
Fast and accurate spike sorting in vitro and in vivo for up to

thousands of electrodes

Pierre Yger1,2, Giulia L.B. Spampinato1,2, Elric Esposito1,2

Baptiste Lefebvre1, Stéphane Deny1, Christophe Gardella1,3, Marcel Stimberg1

Florian Jetter4, Guenther Zeck4, Serge Picaud1, Jens Duebel1 and Olivier Marre1

August 4, 2016

1Institut de la Vision, INSERM UMRS 968, UPMC UM 80, CNRS UMR 7210, Paris. 2These authors
contributed equally to this work. 3 Laboratoire de Physique Statistique, CNRS, ENS, UPMC, 75005 Paris.
4NMI, Neurophysics Group, Reutlingen, Germany.

Abstract

Understanding how assemblies of neurons encode information requires recording large pop-
ulations of cells in the brain. In recent years, multi-electrode arrays and large silicon probes
have been developed to record simultaneously from hundreds or thousands of electrodes packed
with a high density. However, these new devices challenge the classical way to do spike sorting.
Here we developed a new method to solve these issues, based on a highly automated algorithm
to extract spikes from extracellular data, and show that this algorithm reached near optimal
performance both in vitro and in vivo. The algorithm is composed of two main steps: 1) a
“template-finding” phase to extract the cell templates, i.e. the pattern of activity evoked over
many electrodes when one neuron fires an action potential; 2) a “template-matching” phase
where the templates were matched to the raw data to find the location of the spikes. The man-
ual intervention by the user was reduced to the minimal, and the time spent on manual curation
did not scale with the number of electrodes. We tested our algorithm with large-scale data
from in vitro and in vivo recordings, from 32 to 4225 electrodes. We performed simultaneous
extracellular and patch recordings to obtain “ground truth” data, i.e. cases where the solution
to the sorting problem is at least partially known. The performance of our algorithm was always
close to the best expected performance. We thus provide a general solution to sort spikes from
large-scale extracellular recordings.

1

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 4, 2016. ; https://doi.org/10.1101/067843doi: bioRxiv preprint

https://doi.org/10.1101/067843

Introduction

Throughout the brain, local circuits represent information using large populations of neurons
[Buzsaki, 2010], and technologies to record hundreds or thousands of neurons simultaneously
in the brain are therefore essential. One of the most powerful and widespread techniques for
neuronal population recording is extracellular electrophysiology. Recently, newly developed mi-
croelectrode arrays have allowed recording the local voltage from hundreds to thousands of
extracellular sites separated only by tenth of microns [Berdondini et al., 2005, Fiscella et al.,
2012, Lambacher et al., 2004], giving an indirect access to large neural ensembles with a high
spatial resolution. In these recordings, the spikes from each recorded neuron produce extra-
cellular waveforms with a characteristic spatio-temporal profile across the recording sites. To
access the spiking activity of individual neurons, we need to reconstruct the waveform produced
by each neuron and tell when it appears in the recording. This process, called spike sorting,
has received a lot of attention for recordings with a small number of electrodes. However, for
large-scale and dense recordings, the problem of reliably extracting the spike contributions from
extracellular recordings is still largely unresolved.

Current spike sorting algorithms cannot process this new type of data for several reasons.
First, many algorithms do not take into account that the spikes of a single neuron will evoke
a voltage deflection on many electrodes. Then, most algorithms do not scale up to hundreds
or thousands of electrodes in vitro and in vivo, because their computation time would increase
exponentially with the number of electrodes [Rossant et al., 2016]. Finally, all the solutions pro-
posed so far usually require a significant amount of manual curation. Datasets from thousands
of electrodes necessitate a spike sorting algorithm that is extensively automated. Furthermore,
the few algorithms that have been designed to process large-scale recordings have not been
tested on data where one neuron is recorded by the large-scale recordings and simultaneously
by another technique, so that the success rate of the spike sorting algorithm can be measured
[Pachitariu et al., 2016, Leibig et al., 2016, Hilgen et al., 2016].

Here we present a novel method for spike sorting that can scale up to recordings from
thousands of electrodes. Based on a combination of density-based clustering and template
matching, the method is fully automated, and only includes a final step of manual curation
whose duration does not scale with the number of recorded cells. We tested the performance of
the algorithm in two ways. First, we created several synthetic or “hybrid” datasets to properly
quantify the performance of the algorithm. Then, we performed experiments where a large-
scale extracellular recording was performed while one of the neurons was recorded with a patch
electrode, and show that the performance of our algorithm was always close to an optimal
classifier, both in vitro and in vivo. Therefore, our method appears to be a general, fast and
scalable solution for spike sorting.

