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Abstract  

 

A variety of single cell RNA preparation procedures have been described. So far these protocols 

require fresh starting material, hindering complex study designs. We describe a sample 

preservation method that maintains transcripts in viable single cells and so allows to disconnect 

time and place of sampling from subsequent processing steps. To demonstrate the potential, we 

sequenced single cell transcriptomes from >1,000 fresh and conserved cells. Our results 

confirmed that the conservation process did not alter transcriptional profiles. This substantially 

broadens the scope of applications in single cell transcriptomics and could lead to a paradigm 

shift in future study designs. 
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Background 

 

Within complex tissues cells differ in the way their genomes are active. Despite the identical 

DNA sequence of single cells, their distinct interpretation of the genetic sequence makes them 

unique and defines their phenotype [1]. While in many complex biological systems cell type 

heterogeneity has been extensively analyzed in molecular and functional experiments, its extent 

could only be estimated due to the technical limitation to assess the full spectrum of variability. 

With the advent of single cell genomics, cell type composition can be deconvoluted for 

unprecedented insights into the complexity of multicellular systems. Exemplarily, single cell 

transcriptomics studies resolved the neuronal heterogeneity of the retina [2], the cortex and the 

hippocampus [3,4], but also advanced our definition of hematopoietic cell states [5]. Moreover, 

single cell genomics studies shed light on cellular relationships in dynamic processes, such as 

embryo development [6] and stem cell differentiation [7]. Here, it was the assessment of 

hundreds to thousands of single cell gene expression signatures that allowed the determination 

of tissue composition at ultra-high resolution. In addition to providing insights into the 

complexity of the analyzed samples, single cell studies provide an invaluable resource of 

biomarkers that define cell types [3,8] or differentiation states [9]. 

Different single cell RNA sequencing techniques allow the quantification of minute transcript 

amounts from up to thousands of single cells, however, their exclusive dependence on fresh 

starting material strongly affected study designs [10]. In particular, the need for immediate 

sample processing hindered complex study setups, such as time course studies, or sampling at 

locations without access to single cell separation devices. Indeed, seminal work on the 

composition of complex systems was performed with readily accessible tissues from model 

organisms and the extent to which conclusions can be projected to human physiology is unclear 

[2,3,5]. 

Here we evaluate a sample preservation method that disconnects time and location of sampling 

from subsequent single cell processing steps. It enables complex experimental designs and 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 4, 2016. ; https://doi.org/10.1101/067884doi: bioRxiv preprint 

https://doi.org/10.1101/067884
http://creativecommons.org/licenses/by-nd/4.0/


4 
 

widens the spectrum of accessible specimens. Specifically, samples were cryopreserved to 

maintain cellular structures and the integrity of RNA molecules for single cell separation 

months after archiving. To demonstrate the potential of our method, we analyzed single cell 

transcriptomes from 1,418 fresh or cryopreserved cells, obtained from cell lines or primary 

tissues.   

 

 

Results and Discussion  

 

Cell integrity and RNA quality present crucial requirements for successful single cell 

transcriptome sequencing experiments. Conventional conservation processes, such as freezing, 

lead to crystallization and disruption of cellular membranes, which impedes subsequent single 

cell preparation. To conserve intact and viable cells for cell and tissue archiving, cryoprotectants 

are commonly used, however, their applicability for single cell experiments has not been 

established. We tested weather cells preserved with the cryoprotectant dimethyl-sulfoxide 

(DMSO) are suitable for single cell genomics workflows. To this end, we sequenced 675 fresh 

and 743 cryopreserved single cells derived from cell lines and primary tissues prepared with the 

MARS-Seq protocol [5,11] (Fig. S1). Subsequently, a variety of statistical methods, including 

the most common measures in single cell genomics, were applied to determine potential 

systematic biases introduced by the conservation method.  

