute protein expression and CheR to CheB ratio, the gene constructs were placed 
under the control of two independent inducible promoters on the chromosome in a strain lacking 
both the native cheR and cheB genes (Fig. 2A). The separate transcriptional regulation of the two 
genes allowed for the control of both the absolute numbers and the ratio of CheB-mYFP and 
mCherry-CheR (Fig. 2BC, S4 Fig.). The fluorescence intensities per molecule of CheB-mYFP 
and mCherry-CheR was calibrated using quantitative immunoblotting and single-cell 
fluorescence microscopy [48], following a previously described method [49]. The fluorescence 
intensity per fluorescent protein was calculated using a Bayesian regression analysis (Methods 
and S5 Fig.). 

We used the mutant strains to create different populations with widely different distributions of 
tumble bias (Fig. 2D, S6 Fig. and S7 Fig.). Consistent with previous work that measured average 
population behavior, the tumble bias distribution of cells increased with higher expression of 
mCherry-CheR and decreased with higher expression of CheB-mYFP, which has antagonistic 
activity to CheR [29,38,43,50]. The observed variability in protein expression and motile 
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behavior within the population for each induction level is substantial despite the fact that each 
gene is expressed from a single chromosomal locus (Fig. 2D, S6 Fig. and S7 Fig.). Although 
CheR and CheB expression in the mutant strains is different from the wild type regulation, the 
results illustrate in general how phenotypic diversity can be altered through changes in the 
activity of single promoters. 

 

 
Fig. 2. Controlling motile behavior using fluorescently labeled CheR and CheB. (A) Diagram representing 
a mutant strain derived from E. coli RP437 DcheRcheB expressing fluorescent protein fusions from 
inducible promoters recombined in the cell genome. (B) Distributions of red fluorescence intensity from 
single-cell epi-fluorescence microscopy from the differential inductions of mCherry-CheR with rhamnose 
(in light) or IPTG (in dark). (C) Distributions of yellow fluorescence intensity from single-cell epi-
fluorescence microscopy from the differential inductions of CheB-mYFP with rhamnose (in light) or IPTG 
(in dark). (D) Distributions of single-cell motile behavior resulting from high expression of mCherry-CheR 
relative to CheB-mYFP (in dark) or high expression of CheB-mYFP relative to mCherry-CheR (in light). 

 

Direct mapping of swimming phenotype to proteins numbers. 

The FAST protocol relies on the immobilization of cells in a hydrogel, which is polymerized in 
situ, after tracking motile cells. We first mixed cells washed with motility buffer with a hydrogel 
precursor solution that contained polyethylene glycol diacrylate (PEGDA) and a photoinitiator 
(LAP) [51]. The presence of PEGDA and LAP did not affect motile behavior beyond a small 
reduction in swimming speed (S1 Fig.). Swimming was recorded at 10X as described above for 5 
minutes (Fig. 3A). A flash of violet light was delivered through the microscope objective to 
activate the photo-initiator and trigger rapid hydrogel polymerization over the entire field of view. 
Cells were immobilized within 1 second and their coordinates were registered by processing the 
real-time image from the camera. After switching the microscope configuration for fluorescence 
imaging at 100X magnification, each cell was automatically located by a motorized stage and 
imaged in phase contrast and three fluorescence channels (Fig. 3B). An average of 200 cells was 
imaged in less than 40 minutes for each experimental trial. The fluorescence signal from each cell 
did not change significantly as a function of time during the single-cell imaging phase indicating 
that the fluorescent protein fusions are stable when the cells are trapped in the hydrogel (S8 Fig.). 
Therefore, the measured single-cell fluorescence corresponds to the number of proteins present 
while the cells were swimming. Finally, cells trajectories were matched to fluorescence images in 
order to map motile behavior to proteins numbers in single cells. 
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Fig. 3. Mapping swimming phenotype to mCherry-CheR and CheB-mYFP numbers. (A) Representative 
trajectories of cells swimming in the non-polymerized hydrogel recorded using phase contrast microscopy 
at 10X magnification. (B) Examples of cells imaged using automated epi-fluorescence microscopy at 100X 
in three channels after cells were trapped in the polymerized hydrogel. (C) More than 4,000 cell trajectories 
were matched to fluorescence images to map the cell tumble bias of each cell as a function of mCherry-
CheR and CheB-mYFP numbers. (D) The effective diffusion coefficients (Deff) of individual cells as a 
function of mCherry-CheR and CheB-mYFP numbers. Multiple experiments using cells treated with 
different concentrations of inducers were combined. 

 

We combined measurements from several experiments in which different combinations of 
inducer concentrations were used with the two fluorescent strains to produce a wide range of 
phenotypes, with cells expressing the labeled proteins over three orders of magnitude and tumble 
bias ranging from 0 to 0.6. We mapped tumble bias to the number of mCherry-CheR and CheB-
mYFP for more than 5,000 individual cells (Fig. 3C). Tumble bias increases with higher numbers 
of mCherry-CheR and decreases with lower numbers of CheB-mYFP, consistent with population 
measurements. We verified that the phenotypes showed no correlation with the constitutively 
expressed mCFP protein that was not fused to any of the native E. coli proteins (S9 Fig.). The 
uneven sampling of CheR and CheB (Fig. 3C) is due to bistability of the activity of the rhamnose 
promoter that was used to control protein expression. We also mapped the individual diffusion 
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coefficients to mCherry-CheR and CheB-mYFP numbers (Fig. 3D). Because of the large range of 
protein expression in this experiment, the individual cell diffusion coefficients span four orders of 
magnitude. This variability is larger than what was observed in the wild-type population (Fig. 
1C), indicating that the natural cell-to-cell variability in CheR and CheB numbers is constrained 
to a range smaller than the artificially induced conditions. As expected, the relationship between 
the cell diffusion coefficients and protein numbers (Fig. 3D) mirrors the relationship obtained 
from characterizing the cell tumble biases (Fig. 3C). Because the value of diffusion coefficient 
calculated from a trajectory does not rely on tumble detection, this analysis provides additional 
support for the observed effect of variations in protein numbers on behavior. 

The mean and the variance of the tumble bias are affected in different ways by changes in 
mCherry-CheR and CheB-mYFP numbers. 

Together, the single-cell data provide a direct mapping of protein numbers to swimming 
phenotype with unprecedented detail over a large range of protein numbers. We first examined 
how CheB-mYFP and mCherry-CheR control the mean tumble bias by performing a local linear 
regression fit of the single-cell tumble bias (Fig. 4A). The relationship between mean tumble bias 
and the logarithm of the CheB-mYFP and mCherry-CheR numbers has the characteristic feature 
of diagonal contour lines of increasing tumble bias, qualitatively indicating that tumble bias 
depends more on the ratio than the absolute number of these proteins. This trend was expected 
since CheR and CheB have antagonistic effects on kinase activity by participating in a futile cycle 
of methylation and demethylation of the chemoreceptors. However, the tumble bias appears to be 
more sensitive to changes in CheB-mYFP numbers than mCherry-CheR numbers. For example, 
changing the tumble bias by 0.1 requires approximately a 10-fold change in CheB-mYFP (Fig. 
4B) but a 40-fold change in mCherry-CheR (Fig. 4C). We analyze this unexpected asymmetry in 
more detail in the next section. 

With a quantitative relationship between tumble bias and the numbers of CheB-mYFP and 
mCherry-CheR, we asked how much of the variability in tumble bias measured in the wild-type 
population (Fig. 1E) could be attributed to the natural cell-to-cell variability in the numbers of 
CheR and CheB. In wild type cells, cheR and cheB are transcriptionally and translationally 
coupled, hence fluctuations in protein numbers have correlated lognormal distributions with 
extrinsic noise (hext) and a smaller intrinsic noise (hint). This genetic organization prevents large 
variations in tumble bias as a result of fluctuations in protein numbers [7,44]. Using previously 
reported estimates of the noise intensity in the expression of the chemotactic proteins, we 
generated the expected distributions for CheR and CheB numbers across individual cells in the 
wild type population (Fig. 4A). Then, we used the quantitative relationship between tumble bias 
and protein numbers to estimate the contribution of the natural cell-to-cell variability in CheR and 
CheB numbers to the observed cell-to-cell variability in tumble bias in the wild-type population. 
Using hext = 0.26 and hint = 0.125 [12,44,52], CheR and CheB fluctuations explain 11% of the 
variance in tumble bias. Therefore, additional factors must contribute to a large portion of the 
wild type variability in tumble bias. Likely candidates are variations in the numbers of CheA, 
CheY, CheZ, the number of flagellar motors (cell-to-cell variations), or slow stochastic 
fluctuations in the methylation levels of the receptors (single-cell variations) [12,45]. 