Results

We sorted several datasets taken from large-scale in vitro and in vivo recordings. In all cases,
electrodes were densely packed such that a spike from a single cell would affect the voltage of
several electrodes. In vitro, we analyzed recordings from retinal ganglion cells recorded with
planar multi-electrode arrays: rodent retina were recorded either by 252 electrodes spaced by
either 30 or 60 microns, or by 4255 electrodes spaced by 16 microns. In vivo, we analyzed
recordings of the cortex taken with 32 and 128 electrodes spaced by 20 microns (see Methods).

Identifying templates for each cell

We developed an algorithm with two main steps, a clustering followed by a template matching
step (see Methods for details). First, we detected the spikes as threshold crossings (fig. 1A),

2

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 4, 2016. ; https://doi.org/10.1101/067843doi: bioRxiv preprint

https://doi.org/10.1101/067843

A

B C

D E

5ms

10ms
10uV

10uV
5ms

0.15uV

Figure 1: Local clustering of the snippets A. Five randomly chosen channels, each of them with its
own detection threshold (dash dotted line). Detected spikes, as threshold crossings, are indicated
with a red marker B. Example of a spike in the raw data. Red: electrodes that can be affected
by the spike, i.e. the ones close enough to the electrode where the voltage peak is the highest ;
gray: other electrodes that should not be affected. C. For snippets collected in a given electrode, a
robust density-based clustering detected three non-overlapping color-coded clusters (see Methods)
D. The first component of the template T (t), corresponding to the green cluster shown in C. E.
The second component of the template U(t) associated to the same green cluster (see Methods).

3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 4, 2016. ; https://doi.org/10.1101/067843doi: bioRxiv preprint

https://doi.org/10.1101/067843

and isolated the extracellular waveforms for a number of randomly chosen spike times, that
we call snippets in the following. Snippets were then clustered in different groups that should
correspond to putative cells. Compared to classical sorting methods, here our purpose was not
to obtain a full clustering of all the snippets, but rather to get the centroid of each cluster,
which is way less demanding. We also made several natural assumptions so that this clustering
step could be divided in parallel tasks that could be run independently.

We divided the snippets in subsets according to their physical positions: we grouped together
the snippets peaking on the same electrode. Following this we had as many groups of snippets
as electrodes. Each group was then clustered independently. To efficiently cluster the snippets
inside each of these groups, we had to reduce the dimensionality of the snippets. We assumed
that a single cell can only influence the electrodes in its vicinity, i.e. close enough to its physical
location (fig. 1B). We discarded all the electrodes whose distance to the peaking electrode was
above a pre-defined radius (see fig. 1B). We also projected each snippet on stereotyped temporal
waveforms to reduce the dimensionality (see Methods).

This subdivision in groups allows clustering each group in parallel, such that the computation
time of this step only scales linearly with the number of electrodes, and can be divided by the
number of computing cores available. We then performed a density-based clustering inspired
by [Rodriguez and Laio, 2014] (see Methods) on each group. This density-based clustering is
very efficient at finding the centroid of each cluster, which meets exactly our needs (see fig.
1C for three identified clusters on a given electrode). We adapted the algorithm to increase its
robustness, and to avoid fine tuning parameters for a given dataset (see Methods). The resulting
clusters were only used to define a “template” for each cell.

This template is a simplified description of the cluster and is composed of two waveforms.
The first one is the average extracellular waveform inside the cluster (fig. 1D). The second
is the direction of largest variance that is orthogonal to this average waveform (fig 1E ; see
Methods). We assumed that each snippet (i.e. voltage deflection) triggered by this cell is a
linear combination of these two components. Finding these components for each cell does not
require to have all the spikes of these cells clustered together: only a subset is good enough to
estimate them. Therefore, this template extraction step works even if the clustering step only
assigned a subset of spikes, which allowed processing very large datasets.

At the end of this first step, we have extracted an ensemble of templates (i.e. pairs of
waveforms) that correspond to putative cells. By focusing on only getting the cluster centroids,
we have made the clustering task easier. However, we have not assigned all the spikes to a cell.
Therefore, we used a template matching algorithm to find all the instances where each cell has
emitted a spike.