To determine potential impacts of the cryopreservation procedure on single cell RNA profiles, 

we isolated single cells from four cell lines HEK293 (human embryonic kidney cells), K562 

(human leukemia cells), NIH3T3 (mouse embryo fibroblasts) and MDCK (canine adult kidney 

cells) by fluorescence-activated cell sorting (FACS). The cells were either freshly harvested or 

cryopreserved at -80ºC prior to the single cell separation. To minimize technically introduced 

batch effects both conditions were processed simultaneously for library preparations and 

sequencing reactions. We sequenced our single cell transcriptomes significantly deeper than 
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previous MARS-Seq studies [5,11], which allowed us to detect biases introduced by the cell 

preparation method (Fig. S1). 

Satisfyingly, the transcriptional profiles of conserved cell line samples were indistinguishable 

from freshly processed cells in commonly used dimensionality reduction representations (Fig. 

1a,b and Fig. S2). Principal component analyses (PCA) and t-distributed stochastic neighbor 

embedding (t-SNE) showed a homogeneously mixed population of single cells, a result also 

observed with independent data normalization techniques (Fig. S2 and S3). We found 

sequencing depth to be the main source of variance between single cells, a common 

confounding factor in single cell transcriptome studies (Fig. 1a) [12]. High similarities between 

single cells of both conditions were confirmed by correlation analysis showing highly consistent 

and representative gene expression profiles after cell conservation (Fig. 1c-e and Fig. S4). As 

expected analyzing homogenous cell populations, expression profiles showed high correlation 

values between single cells of the same type and condition (Pearson’s correlation test, median 

r2:0.88-0.91). However, also between conditions transcription profiles were highly correlated 

(Pearson’s correlation test, median r2:0.88), suggesting the freezing process to conserve single 

cell transcriptome profiles (Fig. 1c,d). Consistent expression profiles were further supported by 

highly correlating mean expression values when directly comparing both conditions (Fig. 1e). 

Also, hierarchical clustering of single cells using the 500 most variable genes could not 

distinguish between conditions, further suggesting equal gene expression profiles between fresh 

and conserved cells (Fig. 1f and Fig. S4). In order to evaluate potential impacts on comparative 

expression analyses involving fresh and conserved sample types, we assessed differentially 

expressed genes between both conditions (Fig. S5). We could not detect any significantly 

differentially expressed transcripts between fresh and cryopreserved sample (adjusted p-value > 

0.05), supporting the possibility to include conserved material in studies profiling freshly 

processed samples. 

Following the exclusion of systematic biases introduced by the conservation method, we 

evaluated to which extent biological information is maintained within single cells. We compared 

gene information and associated biological processes between both conditions. Here, a 
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comparable number of genes was detected by accumulating information from single cells, 

suggesting that the power to detect gene transcripts in the conserved material is not reduced 

(Fig. 1g and Fig. S6). Indeed, we noticed that mainly sequencing depth influenced the total 

number of detected genes per experiment. The conservation process did not show a loss of gene 

expression information. In line, we found a similar linear relationship between the number of 

sequencing reads and detected genes for both conditions (linear regression model, slope: 0.0067 

and 0.0076; Fig. 1h and Fig. S6). This provides further support for the capacity to extract the 

same transcript information at a given sequencing depth.  

Biological processes that one might suspect to change due to a challenge, such as cell cycle and 

apoptotic programs remained unchanged (Fig. 2a,b). Moreover, both conditions were suitable 

for the identification of biologically relevant information. We detected comparable numbers of 

cells with active cell cycle programs in fresh and conserved cells, identified by functional single 

cell clustering [13] and the identification of indicative processes (e.g. sister chromatin 

segregation) and marker genes (e.g CCNB1) (Fig. 2c,d).  