Further examination of the single-cell data indicates that there is large residual variability around 
the mean tumble bias for any given level of mCherry-CheR and CheB-mYFP. Calculating the 
standard deviation of the residual tumble bias as a function of mCherry-CheR and CheB-mYFP 
(Fig. 4D) reveals that the residual variability depends strongly on CheB-mYFP (Fig. 4E) and 
weakly on mCherry-CheR (Fig. 4F). Remarkably, the dependency of the residual variability on 
mCherry-CheR and CheB-mYFP numbers is not aligned with the dependency of the mean tumble 
bias (the contours in Fig. 4A and 4D are not aligned in the same direction). This observation 
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suggests that the mean and the variance of the tumble bias distribution can be adjusted 
independently from each other by controlling chemotaxis protein expressions. Importantly, 
focusing on the data along the diagonal in Fig. 4AD reveals that the amount of phenotypic 
diversity in the population can be adjusted by changing the global level of expression of CheR 
and CheB while simultaneously maintaining their ratio nearly constant, therefore maintaining the 
robustness of chemotaxis pathway conferred by the co-expression of CheR and CheB from one 
operon [44,53]. These findings support the hypothesis that phenotypic diversity in E. coli 
chemotaxis is a selectable trait [12,54]. 

 

 
Fig. 4. Analysis of phenotypic variability. (A) Contour plot of the local linear regression of the tumble bias 
as a function of mCherry-CheR and CheB-mYFP numbers. The color scale is the same as Fig. 3C. (BC) 
Cross-sections of the local linear regression of the tumble bias showing the relative sensitivity of the mean 
tumble to changes in protein numbers. (D) Contour plot of the local linear regression of the residual tumble 
bias variance after subtracting the change in tumble bias explained by mCherry-CheR and CheB-mYFP 
numbers. (EF) Cross-sections of the local regression of the variance showing the relationship between 
residual phenotypic diversity and CheB-mYFP or mCherry-CheR numbers. The expected cell-to-cell 
variation in CheR and CheB numbers in the wild-type population is indicated by the white dotted contour 
(95% of the probability density function) [12,44,52]. The local linear regressions were done using a 
bandwidth of 20% of the data points. 

 

Modeling the mean and the variance of the tumble bias as a function of CheR and CheB 
numbers. 

Current standard models of the bacterial chemotaxis system do not explain two aspects of our 
experimental results [12,54]. First, the observed mean tumble bias is not equally sensitive to 
changes in CheB-mYFP and mCherry-CheR numbers. A fit of the tumble bias to the logarithm of 
the protein numbers gives the relationship: 𝑇𝐵 = 	0.274 + 0.0627	𝑙𝑜𝑔/0 𝑁2/𝑁4/.50 , where NR 
and NB are the numbers of mCherry-CheR and CheB-mYFP proteins in a single cell (the 95% 
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confidence intervals for the parameters are, in order, [0.258, 0.291], [0.0586, 0.0668], and [1.49, 
1.72]). We investigated whether the secondary feedback loop in chemotaxis system (created by 
the phosphorylation of CheB by CheA) could increase the sensitivity of the tumble bias to CheB 
numbers. We found that the tumble bias would still be determined by a simple ratio of CheR to 
CheB numbers consistent with previous models [12,43,54,55] (S10 Fig.). 

Second, the variance in tumble bias does not depend on mCherry-CheR and CheB-mYFP 
numbers the same way the mean tumble bias does (Fig. 4C and 4F). This observation was 
unexpected because it is not explained by models that assume that cell-to-cell variability in 
tumble bias results solely from cell-to-cell variability in chemotaxis protein numbers. Published 
models predict that the mean and the residual variance of the tumble bias have parallel 
dependencies on variations in CheR and CheB numbers [12,56] (S10 Fig. illustrates the 
theoretical predictions from these models, wherein the contours of mean and variance in tumble 
bias are aligned in the same direction).  

To explain our experimental findings, we propose a model that takes into account the dual role 
that CheB plays in both demethylating and deamidating the receptor proteins [57] and the slow 
fluctuations of the methylation level of the receptor cluster [45,46]. When the most abundant 
receptors, Tar and Tsr, are synthesized, they are translated with two glutamines (Q) instead of 
glutamates (E) at the methylation sites in a QEQE configuration. Glutamate residues can be 
reversibly methylated and demethylated to adjust the basal activity, or free energy, of the 
receptors. Non-mature receptors have a semi-active conformation in the absence of stimuli and 
cause higher-than-expected tumble bias in a cheRcheB mutant [58] because glutamine acts 
similarly to a methylated glutamate but with half the change in receptor free energy [43,59,60]. 
CheB irreversibly deamidates the glutamines to glutamates so that the residues can then be used 
for adaptation [57]. Therefore, cells need to synthesize and deamidate a full set of receptors 
during each cell division to ensure that all modification sites are available for reversible 
methylation.  

We hypothesized that high tumble bias arising from low levels of CheB-mYFP is caused by the 
incomplete deamidation of the receptors. We introduce a deamidation rate equation to take into 
account the maturation of receptors by CheB: 
6[8]
6:

= −𝑎𝑘8 𝐶ℎ𝑒𝐵A
8

BCD 8
+ 2𝑟[𝑇FG:] − 𝑟[𝑄] ,     (1) 

where a is the activity of the receptor cluster, [CheBP], [TTot], and [Q] are the concentrations of 
phosphorylated CheB, total receptors, and glutamine residues, kQ is the deamidation rate, KB is 
the Michaelis-Menten constant characterizing the CheB-receptor binding, and r is the cell growth 
rate. The first term in equation (1) corresponds to the rate of CheB-dependent deamidation, and 
the last two terms correspond to generation and dilution of glutamine residues within a cell as 
new receptors proteins are synthesized and cell divides. We modified the (de)methylation rate 
reaction [12] accordingly to take into account the presence of glutamine residues that cannot be 
(de)methylated and the dilution of methylated receptor by cell growth: 
6[I]
6:

= 1 − 𝑎 𝑘2 𝐶ℎ𝑒𝑅
L FMNO P I P 8

BQDL FMNO P I P 8
− 𝑎𝑘4 𝐶ℎ𝑒𝐵A

I
BCD I

− 𝑟[𝑀] , (2) 

where [CheR] and [M] are the concentrations of CheR and methylated glutamate residues, kR and 
kB are the methylation and demethylation rates, KR is the Michaelis-Menten constant 
characterizing the CheR-receptor binding. The first term in equation (2) corresponds to the rate of 
CheR-dependent methylation of the available glutamate residues, the second term corresponds to 
the CheB-dependent demethylation of the methylated glutamate residues, and the last term 
corresponds to the dilution of the methylated residues from cell growth. The remaining equations 
describing the dynamics of phospho-relay reactions remain unchanged [12] because the kinetics 
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rates remain much faster than the cell growth rate even when CheR and CheB numbers are low 
(see Methods). Finally, the activity of the receptor in the absence of chemical stimuli as a 
function of glutamine and methylated glutamate residues is described by: 

𝑎 = (1 + 𝐸𝑥𝑝 𝜀0 +
XYZ[[I]
[FMNO]

+ X\Z[[8]
[FMNO]

)P/ ,      (3) 

where e0, e1, and e2 are free energy constants, N is the size of the MWC complexes [54]. In the 
absence of chemotactic signals, the system can be solved at equilibrium to determine the steady-
state tumble bias. To simulate cell-to-cell variability in protein expression we sampled protein 
numbers for each cell from lognormal distributions with intrinsic and extrinsic noise generators 
[12]. 

Introducing the effects from the synthesis of non-mature receptors and their deamidation by CheB 
in the model was sufficient to reproduce the higher sensitivity of the cell tumble bias to CheB 
than CheR (Fig. 5A and S10 Fig. C, the orientation of the contours produced by our model 
matches the data in Fig. 4A). The model predicts that when the number of CheB molecules 
becomes limiting, glutamine residues accumulate in the receptor cluster during cell growth 
resulting in an increase of the average tumble bias. We verified this hypothesis by following the 
population tumble bias immediately after transfer from growth medium to chemotaxis buffer. 
When the number of CheB is lower than the wild-type population mean of 240 molecules per cell 
[52], the population average tumble bias starts high and slowly decreases over the course of an 
hour (S11 Fig.).  From this experiment, we estimated that the CheB-dependent deamidation rate 
is half of the demethylation rate. 

 

 
Fig. 5. Modeling the mean and variance of the tumble bias as a function of CheR and CheB numbers. (A) 
Contour plot of the local linear regression of the predicted tumble bias as a function of CheR and CheB 
numbers. (B) Contour plot of the residual tumble bias standard deviation after subtracting the change in the 
predicted tumble bias explained by CheR and CheB numbers. The tumble bias and adaptation time were 
calculated according to the modified chemotaxis model for 8405 cells covering the full range of CheR and 
CheB numbers. The local linear regressions were done using a bandwidth of 20% of the data points. 