Matching templates to the raw data

We assumed that the templates of different cells spiking together sum linearly and used a greedy
iterative approach inspired by the projection pursuit algorithm (fig. 2A, see Methods). Within
a piece of raw data, we looked for the template whose first component had the highest similarity
to the raw signal and matched its amplitude to the signal. If this amplitude falls between pre-
determined thresholds (fig. 2A, B, C), we matched and subtracted the two components to the
raw signal. We then re-iterated this matching process until no spike could be matched anymore
(fig. 2D) (see Methods). In most cases, the spike times of a given template showed a nice
refractory period (fig. 2E).

This template matching algorithm could be run independently on different blocks of data,
such that the computing time only scaled linearly with the data length. We also took advantage
of GPU computing resources to accelerate the computations. Each step of the spike sorting
algorithm was parallelized, so the runtime of the full algorithm decreased proportionally with
the numbers of CPU cores available (fig. 3A). As a result, the sorting could process one hour

4

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 4, 2016. ; https://doi.org/10.1101/067843doi: bioRxiv preprint

https://doi.org/10.1101/067843

A B

D

C

E

10ms
10uV1ms

10uV

Template matching reconstruction

1.

2.

3.

10
3

Figure 2: Illustration of the template matching phase A. Graphical illustration of the template
matching with in vitro data (see Methods). Every line is a channel. Grey: the real data. Red: sum
of the templates added by the template matching algorithm ; top to bottom: successive steps of the
template matching algorithm (red). B. Examples of the fitted amplitudes for the first component
of a given template, as a function of time. Each dot correspond to a spike time at which that
particular template has been fitted to the data. Dashed dotted lines represent the boundaries
allowed during the matching procedure. C. Distribution of the amplitudes for the same template,
centered around 1. D. Final result of the template matching. Gray: extracellular signals for five
channels. Red: sum of the matched templates. E. A typical Inter-Spike Interval (ISI) for a given
template, showing a clear refractory period.

5

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 4, 2016. ; https://doi.org/10.1101/067843doi: bioRxiv preprint

https://doi.org/10.1101/067843

of data recorded with 252 electrodes in one hour with 9 CPU cores (spread over 3 computers)
(fig. 3A, B). It also scaled up linearly with the number of electrodes (fig. 3B), and with the
number of templates (fig. 3C). It was therefore possible to run it on long recordings (≥ 30min)
with more than 4000 electrodes.

Merging similar templates

After running our algorithm, despite a cleaning step where we removed obvious duplicates or
sums of templates (see Methods), it is very likely that a single cell can be represented by two
templates or more. Therefore, it is necessary to merge the templates and the corresponding spike
trains that represent the same cell. Two criteria can be used to merge templates corresponding
to the same cell. First, their templates should be similar. Second, there should be a dip around
0 in the cross-correlogram between the two spike trains (fig. 3D). This is due to the refractory
period of the cell: two consecutive spikes from the same cell have to be separated by at least a
couple of milliseconds.

To detect which pairs of spike trains had a dip in their correlogram, we computed the
difference between the cross-correlogram of the two spike trains and a control, time-reversed
correlogram over a given time window (fig. 3D; see Methods). This difference was plotted against
the control value over the same time window for all the pairs with a high template similarity
(fig. 3D). Almost all the pairs that needed to be merged appeared as an isolated group of points
close to the equality line, which corresponds to a very strong dip in the cross-correlogram. To
demonstrate this, we first simulated an ensemble of spike trains belonging to fake neurons and
we randomly split them into several subsets (see Methods). This simulated data gave us a case
where we know exactly which pairs need to be merged, and which ones correspond to different
cells. We observed that all the pairs that had to be merged were grouped along the equality
line, as expected (fig. 3D, left).

In a more realistic example, we took spike trains extracted from a large-scale recording
where the merging was done manually (fig. 3E), and observed a similar grouping. In this
representation, all the pairs that needed to be merged could therefore be selected all at once.
We developed a graphical user interface to automatically plot these pairs, visualize individual
cross-correlograms, and select the group of points of pairs that needed to be merged. The user
could then quickly isolate and select the pairs of templates to be merged. By deciding which
pairs needed to be merged from a single plot, this method avoids going through all the pairs
to decide which ones need to be selected and drastically reduces the time of manual curation.
This saves the time of the user, but also avoids having a criterion that is purely subjective and
could change over the time spent at doing manual curation.