Although conserving cell cultures for single cell analysis opens up the applicability to more 

complex experimental designs, we intended to further widen the application spectrum to 

complex primary tissues. We performed MARS-Seq experiments on freshly resected and 

cryopreserved mouse colon tissues and subsequently extended the work to human tumor 

samples. A fresh mouse colon sample was split. One part was cryopreserved for one week 

before single cell separation. No significant differences between fresh and conserved colon cells 

following transcriptome sequencing were found, consistent with results from the cell line 

experiments (Fig. 3a-d). Gene information was unaltered (Fig. 3e,f) and sufficient to derive 

biologically relevant information. We were able to identify transit amplifying (TA) cells, 

secretory enteroendocrine cells and differentiated enterocytes in both conditions (Fig. 3g), 

major cell types present in the colon mucosa. The single cell transcriptome data enabled us to 

clearly assign colon cell types to cell clusters using marker genes [8], such as Reg4 (secretory 

cells), Apoa1 (enterocytes) or ribosomal proteins (TA cells) (Fig. 3h). We conclude that the 

conservation process did not alter the transcriptional profile of single cells and that both, single 
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cell sequencing of fresh and conserved tissues is equally suitable to extract biologically relevant 

information, such as cell type specific programs. 

Finally, we successfully applied our method to a patient-derived orthotopic xenograft (PDOX) 

cryopreserved for three months before processing. A freshly resected ovarian clear cell 

carcinoma orthoxenograft was processed simultaneously with the matched cryopreserved 

PDOX. Consistent with prior observation, single transcriptome profiles of fresh or conserved 

tumor cells did not differ in their transcriptional profiles (Fig. 4a-d), further highlighting tissue 

conservation to be possible for various experimental designs, including tumor samples.    

 

 

Conclusions 

 

Using the here established cryopreservation method single cell transcriptome profiles from cells 

and tissues did not differ from freshly processed material. The method constitutes a 

straightforward and powerful tool to broaden the scope of single cell genomics study designs. 

Importantly, cryopreservation can be readily implemented into standard single cell genomics 

workflows, without modifications in established protocols. In addition, although combined here 

with the MARS-Seq technique, other single cell RNA-Seq methods are likely to result in similar 

outcomes [14,15]. Although recent work described the value of nuclear RNA analysis [4,16], the 

content from viable cells is likely to result in a more complex transcriptome description for in 

depth study.  

Taking into account that cellular structures are conserved during cryopreservation, different 

downstream applications, including genome or epigenome sequencing might also benefit from 

this method. Cryopreservation was previously described to conserve open chromatin structures 

in ATAC sequencing experiments [17], pointing to a wide application spectrum of 

cryopreserved material.   

In conclusion, the conservation process we present here does not modify transcriptional profiles 
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of single cells taken from cell culture or tissues. Cells cryopreserved by our method are equally 

well suited as fresh cells to extract relevant biological information, such as cell type specific 

programs. This substantially broadens the scope of applications in single cell transcriptomics 

and could constitute a paradigm shift for single cell study designs.   

 

 

Methods 

 

Cell Line Sample Preparation  

Human cell lines HEK293 (human embryonic kidney cells) and K562 (human leukemia cells) 

were acquired from the German Collection of Microorganisms and Cell Cultures (DSMZ). 

NIH3T3 (mouse embryo fibroblasts) and MDCK (canine adult kidney cells) were kindly 

provided by Dr. Manel Esteller (IDIBELL, Spain). HEK293, NIH3T3 and MDCK were 

maintained in DMEM (10% fetal bovine serum, FBS; 1% Penicillin/Streptomycin) at 37ºC (5% 

CO2). K562 suspension cells were cultured in RPMI (10% FBS; 1% Penicillin/Streptomycin) at 

37ºC (5% CO2). For cryopreservation, cells were trypsinized, pelleted and resuspended in 

freezing solution I (10% DMSO; 10% heat-inactivated FBS; 80% DMEM) or solution II (10% 

DMSO; 90% non-inactivated FBS). Subsequently, cells were frozen with gradually decreasing 

temperatures (1ºC/min) to -80ºC (cryopreserved). For single cell analysis, cryopreserved cells 

were rapidly thawed in a water bath with continuous agitation and placed into 25 ml of cold 1x 

HBSS. Fresh cells were trypsinized, pelleted and resuspended in 1x HBSS. Before sorting, cells 

from both conditions were filtered (70 µm nylon mesh) and propidium iodide staining identified 

dead/damaged cells. To avoid batch effects fresh and cryopreserved single cells were sorted into 

the same plates and distributed over both sequencing pools.  