 

To explain the relationship of the residual variance of the tumble bias as a function of CheR and 
CheB, we took into account the slow fluctuations of the methylation level of the receptor cluster 
within the timescale of our experiments. When the numbers of CheR and CheB are small 
compared to the number of receptors, the average methylation level becomes hyper-sensitive to 
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the ratio of the two modification proteins [45,46,61]. As a result, the tumble bias of one cell can 
fluctuate significantly over time scales similar to the duration of the tracks that we used to 
quantify tumble bias in our experiment [29,46]. When the spontaneous fluctuations of the 
receptor activity are taken into account, the residual variance in tumble bias becomes more 
dependent on CheB rather than the mean tumble bias (Fig. 5B, the orientation of the contours 
produced by our model align with changes in CheB numbers similar to what is observed in the 
data in Fig. 4D). Overall, the dependency of the observed residual variance supports the 
hypothesis that behavioral variability in a clonal population is a result of both signaling noise 
caused by the receptor adaptation dynamics and cell-to-cell variability in protein numbers. 

Discussion 
Understanding the functional role of variability in clonal populations of cells will require 
understanding how molecular variations map onto phenotypic variations, which in turn translate 
into performance differentials between individual cells. While molecules, phenotype, and 
performance of individual cells can all be measured separately [17,28,29,33,46,62,63], making all 
these measurements in the same cells has not been possible due to the large differences in length 
scales and time scales involved. By combining fast in situ hydrogel polymerization with 
automated fluorescence microscopy, we were able to bridge scales and directly correlate for the 
first time individual motile behaviors of freely swimming cells to intracellular protein numbers.  

We mapped single-cell tumble bias and exploratory capability as a function of the numbers of the 
two adaptation proteins of the chemotaxis pathway, CheR and CheB, with unprecedented details. 
We found that CheR and CheB numbers affect both the mean and the variance of the tumble bias 
but in different ways. Therefore, the shape of the phenotypic distribution in an isogenic 
population could be adjusted through genetically encoded factors such as the levels of protein 
expression. This suggests that the variability in tumble bias can evolve in an isogeneic population 
while the mean tumble bias remains constant and vice versa solely through mutations that change 
the relative expression levels of CheR and CheB (and possibly other chemotaxis proteins such as 
CheY and CheZ). These experimental observations support previous theoretical predictions that 
the degree of phenotypic diversity in swimming behavior could be a selectable trait in E. coli 
[12,13]. Previous studies demonstrated that translational and transcriptional coupling of CheR 
and CheB confer robustness to the chemotactic system [44,53] and that even when phenotypic 
diversity is advantageous it is important to maintain specific ratios in the numbers of proteins 
[12]. Our results show that a clonal E. coli population can adjust phenotypic diversity by 
adjusting the total expression CheR and CheB without disrupting their coupling. We also found 
that single-cell behavioral variability caused by the dynamics of receptor methylation, as 
previously described [45,46], contributes significantly to the observed population phenotypic 
diversity in addition to cell-to-cell variability in protein expression. The contributions of 
additional molecular and morphological factors, such as the number of flagella, cell shape, or the 
location of the receptor clusters, to individual cell motile behavior remain to be characterized. By 
enabling the quantitative measurement of multivariate distributions, FAST will facilitate the 
characterization of phenotypic variability as a function of protein numbers, signaling pathway 
architecture, or other cell components. 

Taking advantage of the large field of view and high-resolution offered by modern scientific 
cameras, we were able to track and quantify the tumble of thousands of wild type E. coli cells. 
We found that tumble bias and diffusion coefficient were widely distributed. This variability is 
expected to have a significant impact on the spatial organization and fitness of cells when 
competing for resources [12,64–66]. Few cells had tumble biases above 0.4, consistent with 
predictions that high tumble biases perform poorly [13]. 
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To explain the unpredicted finding that tumble bias is more sensitive to CheB than CheR, we 
propose that the deamidation of the newly synthesized receptor proteins becomes incomplete 
when the number of CheB falls below approximately one hundred molecules, which is within 
reason since the mean expression level is ~240 [52]. With incomplete deamidation, the basal 
activity of the receptor is increased, causing elevated tumble bias not explained by previous 
models. From the analysis of our model, we found that the activation of CheB through 
phosphorylation by CheA was not sufficient to explain our experimental observations because 
this feedback does not introduce an asymmetry in the relationship between the mean and the 
variance of the tumble bias as a function of CheR and CheB numbers.  

The biological significance of the CheB-dependent maturation of the dominant receptor proteins 
via the deamidation of specific Q residues is still not understood. However, our results suggest 
that wild-type cells express on average just enough CheB to keep up with the synthesis and 
maturation of new receptors during growth. One possibility is that the QEQE configuration may 
place the (de)methylation dynamics of the receptor cluster closer to equilibrium, saving a 
significant amount of time and energy to methylate new receptor proteins since they outnumber 
CheR and CheB by about two orders of magnitude.  

Another possibility is that synthesizing receptor proteins with a QEQE configuration is a bet-
hedging strategy. Because of cell-to-cell variability in the expression levels of CheR and CheB 
some cells will express few (de)methylation enzymes. Previous work has shown that when CheR 
and CheB are limiting the tumble bias become hyper-sensitive to the ratio of the numbers of 
CheR and CheB [45,46,61]. Upon expression of the chemotaxis pathway cells should initially 
have higher tumble bias and therefore stay close to their sisters due to the higher activity of the 
QEQE configuration. However, as the chemotaxis receptors become fully deamidated, individual 
cells will start leaving the colony and explore their surroundings. Cell-to-cell variability in the 
expression of CheR and CheB may result in a slow trickling of explorers from the colony. This 
slow transition from tumbler to explorer may be a bet-hedging strategy when turning the 
chemotaxis pathway on. 

An important aspect of signal transduction is that changes in behavior affect how cells interact 
with environmental signals. This is especially true for navigation where behavior feeds back onto 
the statistics of input signals and vice versa [13]. This important feedback loop is lost when cell 
are attached on surfaces or immobilized with optical tweezers [35,40,59]. FAST alleviates these 
constraints, by allowing behavioral tracking and fluorescence imaging of freely swimming cells. 
The combination of FAST with the use of nano-fabricated landscapes to create chemical 
gradients should facilitate the investigation of the molecular, cellular, and population level 
mechanisms that underlie the emergent behaviors of cells in complex environments.  

Methods 

Strains and growth conditions 

E. coli RP437 was used as the wild-type strain for chemotaxis and as the parental strain for all the 
mutants generated in this study. Cells were cultured in M9 minimal medium supplemented with 
10 g/L glycerol, 1g/L tryptone, 2 mM magnesium sulfate, 0.1 mM calcium chloride, 10 mg/L 
thiamine hydrochloride, and 50 mg/L streptomycin. Isopropyl β-D-1-thiogalactopyranoside 
(IPTG) and rhamnose were added to the growth medium when indicated to induce protein 
expression. Cells were grown in aerobic conditions at 30°C in an Erlenmeyer flask on an orbital 
shaker at 200 rpm for aeration. Starting from single colonies isolated on agar plates, cells were 
grown to saturation overnight in broth cultures and sub-cultured using 1:100 dilution ratio in fresh 
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medium and grown to an optical density at 600 nm (OD600) of 0.25. Under these growth 
conditions, virtually all cells were highly motile. 

Time-lapse microscopy and cell tracking 

Before performing the behavioral experiments, cells were washed twice at room temperature with 
motility buffer (M9 salts supplemented with 0.1 mM ethylenediaminetetraacetic acid (EDTA), 
0.01 mM L-methionine, 10 mM sodium lactate, and 0.05% weight/volume polyvinylpyrrolidone 
(M.W. ~40,000 Da)) by centrifuging cells at 2,000 g for 5 minutes and diluted to a low cell 
density (OD600 ~ 0.01). The buffer exchange and centrifugation did not appear to affect the cell 
behavior when compared to cells sampled from the growth medium (S1 Fig.). To record motile 
behavior, 5 µL of cells in motility buffer was sealed between a glass microscope slide and a 22 
mm2 #1.5 coverslip using VALAP (equal amount of petrolatum, lanolin, and paraffin wax). Cells 
were free to swim in a pseudo two-dimensional environment ~10 µm deep. Cell motion was 
recorded at 10 frames per second with a digital scientific CMOS camera (Hamamatsu ORCA-
Flash4.0 V2, 2x2 pixel binning, 50 ms exposure, rolling shutter, full frame) mounted on an 
inverted microscope (Nikon Eclipse TI-U) with a 10X phase contrast objective (Nikon CFI Plan 
Fluor, N.A. 0.30, W.D 16.0mm) and LED white light diascopic illumination (Thorburn 
Illumination Systems). The field of view was ~1.3 mm square containing on average 200 cells. 