Performance validation

We first validated our method with simulated ground truth datasets where artificial spikes were
added in the recordings and retrieved by the algorithm. We ran the spike sorting on different
datasets, picked some templates and used them to create new artificial templates, that we added
at random places to the real recordings (see Methods and fig. 4A). We then run our sorting
algorithm on this novel or “hybrid” datasets with these novel artificial cells randomly added,
and measured if the algorithm was able to find at which times the artificial spikes were added.
We counted a false negative error when such a spike was missed, and a false positive error when
the algorithm detected a spike while there was not any (see Methods). Summing these two types
of errors, the total error rate remained below 5% for all the spikes whose size was significantly
above threshold. Fig. 4B shows the exhaustive results for 100 templates injected into a 252
electrodes recording in the retina, but the size or the type of the recording did not affect the
error rates: they were similar for recordings with 4255 electrodes in vitro or 128 electrodes in
vivo. Performance did not depend on the firing rate of the injected templates (fig. 4C), and

6

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 4, 2016. ; https://doi.org/10.1101/067843doi: bioRxiv preprint

https://doi.org/10.1101/067843

A B C

D

E

1

2

1

0

1

-1

0

1

-1
0.2 0.6 1.0-0.2

CC

0

2

0

2

0

6

0

2

Time [ms]
-40

252 electrodes 9 CPU cores 30 electrodes, 9 CPU cores

1

2

-20 20

1

2

400

2

x

Figure 3: Management of large datasets A. Execution time as function of the number of processors,
for a 90min dataset in vitro with 252 channels, expressed as a real-time ratio, i.e. the number of
hours necessary to process one hour of data. B. Execution time as function of the number of
channels, for a 30min dataset recorded in vitro with 4225 channels. C. Execution time as function
of the number of templates, for a 10min synthetic dataset with 30 channels. D. Normalized Cross
Correlation Metric compared to the Reverse Correlation for artificially generated and split spike
trains (see Methods). Red: pairs of templates originating from the same neuron, that have to be
merged. Black: pairs of templates corresponding to different cells. Insets on the right: for two
chosen pairs (see numbers) the full cross-Correlogram (plain color) and the reverse correlogram
(shaded color) E. Same as D., but with 10 real neurons selected after sorting a dataset recorded
with 252 channels on a rat retina (see Methods).

7

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 4, 2016. ; https://doi.org/10.1101/067843doi: bioRxiv preprint

https://doi.org/10.1101/067843

A B

C D

Shu�ing
Scaling

Normalized
amplitude

Original template Injected template

E
252 electrodes retina
4225 electrodes retina
128 electrodes cortex

Figure 4: Performance of the algorithm on hybrid ground truth data A. A chosen template is
injected elsewhere in the data as a new template. Dashed-dotted lines shows the detection threshold
on the main electrode of the template, and normalized amplitude is expressed relatively to this
threshold (see Methods). B. Error rates as function of the amplitude and the rate of injected
templates, in a 252 electrode recording performed in vitro in the retina (see Methods). C. Mean
error rate as function of the firing rate of injected templates, in various datasets. Errors bars
show the standard error over 8 templates D. Error rate as function of the normalized amplitude of
injected templates, in various datasets. Errors bars show standard error over 9 different templates
E. Injected and recovered cross-correlation value between pairs of neurons for 5 templates injected
at 10Hz, with a normalized amplitude of 2 (see Methods).

only weakly on the normalized amplitude of the templates (fig. 4D), as long as it was above the
spike threshold. Performance was not only satisfying for individual cells, but also to estimate
correlations properly. We injected templates with a controlled amount of overlapping spikes
(see Methods). The algorithm was always able to estimate the pairwise correlation between the
spike trains (fig. 4E). The ability of our template matching algorithm to resolve overlapping
spikes thus allowed an unbiased estimation of correlations between spike trains.

Performance on ground truth data

The previous tests were done using “hybrid” data mixing real recordings and artificial templates.
To test our algorithm in a more realistic situation, we performed dual recordings (fig. 5A, B).
While we recorded many cells using a multi-electrode array (see schematic on fig. 5A), we
simultaneously performed loose-patch recording of one of the cells, and recorded its spikes (fig.
5B). For one of the cells we know what should be the output of the spike sorting. In vitro,
we recorded 26 neurons from 14 retinas with a 252 electrode MEA where the spacing between
electrodes was 30 microns (see Methods). To test our algorithm in cases where the electrode

8

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 4, 2016. ; https://doi.org/10.1101/067843doi: bioRxiv preprint

https://doi.org/10.1101/067843

density is lower, we generated datasets where we removed the signals of some electrodes, such
that the density of the remaining electrodes was either 42 or 60 microns (by removing half or 3
quarters of the electrodes, respectively).