 

Primary sample preparation 

Female athymic nu/nu mice (Harlan) between 4 to 6 weeks of age were housed in individually 

ventilated cages on a 12 hour light-dark cycle at 21-23ºC and 40-60% humidity. Mice were 
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allowed free access to an irradiated diet and sterilized water. Primary mouse colon was dissected 

from an athymic nu/nu mouse and placed on ice. The sample was divided and half of the colon 

was immediately prepared for single cell separation, while the other half was minced on ice, 

placed into freezing solution II (10% DMSO, 90% non-inactivated FBS) and frozen with 

gradually decreasing temperatures (1ºC/min) to -80ºC (cryopreserved). After storage for one 

week at -80ºC, the sample was rapidly thawed in a water bath in continuous agitation and placed 

into 25 ml of cold 1x HBSS. For single cell separation the fresh and conserved samples were 

minced on ice and enzymatically digested in 5 ml 1x HBSS and 83 µl collagenase IV (10,000 

U/ml) for 10 min at 37ºC. Single cells were separated by passing the sample through a 0.9 mm 

needle and filtration (70 µm nylon mesh). Cells were washed once in ice cold 1x HBSS and 

resuspended in DMEM before sorting. Dead and damaged cells were identified by propidium 

iodide staining. For practical reasons (tissue derived from one single mouse), fresh and 

cryopreserved single cells could not be sorted into the same plate. 

 

Orthotopic ovarian carcinoma engraftment 

To analyze matched fresh and cryopreserved viable tumor samples, we generated an ovarian 

orthotopic tumor model, referred as Orthoxenograft® or patient-derived orthotopic xenograft 

(PDOX). Therefore, we implanted a primary clear cell ovarian carcinoma into the ovaries of 

athymic nu/nu mice (matched organ of origin). Briefly, the primary tumor specimen was 

obtained at the Hospital Universitari de Bellvitge (Barcelona, Spain). The selected patient had 

not received cisplatin-based chemotherapy. Non-necrotic tissue pieces (~2-3 mm3) from a 

resected clear cell ovarian carcinoma were selected and placed into DMEM, supplemented with 

10% FBS and 1% penicillin/streptomycin at room temperature. Under isofluorane-induced 

anesthesia, animals were subjected to a lateral laparotomy, their ovaries exposed and tumor 

pieces anchored to the ovary surface with prolene 7.0 sutures [18,19]. Tumor growth was 

monitored 2 to 3 times per week. When the tumor grew, it was harvested and cut into small 

fragments. Subsequently, it was transplanted into a new animal and cryopreserved at -80ºC as 

viable tumor (as described above). After 107 days, the tumor was newly resected from the 
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mouse and processed together with the matched cryopreserved sample (maintained at -80ºC) for 

single cell separation and sorting. The morphology of the primary tumor and the engrafted 

tumor was compared by H&E staining in paraffin-embedded sections. For single cell separation 

the sample was rapidly thawed in a water bath in continuous agitation and placed into 25 ml of 

cold 1x HBSS. For single cell separation the fresh and conserved samples were minced on ice 

and enzymatically digested in 5 ml 1x HBSS and 83 µl collagenase IV (10,000 U/ml) for 15 

min at 37ºC. Single cells were separated by passing the sample through a 0.9 mm needle and 

filtration (70 µm nylon mesh). Cells were washed once in ice cold 1x HBSS and resuspended in 

DMEM before sorting. In order to enrich human cells during the sorting procedure, tumor cells 

were stained for 1 hour at 4ºC with α-EpCam (CD326, eBioscience, 1:100). Propidium iodide 

staining identified dead/damaged cells. To avoid batch effects fresh and cryopreserved single 

cells were sorted into the same plates and distributed over both sequencing pools.  