To reconstruct the cell trajectories each image sequence was processed using custom MATLAB 
(Mathworks) code. First, the mean pixel intensities of the frames over the entire image sequence 
was calculated to obtain an image of the background and subtracted from each image. The 
subpixel resolution coordinates of each cell in each frame were detected using a previously 
described method using radial symmetry [67] with an intensity detection threshold set to 6 
standard deviations over the background. Coordinates were linked to obtain cell trajectories using 
a previously described self-adaptive particle tracking method, u-track 2.1 [31], with the linear 
motion model linkage cost matrices, an expected particle velocity of 30 µm/s, and otherwise 
default parameters. 

Cell trajectory analysis 

The cell velocity at each time point was calculated according to 𝑣_ =
(𝑥_D/ − 𝑥_)Z + (𝑦_D/ − 𝑦_)Z/(𝑡_D/ − 𝑡_). The acceleration was calculated according to 𝑎_ =

(𝑣_ − 𝑣_P/)/(𝑡_ − 𝑡_P/). The angular acceleration was calculated according to 𝛼_ = ((𝜃_ −
𝜃_P/) − (𝜃_P/ − 𝜃_PZ))/(𝑡_ − 𝑡_P/)Z. The velocity auto-correlation and mean square 
displacement of each trajectory were analyzed to extract the average mean run time and diffusion 
coefficient of each cell. The velocity autocorrelation, Cv, and the mean square displacement, 
MSD, were calculated according to: 𝐶d	(∆𝑡) =

/
[

	(𝑣 𝑡_ . 𝑣 𝑡_ + ∆𝑡 )[
_f/  and 𝑀𝑆𝐷 ∆𝑡 =

/
[

	(𝑥 𝑡_ + ∆𝑡 − 𝑥 𝑡_ )Z + 	(𝑦 𝑡_ + ∆𝑡 − 𝑦 𝑡_ )Z[
_f/ , where ti represents the relative time for 

each frame of the image sequence, and ∆t the time interval between time points. The data was 

fitted using a non-linear least-square method with the functions: 𝐶d	(𝑡) = 𝑣0Z𝑒
POicos		(𝜔	𝑡), and 

𝑀𝑆𝐷 𝑡 = 2𝑡 𝐶d 𝑢 𝑑𝑢:
0 − 2 𝑠𝐶d 𝑢 𝑑𝑢:

0  (or 𝑀𝑆𝐷 𝑡 = 2𝑣0Z	τ	(τ	cos	(ω	t)	– τ	e
O
i + 𝑡	e

O
i −

2	τZ	ω	sin	(𝜔	𝑡) − τx	ωZ	cos	(𝜔	𝑡) + τx	ωZ	e
O
i + τZ	ωZ	t	e

O
i)/	(e

O
i		(τZ	ωZ + 1)Z)), where t is 

time, v0 is the average cell speed, τ is the time scale of the cell directional persistence (a function 
of the cell tumble bias, mean tumble angle, and rotational diffusion), and ω is the angular 
frequency of the circular trajectory resulting from the interaction when cells swim near the glass 
surface (S12 Fig.). The mean square displacement function was calculated by taking the integral 
of the velocity autocorrelation function in two dimensions according to the Green-Kubo relations 
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[41,42]. The effective diffusion coefficient, D, was calculated according to 𝐷yzz =
d{\|
6

 to remove 
the effect of the glass–surface interaction, where d is the number of dimensions (two in our 
experiment). The effective diffusion coefficient is in good agreement with a previously derived 
approximation of the diffusion coefficient derived for swimming E. coli cells as a function of the 
mean run time between tumbles [68] defined as: 𝐷}~� =

d\F
6 /P�

, where T is the average run time 

between tumbles calculated for each cell using our tumble detection analysis, and q is the mean 
cosine of the tumble angles (q = 0.18 in our dataset, S3 Fig. H). 

The posterior probabilities for a cell to be swimming (S), tumbling (T), and an intermediate state 
recovering from tumbling (I) given the instantaneous velocity (v), acceleration (a), and angular 
acceleration (a) (P(S|v,a,a), P(T|v,a,a), and P(I|v,a,a)) were constructed from a reference dataset 
containing more than 6,000 trajectories from wild-type cells. The parameters of each distribution 
were estimated by fitting a mixture of three tri-variate Gaussian distributions to the pooled 
distributions of instantaneous velocity (v), accelerations (a), and angular acceleration (a) (S3 Fig. 
AB). Therefore, each behavioral state is represented by a tri-variate Gaussian distribution. The 
mixture model was fitted to the reference dataset using an iterative approach. First, the swimming 
speed of each cell was normalized by their average speed when in the swimming state (the first 
iteration was initialized using the 95th percentile of their instantaneous speeds). The relative 
acceleration and the angular acceleration between consecutive velocity vectors were computed. 
Then, all the relative speed, acceleration, and angular acceleration, were fitted with the mixture 
model. Each time point of the cell trajectories was assigned to the state with the largest posterior 
probability. The normalization, fitting, and state assignment were done iteratively until changes in 
state assignment between consecutive iterations converged below a tolerance of 1% (10 iterations 
on average). The resulting posterior probabilities were used to analyze the trajectories of all the 
cells in this work. Based on our validation of the tumble detection on simulated trajectories (see 
next section), we discarded all trajectories that were shorter than 10 seconds because short 
trajectories resulted in inaccurate tumble bias calculations (the code is available at 
https://github.com/dufourya/SwimTracker). 

Simulated cell trajectories 

To validate the tumble detection model we simulated the swimming trajectories of cells with 
defined phenotypes in the absence of signal gradients. Simulations were run following a 
previously described method [34], with a constant swimming speed of 20 µm/s and rotational 
diffusion of 0.062 rad2/s [33]. Cells are stationary during tumbles and their orientations are 
uniformly randomized. The simulated cell tumble bias was changed by varying the internal 
CheY-P, Yp, concentration, which controls the transitions rates k+ and k_ to clockwise and counter 

clockwise of the flagellar motor according to: 𝑘± = 𝜀	exp	{±[�
Z

/
Z
− ��

��DB�
}, with ε = 1.3 s-1, g 

= 40, and KD = 3.06 µM, according to previously published experimental data [40]. The simulated 
environment was bounded in the z-dimension by reflecting boundaries 10 µm apart. Cell 
positions were sampled every 100 ms and projected in two dimensions to reproduce the 
experimental conditions. The accuracy and precision of the trajectory analysis was determined 
using 1,000 simulated trajectories for each tumble bias (S13 Fig.). The simulations showed that 
the tumble detection and tumble bias calculations were accurate for trajectories as short as 10 
seconds. 

Construction of plasmids and mutant strains 

Plasmids and mutant strains were constructed following standard cloning protocols (see S1 Table, 
S2 Table and S3 Table for the lists of plasmids, strains, and oligonucleotides). The deletion of 
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cheR and cheB in E. coli RP437 was done using the λ Red disruption system [69]. Approximately 
300 base pairs at the end of cheB were kept in the genome to maintain the proper regulation of the 
downstream expression of cheY and cheZ (Victor Sourjik, personal communication). The 
sequences homologous to the targets (cheR and cheB) in the genome were added to the 
oligonucleotide primers. PCR reactions were performed with these primers to amplify the 
sequences containing a tetracycline resistant cassette flanked by flippase recognition target (FRT) 
sites from pCP16 [70]. Cells were first transformed with the plasmid pKD46, and then 
transformed with the purified PCR product after induction of the recombinase protein from 
pKD46. After successful recombination, the portion of the genome containing the deletion and 
the tetracycline cassette was transduced to a new E. coli RP437 background using the phage 
P1vir. Finally, the tetracycline resistant cassette was excised from the genome with flippase (Flp) 
by transforming the mutant strain with pCP20 leaving a single FRT sequence scar to obtain the 
strain NWF121 (ΔcheRcheB). 