We then ran the spike sorting algorithm on the extracellular data, and estimated the error
rates for the cell recorded in loose-patch, where we know where the spikes occurred. The perfor-
mance of the algorithm will depend on the waveform triggered by the cell on the extracellular
electrodes, as this is an intrinsic limit to the problem of spike sorting. If a spike of the patch-
recorded cell triggers a large voltage deflection, this cell should be easy to detect. On the other
hand, if the triggered voltage deflection was barely detectable, we expect that our algorithm
should not perform well. To quantify this, we estimated a theoretical “best” performance for
each recording. This best performance was found by training a non-linear classifier on the ex-
tracellular waveforms triggered by the spikes of the recorded cell, similar to [Harris et al., 2000,
Rossant et al., 2016] (referred to as the Best Ellipsoidal Error Rate (BEER), see Methods). Note
that this classifier “knows” where the true spikes are and simply quantifies how well they can
be separated from the other spikes based on the extracellular recording. On the contrary, our
spike sorting algorithm does not have access to any information about when the patch-recorded
cell spiked.

We estimated the error made by the classifier and found that the performance of our algo-
rithm almost always matched the performance of this classifier (fig. 5C, left), and this over a
broad range of spike sizes. This suggests that our algorithm reached an almost optimal perfor-
mance on this in vitro data. As expected, larger deflections lead to better performances (see
inset of fig. 5C) for both the classifier and our algorithm, such that their respective perfor-
mances were always close. Note also that because the BEER estimate is not designed to deal
with overlapping spikes, it was possible for our template-matching based algorithm to obtain
better performances in some cases.

We also used similar ground truth datasets recorded in vivo in rat cortex using dense silicon
probes with either 32 or 128 recording sites [Neto et al., 2016]. With the same approach than
for in vitro data, we also found that our algorithm reached a near optimal performance (fig. 5C,
right). Together, these results show that our algorithm can reach an almost optimal performance
(i.e. comparing to the BEER error) in various realistic cases, for both in vivo and in vitro
recordings.

Discussion

We have shown that a method based on density-based clustering and template matching allows
to sort spikes from large-scale extracellular recordings both in vitro and in vivo. Our algorithm
is entirely parallelized and could therefore easily handle long datasets recorded with thousands of
electrodes. The only step that required manual intervention was the final step of merging spike
trains corresponding to a same cell, that has been split in several templates by the algorithm.
We presented a novel approach to merge all the spike trains at once during manual curation.
This new procedure minimizes the time spent on manual curation. It also guarantees that all
pairs will be merged according to similar criteria. We tested the performance of our algorithm
on “ground truth” datasets, where one neuron is recorded both with extracellular recordings
and with a patch electrode. We showed that our performance was close to an optimal non-
linear classifier that was trained using the true spike trains. Our algorithm has also been tested
on purely synthetic datasets [Hagen et al., 2015], and similar results were obtained (data not
shown).

Classical approaches to the spike sorting problem involve extracting some features from each
detected spike [Hubel, 2015, Meister et al., 1994, Lewicki, 1994, Einevoll et al., 2012, Quiroga
et al., 2004, Hill et al., 2011, Pouzat et al., 2002, Litke et al., 2004] and clustering the spikes
in the feature space. In this approach, the spike sorting problem is reduced to a clustering

9

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 4, 2016. ; https://doi.org/10.1101/067843doi: bioRxiv preprint

https://doi.org/10.1101/067843

A B

C

glass pipette

Multi Electrode Array

100ms
10uV

ground truth spikes

0 20 40 60 80 100 0 20 40 60 80 100

0 5

5

retina in vitro cortex in vivo

20µm
28µm
40µm

30µm
42µm
60µm

extra-cellular channels

Pe
ak

 A
m

pl
itu

de

Photoreceptors

Bipolar cells

Ganglion cells

Figure 5: Performance of the algorithm on ground truth datasets A. Top: Schematic of the exper-
imental protocol in vitro. A neuron close to the multi-electrode array (MEA) recording is recorded
juxta-cellularly. Bottom: Image of the patch electrode on top of a 252 electrodes MEA, recording a
ganglion cell. B. Top: Juxta-cellular recording showing the spikes of the recorded neuron. Bottom:
Extra-cellular recordings next to the soma. C. Comparison between the error rates produced by
the algorithm on different ground truth datasets and by the error rates of non-linear classifiers
(Best Ellipsoidal Error Rate) trained to detect the spikes, either in vitro (Left), or in vivo (Right)
(see Methods). Recorded neurons are color-coded as function of the maximal normalized amplitude
recorded extra-cellularly.