 

Library preparation and sequencing 

To construct single cell libraries from polyA-tailed RNA, we applied massively parallel single-

cell RNA sequencing (MARS-Seq) [5,11]. Briefly, single cells were FACS-sorted into 384-well 

plates, containing lysis buffer and reverse-transcription (RT) primers. The RT primers contained 

the single cell barcodes and unique molecular identifiers (UMIs) for subsequent de-multiplexing 

and correction for amplification biases, respectively. Spike-in artificial transcripts (ERCC) were 

added at a dilution of 1:16x106 per cell. PolyA-containing RNA was converted into cDNA as 

previously described and then pooled using an automated pipeline (liquid handling robotics). 

Subsequently, samples were linearly amplified by in vitro transcription, fragmented, and 3’-ends 

were converted into sequencing libraries. The libraries consisted of 192 single cell pools. 

Multiplexed pools (2-6) were run in one Illumina HiSeq 2500 Rapid two lane flow cell 

following the manufacturer’s protocol. Primary data analysis was carried out with the standard 

Illumina pipeline. We produced 52 nt of transcript sequence reads for the cell lines and the 

mouse colon tissue and 83 nt for the tumor xenograft sample.    
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Data processing 

The MARS-Seq technique takes advantage of two-level indexing that allows the multiplexed 

sequencing of 192 cells per pool and multiple pools per sequencing lane. Sequencing was 

carried out as paired-end reads; wherein the first read contains the transcript sequence and the 

second read the cell barcode and UMIs. Quality check of the generated reads was performed 

with FastQC quality control suite. Samples that reach the quality standards were then processed 

to deconvolute the reads to single cell level by de-multiplexing according to the cell and pool 

barcodes. Reads were filtered to remove polyT sequences. Sequencing reads from human, 

mouse or canine cells were mapped with the RNA pipeline of the GEMTools 1.7.0 suite [20] on 

the genome references for human (Gencode release 24, assembly GRCh38.p5), mouse (Gencode 

release M8, assembly GRCm38.p4) and dog (Ensembl v84, assembly CanFam3.1). We adapted 

the GEMTools RNASeq pipeline for its usage on single cell reads. The analysis of spike-in 

control RNA allowed us to discard reads from empty wells or damaged cells. Cells with less 

than 105 reads or more than 2x106 reads were discarded. Gene quantification was performed 

using UMI corrected transcript information to correct for amplification biases. 

 

Data analysis 

To estimate systematic biases introduced by the conservation technique, single cells from both 

conditions were compared using two commonly used data pre-processing strategies and 

different metrics to assess similarities between cells. Statistical analyses shown in this 

manuscript were carried out using R, version 3.3.0. Functions referred below belong to the R 

stats package when not indicated otherwise. 

Transformation and scaling: Fresh and cryopreserved data sets were filtered for low-quality 

cells (<800-1,800 genes) and genes (<10 cells and <20 transcript counts). The overlapping 

genes of both data sets were merged, resulting in a joint gene-cell matrix for each experiment. 

Principal component analyses (PCA) and t-distributed stochastic neighbor embedding (t-SNE) 

were performed using log2-transformed counts-per-million (with a prior count of 1 as values to 
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use for expression) and the scater package. Both methods classify in an unsupervised manner by 

grouping most similar cells into clusters, however, the t-SNE algorithm also captures non-linear 

relationships. To determine differentially expressed genes, cell measurements have been 

modeled as a mixture of negative binomial and Poisson distributions, using the scde package 

[21]. As batch effects are a source of variation, variability introduced during the experimental 

phase (e.g. sequencing pools) has been taken into account. The Bayesian approach behind the 

method allows gene expression inferences from amplified and drop-out events. To fit cell 

models we used the default implementation. The quality of the models was evaluated with the 

value of correlation with the expected magnitude, which was positive for all cells. Further, the 

distribution of drop-out events for each sample appeared highly and negatively correlated to the 

expression magnitude, showing the value 1 associated to zero magnitudes. The differential 

expression analysis of the cell line datasets revealed that the relative contribution of each gene 

between the two groups of cells was highly comparable (adjusted p-value>0.05). Differences 

between gene expression profiles were studied by correlating relative or absolute gene counts 

and by displaying the most expressed genes. In linear regression models, we found a strong 

linear correlation (r2 ~ 0.9) between the means of the two groups (considering the number of 

non-zero cells to compute mean values) and a strong agreement of relative count levels for the 

50 most expressed genes (Fig. S5).  