Gene fusions of cheR and cheB with the genes encoding for the fluorescent reporters sfYFP, [71], 
or mCherry [72], which have been codon-optimized for E. coli expression, and a cassette 
containing a kanamycin marker flanked by FRT sites (from pCP15 [70]) were constructed using 
the Gibson assembly method [73] from PCR fragments and a pUC19 vector backbone. The 
constructs were PCR amplified with sequences homologous to the targets added to the oligo 
primers and recombined separately into the wild-type MG1655 strain following the same protocol 
described above. Constructs were recombined into either the native lactose (lac) or rhamnose 
(rha) operon loci in the chromosome to take advantage of the host inducible transcription 
regulation. Each construct was transduced sequentially into the mutant RP437 strain lacking cheR 
and cheB (NWF121) using the phage P1vir and excision of the kanamycin resistant cassette with 
the flippase after each successful transduction. A gene coding for the fluorescent protein sfCFP 
under the control of the constitutive promoter pBla was also recombined into the genome of the 
mutant strains to provide an independent fluorescence control. Two strains, which are almost 
identical except that the inducible promoters are swapped, were obtained: YSD2072 (ΔcheRcheB-
FRT, pRha-mCherry-cheR-FRT, pLac-cheB-mYFP-FRT, pBla-CFP-FRT) and YSD2073 
(ΔcheRcheB-FRT, pLac-mCherry-cheR-FRT, pRha-cheB-mYFP-FRT, pBla-CFP-FRT). An 
identical approach was used to clone pLac-cheB-mYFP and pBla-CFP into RP4972 (ΔcheB) to 
create YSD2044 (ΔcheB, pLac-cheB-mYFP-FRT, pBla-CFP-FRT). Deletions and insertions in 
the final mutant strains were verified by PCR and DNA sequencing. 

Single-cell fluorescence microscopy 

Fluorescence microscopy images were acquired using an inverted microscope fitted with a 100x 
oil immersion objective (Nikon CFI Plan Fluor, N.A. 1.30, W.D 0.2 mm), a solid state white light 
source (SOLA II SE, Lumencor), a digital scientific CMOS camera (Hamamatsu ORCA-Flash4.0 
V2, 1x1 pixel binning, rolling shutter, full frame, 16 bits). Cells were spotted on agarose pads 
(1% wt/vol agarose with M9 salts) after being washed twice in M9 salts and mounted between a 
glass slide and a #1.5 glass coverslips. Five different frames containing on average 200 cells were 
acquired in phase contrast and three fluorescence channels for each sample (CFP filters ex436/20, 
455LP, em480/40, YFP filters ex500/20, 515LP, em535/30, mCherry filters ex560/40, 585LP, 
em630/75). The camera dark current was subtracted from each images and the uneven 
illumination was corrected using a flat-field image acquired using uniform fluorescent slides.  

Cell outlines were determined using MicrobeTracker [48] on the phase contrast images. Cells 
with sizes deviating from the population by more than three standard deviations were discarded 
from the analysis. Single-cell fluorescence intensities were calculated by summing the 
fluorescence signal over each cell area and subtracting the background fluorescence intensity. 
The autofluorescence of wild-type cells (RP437) in each channel was determined and subtracted 
from the fluorescence intensities of cell expressing the fluorescent reporters. The small amount of 
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cross talk between the fluorescent proteins was determined using cells expressing single 
fluorescent labels and corrected in cells expressing multiple labels using linear unmixing [74]. 

Quantitative immunoblotting and fluorescence calibration 

The calibration of cell culture optical density (OD600) to colony forming units (CFU) was done 
using serial dilution and plating. Cells expressing different concentrations of the fluorescently 
labeled proteins were suspended in Laemmli buffer, then boiled for 5 minutes and homogenized 
in an ultrasonic water bath for 1 minute. Known concentrations of purified fluorescent protein 
standards (GFP: Rockland 000-001-215 lot 23193, and RFP: abCam ab51993 lot GR25411-12) 
were added to wild-type cell lysate and treated with the same conditions as the samples to 
generate standard curves. The lysate of 108 cells in 20 µL were loaded in each lane of pre-casted 
polyacrylamide gels (BioRad cat. #456-9035) and run in Tris/glycine/SDS buffer at 100 Volts for 
90 minutes at 4˚C. The proteins were transferred to a low fluorescence 0.45 µm PVDF membrane 
(BioRad, cat. #162-0261) using wet transfer in Tris/glycine/20% Methanol buffer at 100V for 60 
minutes at 4˚C. The membranes were blocked to prevent non-specific antibody binding using 
blocking buffer (EMD Millipore, cat. # WBAVDFL01) for 60 minutes at room temperature. To 
detect CheB-mYFP, mCFP, and standard GFP, the membranes were hybridized with 1:5,000 
dilutions of anti-GFP antibodies conjugated to DyLight488 (Rockland cat. #600-141-215 lot 
23518) in Tris buffer saline with 0.05% Tween 20 pH 7.5 for 12 hours with gentle agitation at 
4˚C. To detect mCherry-CheR and standard RFP, the membranes were hybridized first with 
1:2,500 dilutions of anti-RFP antibodies (abCam cat. # ab183628 lot GR170176-1) in Tris buffer 
saline with 0.05% Tween 20 pH 7.5 for 12 hours with gentle agitation at 4˚C, then with 1:10,000 
dilutions of anti-Rabbit antibodies conjugated with Dylight488 (Rockland #611-141-002 lot 
23521) for 1 hour at room temperature. The membranes were washed three times for 15 minutes 
with Tris buffer saline with 0.05% Tween 20 pH 7.5 after each incubation. The membranes were 
dried and scanned with a laser scanner (GE Typhoon 9400) at 488 nm. The images were 
processed with ImageJ [75] to quantify the signal intensities. 

The calibration of fluorescence intensities to protein numbers was calculated using Bayesian 
linear regression of the quantitative immunoblotting data with the average cell fluorescence 
signals to obtain the posterior probability distributions of the fluorescence signal per protein. The 
regression model was setup in the R statistical computing environment [76] with the RStan 
package [77]. The number of each fluorescent protein per cell was determined as the maximum a 
posteriori estimate. 

In situ hydrogel polymerization and automated cell imaging 

Trapping cells with fast in situ hydrogel polymerization was done by supplementing the motility 
buffer with 5% wt/vol polyethylene glycol diacrylate (PEGDA) (M.W ~2,000, JenKem 
Technology cat. #A4047-5) and 0.05% wt/vol of the photoiniator lithium phenyl-2,4,6- 
trimethylbenzoylphosphinate [51]. To remove traces of reactive contaminants in the PEGDA, a 
20% wt/vol solution was incubated for 10 minutes with a high concentration of washed E. coli 
cells. Cells were removed by centrifugation and filtration through a 0.22 µm filter. The hydrogel 
polymerization was triggered by exposing the sample for 5 seconds with violet light using a solid 
state light source (SOLA II SE, Lumencor) at full intensity through a band pass excitation filter 
(395/25) and the microscope 10X objective (Nikon CFI Plan Fluor, N.A. 0.30, W.D 16.0mm). 

The automated imaging of immobilized cells was done using custom Matlab scripts controlling 
the microscope and a motorized stage (Prior Scientific, cat. # H117) through the Micro-Manager 
core library [78] (the code is available at https://github.com/dufourya/FAST). After 
immobilization, the cell coordinates were registered using image analysis in Matlab and the 
microscope was configured for epifluorescence imaging at 100X. The computer-controlled stage 
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moved sequentially to each cell location. The z-focus was automatically adjusted for each cell 
before imaging in phase contrast and the three fluorescence channels (CFP filters ex436/20, 
455LP, em480/40, YFP filters ex500/20, 515LP, em535/30, mCherry filters ex560/40, 585LP, 
em630/75). Cells that were not properly aligned with the focal plane, which were determined by 
detecting non-closed edges of the outlines of cells in the analysis of phase contrast images, were 
skipped. Cells with sizes deviating from the population by more than three standard deviations 
were discarded from the analysis. About 200 cells were imaged in less than 40 minutes for each 
experiment trial. The fluorescence signal from each cell did not change significantly as a function 
of time during the single-cell imaging phase indicating that the fluorescent protein fusions are 
stable when the cells are trapped in the hydrogel (S8 Fig.). 

Modeling individual cell tumble bias as a function of chemotaxis protein numbers 

The model used to calculate tumble bias as a function of protein numbers is based on a previously 
published model [12]. The concentration of phosphorylated CheA [CheAP] changes according to 
6[��y��]

6:
= 𝑎	𝑎A( 𝐶ℎ𝑒𝐴FG: − 𝐶ℎ𝑒𝐴A ) − 𝑎4 𝐶ℎ𝑒𝐴A 𝐶ℎ𝑒𝐵FG: − 𝐶ℎ𝑒𝐵A −

𝑎� 𝐶ℎ𝑒𝐴A ( 𝐶ℎ𝑒𝑌FG: − 𝐶ℎ𝑒𝑌A ) ,       (4) 

in which a is the receptor cluster activity, [CheATot], [CheBTot], [CheYTot], and [CheYP] are the 
concentrations of all CheA, all CheB, all CheY, phosphorylated CheY, aP, aB, and aY are the 
phosphorylation rate constants. 

The concentrations of phosphorylated CheB and CheY changes according to 
6[��y4�]

6:
= 𝑎4 𝐶ℎ𝑒𝐴A 𝐶ℎ𝑒𝐵FG: − 𝐶ℎ𝑒𝐵A − 𝑑4 𝐶ℎ𝑒𝐵A  ,   (5) 

and 
6[��y��]

6:
= 𝑎� 𝐶ℎ𝑒𝐴A 𝐶ℎ𝑒𝑌FG: − 𝐶ℎ𝑒𝑌A − 𝑑�[𝐶ℎ𝑒𝑍][𝐶ℎ𝑒𝑌A] ,  (6) 

in which dB and dZ are the dephosphorylation rates and [CheZ] is the concentration of CheZ. The 
biochemical rate and binding parameters are kept the same for all cells (the values used are 
summarized in S4 Table). To simulate cell-to-cell variability in protein expression, the protein 
numbers were sampled for each cell from log-normal distributions according to a noisy gene 
expression model as previously described [12] using experimentally determined average 
concentrations [52]. To match as well as possible our experimental results, the intrinsic and 
extrinsic noise levels in the expression of all the chemotaxis proteins (except CheR and CheB 
which were measured directly) were reduced to be a tenth of what was previously proposed [12]. 
The concentration of CheZ was reduced slightly to match the observed range of tumble bias in 
our experiments. In the absence of stimuli, equation 1-6 can be solved at equilibrium to calculate 
the steady-state concentration of each protein. 

The variance of [CheYP] resulting from the spontaneous fluctuations of the cluster activity for 
each single cell was calculated using the linear noise approximation of the Master equation as 
previously described for the chemotaxis system [45]. Briefly, taking the stoichiometry matrix of 
the system, S, and the propensity vector, v, the diffusion matrix of the system, B, was calculated 
using the linear noise approximation by solving 𝐵F𝐵 = 𝑆	diag(𝒗)𝑆F [79,80]. The correlation 
matrix, C, which contains the variance and covariance for the fluctuations of all the components 
in the model, was calculated from the linearized rate equations near the equilibrium solution 
given by the Jacobian matrix of the system, A, by solving numerically the Lyapunov equation 
𝐴𝐶 + 𝐶𝐴F + 𝐵F𝐵 = 0 [81,82]. 

To simulate the effect of the slow fluctuations in cluster activity on the concentration of 
phosphorylated CheY, [CheYP] was sampled randomly from a Gaussian distribution centered at 
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the steady-state [CheYP] with variance var([CheYP]) form the correlation matrix, C. Because the 
cluster activity fluctuates according to the adaptation time scale, the effective [CheYP] was 
calculated from the average of neff samples according to 𝑛yzz =

F
|

, in which T is the average 
length of the recorded trajectory in seconds (100 seconds) and t is the slowest relaxation time-
scale of the Jacobian matrix A evaluated at the equilibrium solution given by the largest of the 
eigenvalues l of A, 𝜏 = −1/max	(𝜆). The tumble bias was calculated as a function of the 
effective [CheYP] using the steady-state function of the adaptive flagellar motor as previously 
described [13] and the coordination of multiple flagella as previously described [34]. 
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Supporting Information 
 

S1 Table. Table of plasmids used in this study. 

Name Origin of 
replication Marker Promoter Gene(s) of 

interest Description Reference 

pKD46 repA101ts AmpR pAraB gam, bet, exo 

Temperature sensitive 
plasmid containing the 
Phage λ Red 
recombination system 

(Datsenko & 
Wanner, 2000) 

pCP15 pMB1 AmpR, Kan
R  FRT-KanR-FRT 

Kanamycin resistance 
cassette flanked by FRT 
sequences 

(Cherepanov & 
Wackernagel, 
1995) 

pCP16 pMB1 AmpR, Tet
R  FRT-tetAR-FRT 

TetRacycline resistance 
cassette flanked by FRT 
sequences 

(Cherepanov & 
Wackernagel, 
1995) 

pCP20 repA101ts AmpR, Cm
R  flp 

Temperature sensitive 
plasmid expressing the 
FLP recombinase 
(“flippase”) 

(Cherepanov & 
Wackernagel, 
1995) 

pTU136 R6K AmpR pLac ssdsbA-
mCherry 

Template for mCherry 
gene sequence 

(Uehara, Dinh, 
& Bernhardt, 
2009) 

pYSD1003 pMB1 AmpR  sfYFP 
Template for super-
folder mYFP gene 
sequence 

This study 

pYSD1004 pMB1 AmpR  sfCFP 
Template for super-
folder mCFP gene 
sequence 

This study 

pYSD1011 pMB1 KanR pBla sfCFP 
mCFP under the control 
of the bla promoter from 
pUC19 

This study 

pYSD1007 pMB1 AmpR, Kan
R pLac cheB-mYFP 

Template for the 
translational fusion of 
CheB and mYFP 

This study 

pYSD1005 pMB1 AmpR, Kan
R pLac mCherry-cheR 

Template for the 
translational fusion of 
mCherry and CheR 

This study 

 

S2 Table. Table of bacterial strains used in this study. 
Name Description Reference 
RP437 Wild-type for chemotaxis (Parkinson, 1978) 
RP4972 ΔcheB (Parkinson, 1978) 
NWF121 ΔcheRcheB-FRT with ~300 bp CheB 3' fragment This study 
YSD2023 pLac-mCherry-cheR, FRT-kanR-FRT This study 
YSD2024 pRha-mCherry-cheR, FRT-kanR-FRT This study 
YSD2025 pLac-cheB-mYFP, FRT-kanR-FRT This study 
YSD2027 pRha-cheB-mYFP, FRT-kanR-FRT This study 
YSD2031 pBla-mCFP, FRT-kanR-FRT This study 
YSD2040 ΔcheRcheB, FRT, pLac-cheB-mYFP, FRT This study 
YSD2041 ΔcheRcheB, FRT, pLac-mCherry-cheR, FRT This study 
YSD2044 ΔcheB, pLac-cheB-mYFP, FRT This study 
YSD2062 ΔcheRcheB, FRT, pLac-cheB-mYFP, FRT, pRha-mCherry-cheR, FRT This study 
YSD2063 ΔcheRcheB, FRT, pRha-cheB-mYFP, FRT, pLac-mCherry-cheR, FRT This study 
YSD2072 ΔcheRcheB, FRT, pLac-cheB-mYFP, FRT, pRha-mCherry-cheR, FRT, pBla-mCFP, FRT This study 
YSD2073 ΔcheRcheB, FRT, pRha-cheB-mYFP, FRT, pLac-mCherry-cheR, FRT, pBla-mCFP, FRT This study 
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S3 Table. Table of oligonucleotides primers used in this study. 
Construct Primer name Sequence Template Product 
pYSD1011 PUC19_PBLA_SYNTH_FOR CATACTCTTCCTTTTTCAATATTATTG pUC19 Vector backbone 
 PUC19_BLA_SYNTH_REV TAAGCATTGGTAACTGTCAGAC   
 PUC_PBLA_MYFP_N CAATAATATTGAAAAAGGAAGAGTATGGTGAGCAAGGGCGAGGAG pYSD1004 mCFP 
 FRT_N - MYFP_C CGGGTACCGAGCTCGAATTCTTACTTGTACAGCTCGTCCATGCC   
 FRT-N GAATTCGAGCTCGGTACCCG pCP15 FRT-kanR-FRT 
 PUC_BLA_FRT_C GTCTGACAGTTACCAATGCTTAAAGCTTCAAAAGCGCTCTGA   

pYSD1007 PUC19UNIV-
SYNTHESISNONOT1 FOR GATCCTCTAGAGTCGACCTG pUC19 Vector backbone 

 PUC19UNIV-
SYNTHESISNONOT1 REV  CGGGTACCGAGCTCGAATTC   

 PUC19 - CHEB CAGGTCGACTCTAGAGGATCATGAGCAAAATCAGGGTGTTATCTG E. coli RP437 cheB 
 LINKER_CHEB-C GGAACCTCCACCGCCAATACGTATCGCCTGTCCGG   
 CHEB-C_LINKER_MYFP-N CCGGACAGGCGATACGTATTGGCGGTGGAGGTTCCGTGAGCAAGG 

GCGAGGAG pYSD1003 mYFP 
 FRT_N - MYFP_C CGGGTACCGAGCTCGAATTCTTACTTGTACAGCTCGTCCATGCC   
 FRT-N GAATTCGAGCTCGGTACCCG pCP15 FRT-kanR-FRT 
 PUC19 - FRT GAATTCGAGCTCGGTACCCGAAGCTTCAAAAGCGCTCTGA   

pYSD1005 PUC19UNIV-
SYNTHESISNONOT1 FOR  GATCCTCTAGAGTCGACCTG pUC19 Vector backbone 