 

Library size normalization: With the aim to preserve the original data structure, gene expression 

based on UMIs was scaled to correct for differences in library sizes between cells. Library size 

normalization, although a very simple normalization method, has shown to perform better for 

single cell RNAseq data than more sophisticated normalization approaches developed for bulk 

RNAseq and comparable to single cell specific normalization algorithms [22]. PCA on the gene 

expression matrix was performed using the prcomp function. The t-SNE clustering was 

performed on the gene expression matrix with the library Rtsne and “perplexity” parameter was 

set to the total number of cells divided by five. For subsequent analyses, following filter steps 

were applied: genes represented by <1 UMI in a given cell and genes present in <50% of the 
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cells were discarded. Pearson’s correlation matrices were calculated with the cor function and 

represented using the corrplot library (Fig. 1c). Hierarchical clustering was performed with the 

hclust function with complete linkage on a euclidean distance matrix, calculated with the dist 

function for the 500 most expressed genes. Clustering was represented as dendrogram with the 

dendextend library 1.2.0. 

 

Subpopulation and heterogeneity analysis 

In order to functionally interpret transcriptional heterogeneity between single cells, expression 

profiles of HEK293 and mouse colon cells were modeled using Pathway and geneset 

overdispersion analysis (PAGODA) [13], included in the scde package. Models were 

constructed similar to the differential expression analysis and the goodness of fits has been 

successfully assessed for all cells. A correction for pool compositions and sequencing depth was 

performed. PAGODA allows the identification of principal aspects of heterogeneity, capturing 

the most overdispersed gene sets and normalizing for undesired aspects. We applied Gene 

Ontology, de novo and custom pathways to define clusters of gene sets (aspects). Subsequently, 

cells were clustered based on a weighted correlation of genes driving these aspects [13]. The 

most variable aspects or genes were displayed in the hierarchical clustering highlighting the 

most significant genes, GO terms or de novo gene sets. Further, distances from the hierarchical 

clustering were used to visualize cells in two dimensions through a t-SNE plot. In both 

hierarchical clustering and t-SNE plots, we could not detect evidence for differences between 

fresh and cryopreserved samples. To assign cell types to single cell clusters, we used colon 

specific custom gene sets and marker genes (e.g. Apoa1, Reg4 or ribosomal genes) derived from 

Grün et al.[8]. Cell cycles states were defined by marker genes (e.g. CCNB1) and Gene 

Ontology term enrichment (e.g. sister chromatid segregation). Apoptosis (Hallmark_Apoptosis; 

M5902) and G2/M (Hallmark_G2/M_CHECKPOINT; M5901) gene sets were derived from the 

GSEA database [23].    
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Figure legends 

 

Fig. 1 Comparative analyses of single cell transcriptome data from fresh and cryopreserved 

HEK293 cells. (a) Gene expression variances between fresh (circles) and cryopreserved 

(triangles) cells are displayed as principal component analysis (PCA) of scaled log2-

transformed transcript counts indicating the sequencing depth (log10 of total counts). (b) A t-

distributed stochastic neighbor embedding (t-SNE) representation of fresh (red) and 

cryopreserved (blue) cells and scaled log2-transformed transcript counts. (c) Pearson’s 

correlation analysis between fresh (red) and cryopreserved (blue) cells displaying the correlation 
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coefficient (r2). Single cells were ordered by their position on the 384-well plate. (d) 

Distribution of Pearson’s correlation coefficients (r2) within and between processing conditions. 

The median coefficients are indicated. (e) Linear regression model comparing average gene 

expression levels of the 500 most expressed genes in fresh and cryopreserved cells. The 

coefficient of determination (r2) is indicated. (f) Unsupervised hierarchical clustering of single 

cells based on the 500 most expressed genes. (g) Cumulative gene counts split by fresh (red) 

and cryopreserved (blue) cells and analyzed using randomly sampled cells (average of 100 

permutations). (h) Comparative analysis of the number of sequencing reads and detected genes 

using a linear model. The slope of the regression line was calculated separately for fresh (red) 

and cryopreserved (blue) cells.  

 

Fig. 2 Cryopreservation does not affect functional analysis of HEK293 cells. (a,b) Linear 

regression analysis for average expression levels of (a) G2/M checkpoint or (b) apoptosis 

related genes [23] comparing fresh and cryopreserved cells. The coefficient of determination (r2) 

is indicated. (c) Hierarchical clustering of fresh (red) or cryopreserved (blue) single cells based 

on transcriptional programs (defined by gene ontology) and correlating genes (referred to as 

gene clusters) [13]. Displayed are the most variable aspects (rows), their importance (row 

colors) and the most enriched annotation (row labels). The cell cycle status determined by 

functional annotation and marker genes is indicated for the two dominant cell clusters. 

Transcriptional programs and gene clusters are summarized (orange: overrepresented; green: 

underrepresented). (d) Hierarchical clustering of fresh (red) and cryopreserved (blue) single 

cells based on transcriptional programs and correlating gene sets (as in c). Displayed are the 25 

most informative genes and the cell cycle status is indicated for the two dominant cell clusters. 

Gene expression levels are displayed as relative intensities following transformation [13] (red: 

high; blue: low).   

 

Fig. 3 Comparative analyses of single cell transcriptome data from fresh (red) and 

cryopreserved (blue) mouse colon cells. Gene expression variances between cells are displayed 
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as (a) PCA or (b) t-SNE representation of normalized transcript counts. (c) Unsupervised 

hierarchical clustering of single cells based on the 500 most expressed genes. (d) Linear 

regression analysis comparing average gene expression levels of the 500 most expressed genes 

of fresh and cryopreserved cells. The coefficient of determination (r2) is indicated. (e) 

Comparative analysis of the number of sequencing reads and detected genes using a linear 

model. The slope of the regression line was calculated separately for fresh (red) and 

cryopreserved (blue) cells. (f) Cumulative gene counts split by fresh (red) and cryopreserved 

(blue) cells and analyzed using randomly sampled cells (average of 100 permutations). (g) t-

SNE representation derived from transcript counts of functionally selected genes [13]. Fresh 

(circles) and cryopreserved (triangles) conditions are indicated. Cell types were annotated based 

on marker gene set (derived from Grün et al. [8]) expression analysis (TA: transit amplifying, 

SC: secretory cells, EC: enterocytes, ECpr: enterocytes precursors). (h) Hierarchical clustering 

of fresh (red) or cryopreserved (blue) single cells based on transcriptional programs (defined by 

gene ontology) and correlating genes (defined as gene clusters). Displayed are the 25 most 

informative genes and gene expression levels are displayed as relative intensities (red: high; 

blue: low) [13]. 

 

Fig. 4 Comparative analyses of single cell transcriptome data from fresh (red) and 

cryopreserved (blue) orthotopic ovarian tumor xenograft cells. Gene expression variances 

between cells are displayed as (a) PCA or (b) t-SNE representation of normalized transcript 

counts. (c) Linear regression analysis comparing average gene expression levels of the 500 most 

expressed genes of fresh and cryopreserved cells. The coefficient of determination (r2) is 

indicated. (d) Comparative analysis of the number of sequencing reads and detected genes using 

a linear model. The slope of the regression line was calculated separately for fresh (red) and 

cryopreserved (blue) cells. 
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