 PUC19UNIV-
SYNTHESISNONOT1 REV  CGGGTACCGAGCTCGAATTC   

 PUC19 - MYFP CAGGTCGACTCTAGAGGATCATGGTGAGCAAGGGCGAGGAG pTU136 mCherry 
 CHER-N_LINKER_MYFP-C CCCACAGGGCAGAGATGAAGTGCCGCCGCCGCCGCCCTTGTACA 

GCTCGTCCATGCC   
 LINKER_CHER-N GGCGGCGGCGGCGGCACTTCATCTCTGCCCTGTGGG E. coli RP437 cheR 
 FRT-N_CHER-C CGGGTACCGAGCTCGAATTCTTAATCCTTACTTAGCGCATACAC   
 FRT-N GAATTCGAGCTCGGTACCCG pCP15 FRT-kanR-FRT 
 PUC19 - FRT GAATTCGAGCTCGGTACCCGAAGCTTCAAAAGCGCTCTGA   

NWF121 CHER_TETF 
CATGAAGTAGCACGACATGAGTCGGTGCAGTTACAAATTGCGCC 
AGTGGTATCCTGAAGTGATTGAGAAGGCGCTATGACTTCATCTC 
TGTGCCACCTGACGTCTAAGAA 

pCP16 FRT-tetAR-FRT 

 CHEBALT_TETR 
GTTAACCGCCGGGCCATCGTGAATTTTGATTTGGTAATTTGCGC 
CACTACGCGACAGCTCCATATGCCGATCGCCCGGCGCAATATAG 
GCTTTGCGCATTCACAGTTCTC 

  

YSD2023 PLAC-MYFP TATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAA 
ACAGCTATGGTGAGCAAGGGCGAGGAG pYSD1005 pLac-mCherry-CheR-FRT-

kanR-FRT-lacZ’ 
 LACZ-C_FRT TTATTTTTGACACCAGACCAACTGGTAATGGTAGCGACCGGCGC 

TCAGCTAAGCTTCAAAAGCGCTCTGA   

YSD2024 PRHA-MYFP ATTCAGGCGCTTTTTAGACTGGTCGTAATGAAATTCAGCAGGAT 
CACATTATGGTGAGCAAGGGCGAGGAG pYSD1005 pRha-mCherry-CheR-FRT-

kanR-FRT-rhaA’ 
 RHAA-C_FRT TTACCCGCGGCGACTCAAAATTTCTTTCTCATAAGCCCGCACGC 

TCTCCAAAGCTTCAAAAGCGCTCTGA   

YSD2025 PLAC-CHEB TATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAA 
ACAGCTATGAGCAAAATCAGGGTGTTATCTG pYSD1007 pLac-CheB-mYFP-FRT-kanR-

FRT-lacZ’ 
 LACZ-C_FRT TTATTTTTGACACCAGACCAACTGGTAATGGTAGCGACCGGCGC 

TCAGCTAAGCTTCAAAAGCGCTCTGA   

YSD2027 PRHA-CHEB ATTCAGGCGCTTTTTAGACTGGTCGTAATGAAATTCAGCAGGAT 
CACATTATGAGCAAAATCAGGGTGTTATCTG pYSD1007 pRha-CheB-mYFP-FRT-kanR-

FRT-rhaA’ 
 RHAA-C_FRT TTACCCGCGGCGACTCAAAATTTCTTTCTCATAAGCCCGCACGC 

TCTCCAAAGCTTCAAAAGCGCTCTGA   

YSD2031 ARAA_PUC_PBLA TAGCGACGAAACCCGTAATACACTTCGTTCCAGCGCAGCGCGTC 
TTTAAATCTCAGTACAATCTGCTCTGA pYSD1011 araA’-pBla-mCFP-FRT-kanR-

FRT-araB’ 
 ARAB_PUC_BLA GGCGATGAGCGCCGAACAACACTATCTTCCAACTTCCGCCCCGG 

CACAGGAACTTGGTCTGACAGTTACCA   
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S4 Table. Table of model parameters used in this study. 
Receptor Parameters 
Name Description Value Reference 

e1	
Receptor energy change per methyl group 
addition -1 kBT Shimizu et al. 2010 

Signaling Parameters 
Name Description Value Reference 
kr Catalytic rate of CheR 0.42 s-1 Frankel et al., 2014 
Kr Equilibrium constant of CheR activity 1200 µM Frankel et al., 2014 
kb Catalytic rate of CheB demethylation 0.32 s-1 Frankel et al., 2014 
kQ Catalytic rate of CheB deamination 0.64 s-1 this study 
Kb Equilibrium constant of CheB activity 800 µM Frankel et al., 2014 
aP CheA autophosphorylation rate  12.5 s-1 Frankel et al., 2014 
aB Rate of CheB phosphorylation by CheA 15 µM-1 s-1 Stewart, Jahreis, and Parkinson, 2000 
dB CheB autodephosphorylation rate 0.5 s-1 Stewart, 1993, Kentner and Sourjik, 2006 
aY Rate of CheY phosphorylation by CheA 50 µM-1 s-1 Frankel et al., 2014 
dZ Rate of CheY desphosphorylation by CheZ 5 µM-1 s-1 Frankel et al., 2014 
Motor Parameters 
Name Description Value Reference 
w0 Basal switching frequency 1.3 s-1 Sneddon et al., 2012, Cluzel et al., 2000 
e3,0 Motor steepness 80 Yuan et al., 2013, Dufour et al., 2014 
KD Dissociation constant of CheY-motor interaction 3.06 µM Sneddon et al., 2012, Cluzel et al., 2000 
kon Rate of motor adaptation 0.025 s-1 Dufour et al., 2014 

e3,1 
Slope of motor steepness response to change in 
bound FliM 1.96 Dufour et al., 2014 

∆n Effective half-max of FliM binding to the motor 4.16 Dufour et al., 2014 
n0 Number of FliM on the motor at rest 36  
n1 Minimum number of FliM on the motor 34 Dufour et al., 2014 
n2 Maximum number of FliM on the motor 44 Dufour et al., 2014 
Flagellar bundle parameters 
Name Description Value Reference 

l Mean waiting time of semi-coiled to curly 
transition 0.2 s Sneddon et al., 2012 

Nflagella Total number of flagella per cell 4 Sneddon et al., 2012 

Nbundle 
Number of flagella rotating CCW to form a 
bundle 2 Sneddon et al., 2012 

Gene expression parameters 
Name Description Value Reference 
TTot Population mean receptors per cell (Tar + Tsr) 26000 mol./cell Li and Hazelbauer, 2004 
ATot Population mean CheA proteins per cell 7700 mol./cell Li and Hazelbauer, 2004 
WTot Population mean CheW proteins per cell 7200 mol./cell Li and Hazelbauer, 2004 
RTot Population mean CheR proteins per cell 160 mol./cell Li and Hazelbauer, 2004 
BTot Population mean CheB proteins per cell 270 mol./cell Li and Hazelbauer, 2004 
YTot Population mean CheY proteins per cell 6300 mol./cell Li and Hazelbauer, 2004 
ZTot Population mean CheZ proteins per cell 2700 mol./cell Li and Hazelbauer, 2004 

x Conversion between mol./cell and mM for 
proteins 833 µM/(mol./cell) Frankel et al., 2014 

AYZ Translational coupling coefficient between CheY 
and CheZ 0.25 Lovdok et al., 2009 

η Intrinsic noise scaling coefficient 0.0125 this study 
ω Extrinsic noise scaling coefficient 0.026 this study 
Cell growth parameter 
Name Description Value Reference 
r Cell generation time 1 h-1 this study 
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S1 Fig. Effect of the chemotaxis buffer, PEGDA, and LAP on the distributions of swimming phenotypes in 
a clonal E. coli RP437 population. (A-D) Probability distribution of cell tumble biases, mean run times, 
mean swimming speeds, and cell diffusion coefficients from cells swimming in chemotaxis buffer after the 
indicated incubation times. (E-H) Same distributions from cells swimming in chemotaxis buffer 
supplemented with 5% PEGDA and 0.05%LAP after the indicated incubation times. 

 

 

 
S2 Fig. Distribution of trajectory length obtained from tracking 6,332 individual swimming RP437 cells for 
60 seconds. 
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S3 Fig. Tumble detection and diffusion coefficient calculations. (A) Density plot of normalized cell 
swimming speed as a function of angular acceleration. (B) Density plot of normalized cell swimming speed 
as a function of normalized cell acceleration. The three-dimensional density distribution comprising ~6 
millions data points was fitted with a mixture of three tri-variate Gaussian distributions to represent three 
possible cell swimming states: running (solid lines), tumbling (dashed lines), and intermediate (dotted 
lines). (C) Distribution of angles measured from the change in direction in the swimming trajectories after 
each detected tumble for RP437 cells. (D) Probability distribution the mean swimming speeds of individual 
cells. (E) Example of a 60 seconds single-cell trajectory where detected tumbles are marked with red dots. 
(F) Mean square displacement and (G) velocity auto-correlation as a function of time intervals calculated 
from a representative cell trajectory (black) with the corresponding fit (red) to extract the cell diffusion 
coefficient. (H) Scatter plot of the approximated diffusion coefficients (Dapx) calculated from the mean run 
time between tumbles against the effective diffusion coefficient (Deff) calculated for the cell directional 
persistence for each cell. The distributions were calculated from about 6,000 individual trajectories 
combined from three independent experiments. 
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S4 Fig. Induction of fluorescently labeled chemotaxis proteins. (A) Probability distributions of 
fluorescence intensities from the inductions of CheB-mYFP in the YSD2073 mutant strain (pRha cheB-
mYFP, pLac mCherry-cheR) with four rhamnose concentrations: 0 mM (cyan), 0.3 mM (green), 1 mM 
(yellow), and 3 mM (red). (B) Probability distributions of fluorescence intensities from the inductions of 
mCherry-CheR in the same strain with four IPTG concentrations: 0 µM (cyan), 10 µM (green), 30 µM 
(yellow), and 100 µM (red). The fluorescence intensities were obtained from the analysis of thousands of 
cells using MicrobeTracker on epi-fluorescence microscopy images. The bimodal distribution of 
fluorescence intensities from the expression of CheB-mYFP is a result of the bi-stability of the pRha 
promoter. 
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S5 Fig. Calibration of fluorescence units per fluorescent molecules using Bayesian regression analysis with 
the YSD2073 mutant strain (pRha cheB-mYFP, pLac mCherry-cheR, pBla mCFP). (A) Estimated numbers 
of CheB-mYFP molecules per cell as a result of induction with different rhamnose concentrations (1: 0 
mM, 2: 0.3 mM, 3: 1 mM; 4: 3 mM, 5: 10 mM) shown for three independent experiments. The black lines 
represent the 80% confidence interval. The colored dots indicate the median for each of the 8 chains of the 
MCMC sampling. (B) Estimated numbers of mCherry-CheR molecules per cell as a result of induction 
with different IPTG concentrations (1: 0 µM, 2: 10 µM, 3: 30 µM; 4: 100 µM, 5: 1 mM) shown for three 
independent experiments. (C) Estimated numbers of mCFP molecules per cell as a result of induction with 
different IPTG concentrations (1: 0 µM, 2: 10 µM, 3: 30 µM; 4: 100 µM, 5: 1 mM) shown for three 
independent experiments. As expected mCFP expression does not respond to the presence of IPTG or 
rhamnose. (D) Posterior probability distribution of the expected number of fluorescence units per CheB-
mYFP molecule. (E) Posterior probability distribution of the expected number of fluorescence units per 
mCherry-CheR molecule. (F) Posterior probability distribution of the expected number of fluorescence 
units per mCFP molecule. 
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S6 Fig. Manipulating and sampling tumble bias distributions in a mutant E. coli strain expressing mCherry-
CheR and CheB-mYFP. The YSD2072 mutant strain (pLac cheB-mYFP, pRha mCherry-cheR, pBla 
mCFP) was grown in M9 glycerol medium supplemented with the indicated concentrations of the inducers 
rhamnose and IPTG to obtain different distributions of tumble biases. The distributions of phenotypes from 
the population of cells trapped and imaged in the hydrogel (red) is comparable to the distribution of 
phenotypes from the entire cell population (blue) indicating that the trapped cells represent an unbiased 
sample of the population. The number of cells represented in each distribution is indicated for each plot. 
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S7 Fig. Manipulating and sampling tumble bias distributions in a mutant E. coli strain expressing mCherry-
CheR and CheB-mYFP. The YSD2073 mutant strain (pRha cheB-mYFP, pLac mCherry-cheR, pBla 
mCFP) was grown in M9 glycerol medium supplemented with the indicated concentrations of the inducers 
rhamnose and IPTG to obtain different distributions of tumble biases. The distributions of phenotypes from 
the population of cells trapped and imaged in the hydrogel (red) is comparable to the distribution of 
phenotypes from the entire cell population (blue) indicating that the trapped cells represent an unbiased 
sample of the population. The number of cells represented in each distribution is indicated for each plot. 
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S8 Fig. Protein stability during single-cell fluorescence imaging of cells immobilized in the hydrogel. (A) 
Scatter plot of the estimated number of CheB-YFP proteins in each cell as a function of time after cell 
immobilization. A linear fit (red line) indicates that there is no significant change in protein numbers as a 
function of time (slope -0.0022 min-1, 95% confidence interval [-0.0094; 0.0050]). (B) Scatter plot of the 
estimated number of mCherry-CheR proteins in each cell as a function of time after cell immobilization. A 
linear fit (red line) indicates that there is no significant change in protein numbers as a function of time 
(slope 0.0049 min-1, 95% confidence interval [-0.0025; 0.0123]). 

 

 
S9 Fig. Correlations of single-cell swimming phenotypes with mCFP numbers. (A) Scatter plot of single-
cell tumble biases against mCFP numbers. (B) Scatter plot of single-cell diffusion coefficients against 
mCFP numbers. 
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S10 Fig. Tumble bias and residual standard deviation as a function of CheR and CheB numbers predicted 
from a model missing CheB-dependent receptor deamidation and/or receptor adaptation noise. (A) Contour 
plot of the local linear regression of the predicted tumble bias as a function of CheR and CheB numbers for 
a model missing both CheB-dependent receptor deamidation and receptor adaptation noise. (B) Contour 
plot of the predicted residual tumble bias standard deviation resulting from stochastic expression of the 
chemotaxis proteins with no signaling noise from the receptor cluster. (C) Contour plot of the local linear 
regression of the predicted tumble bias as a function of CheR and CheB numbers for a model including the 
deamidation reaction but missing receptor adaptation noise. (D) Contour plot of the predicted residual 
tumble bias standard deviation resulting from stochastic expression of the chemotaxis proteins with no 
signaling noise from the receptor cluster. From the stochastic gene expression model, we sampled 8405 
cells covering the full range of CheR and CheB expression levels. We then calculated the corresponding 
tumble bias for each individual cell using a model of bacterial chemotaxis that does not take into account 
CheB-dependent receptor deamidation or receptor adaptation noise. The local linear regressions were done 
using a bandwidth of 20% of the data points. 
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S11 Fig. Effect of CheB-YFP expression on the tumble bias in populations of motile cells. Box plots 
representing the evolution of the distributions of the tumble bias as a function of time of YSD2044 mutant 
cells grown (A) in the absence of inducer, (B) in the presence of 5 µM IPTG, or (C) in the presence of 50 
µM IPTG, after the growth medium was exchanged with chemotaxis buffer. Two independent experimental 
trials are represented in red and blue. The white dots represent the medians. The boxes span the first and 
third quantiles. The whiskers indicate 1.5 times the interquartile range. The dotted lines represent the model 
predictions used to estimate the CheB-dependent deamidation rate (kQ=0.64s-1) and the number of 
expressed CheB proteins (0, 100, 250 molecules, respectively). The tumble bias trajectories were calculated 
over time by first solving the model at steady state with a cell doubling rate set to 1h-1 and then numerically 
solving the evolution of the differential equations after the doubling rate was set to 0 to simulate the 
transfer of cells from the growth medium to the chemotaxis buffer. 

 

 
S12 Fig. Distribution of angular velocities extracted from the analysis of the mean square displacement and 
the velocity autocorrelation of each cell trajectory. The angular velocity is non-zero when cells swim close 
enough to the glass surface to be affected by hydrodynamic interactions between the glass and the cell body 
rotation. 
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S13 Fig. Precision and accuracy of tumble detection on simulated swimming cell trajectories. (A) Mean 
cell tumble bias as a function of phosphorylated CheY (CheY-P) concentration for 10-second-long 
trajectories. The dashed line represents the expected theoretical relationship. The tumble detection 
algorithm was run on 1,000 simulated trajectories for each CheY-P concentrations. The solid line 
represents the mean of the calculated tumble biases. The grey lines delimit 90% of the probability density. 
(B) Same as A but for 300 seconds long trajectories. (C) Mean of the calculated tumble bias as a function 
of total simulation time. The trajectories of cells with 3 µM CheY-P were simulated for different amounts 
of time between 1 and 300 seconds. The dashed line represents the expected theoretical tumble bias. The 
tumble detection algorithm was run on 1,000 simulated trajectories for each simulation time. The solid line 
represents the mean of the calculated tumble biases. The grey line represents the standard deviation of the 
calculated tumble bias distribution. (D) Mean cell run time as a function of phosphorylated CheY 
concentration for 10-second-long trajectories. (E) Same as D but for 300 seconds long trajectories. (F) 
Mean of the calculated mean run time as a function of total simulation time. 
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