10

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 4, 2016. ; https://doi.org/10.1101/067843doi: bioRxiv preprint

https://doi.org/10.1101/067843

problem, and this induces several major issues. First, to assign the spikes to the correct cell,
the different cells must be separated in the feature space. Finding the exact borders of each
cell in the feature space is a hard problem, that cannot be easily automated. As a result,
most methods require a lot of manual curation, and therefore work only for a small number
of electrodes. Second, running a clustering algorithm on data with thousands of electrodes is
very challenging. Finally, overlapping spikes will appear as strong deviations in the feature
space, and will therefore be missed in this approach. These three issues preclude the use of this
approach for large-scale recordings with dense arrays of electrodes. In comparison, here we have
parallelized the clustering step efficiently, and we have used a template matching approach, so
that we only needed to get the centroid of each cluster, and not their precise borders. The
template matching approach also allowed to deconvolve overlapping spikes in a fast and efficient
manner.

Few template matching approaches have been tested, but only on in vitro data [Marre et al.,
2012, Pillow et al., 2013]. Also, they only had one component for template matching, and did
not allow any variation in the shape of the spike. Moreover, to get the templates, some used
a manual approach [Segev et al., 2004, Prentice et al., 2011] that cannot be scaled up, or a
k-means algorithm that would also be challenged by large-scale data. In all cases, they required
a significant amount of manual curation, with a time that scaled linearly with the number of
electrodes. Finally, they were not tested on in vivo data. in vivo recordings seem to be prone
to more variation in the spike waveform than in vitro recordings, and we have designed our
template matching method to take into account not only variation in the amplitude of the
template, but also in shape. So our approach improves previous template matching algorithms
by decomposing each spike as a sum of two waveforms.

Our method is almost fully automated. This paves the way towards online spike sorting
for large-scale recordings. Several applications, like brain machine interfaces, or closed-loop
experiments [Franke et al., 2014, Hamilton et al., 2015, Benda et al., 2007], will require an
accurate online spike sorting. Our method is entirely parallel and can therefore be run in “real
time” (i.e. one hour of recording processed in one hour) with enough computer power. This
will require adapting our method to process data “on the fly”, processing new data blocks when
they come, and probably adapting the shape of the template over time.

Methods

Experimental recordings

in vitro recordings with 252 or 4225 electrodes Retinal tissue was obtained from
adult (8 weeks old) male Long-Evans rat (Rattus norvegicus) or mouse (mus musculus, 4-9
weeks old) and continuously perfused with Ames Solution (Sigma-Aldrich) and maintained at
32◦C. Ganglion cell spikes were recorded extracellularly from a multi-electrode array with 252
electrodes spaced 30 or 60µm apart (Multi-Channel Systems), or with 4225 channels arranged
in a 2D grid and spaced by 16µm [Zeck et al., 2011, Bertotti et al., 2014], at a sampling rate of
20kHz. Experiments were performed in accordance with institutional animal care standards.

For the ground truth recordings, electrophysiological recordings were obtained from ex-vivo
isolated retinae of rd1 mice (4/5 weeks old). The retinal tissue was placed in AMES medium
(Sigma-Aldrich, St Louis, MO; A1420) bubbled with 95% O2 and 5% CO2 at room temperature,
on a MEA (10µm electrodes spaced by 30µm; Multichannel Systemps, Reutlingen, Germany)
with ganglion cells layer facing the electrodes. Borosilicate glass (BF100-50, Sutter instruments)
electrodes were filled with AMES with a final impedance of 6-9 MΩ. Cells were imaged with a
customized inverted DIC microscope (Olympus BX 71) mounted with a high sensitivity CCD
Camera (Hamamatsu ORCA -03G) and recorded with an Axon Multiclamp 700B patch clamp
amplifier set in current zero mode.

11

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 4, 2016. ; https://doi.org/10.1101/067843doi: bioRxiv preprint

https://doi.org/10.1101/067843

For the data shown in fig. 2 and 4, we used a recording of 130min. For the data shown in fig.
5A, 16 neurones were recorded over 14 intact retinas. Recording durations ranged from 2min to
12min. The thresholds for the detection of juxta-cellular spikes were manually adjusted for all
the recordings.

in vivo recordings with 128 electrodes We use the freely available datasets provided
by [Neto et al., 2016]. Those are 32 or 128 dense silicon probes recordings (20µm spacing) at
30kHz performed in rat visual cortex, combined with juxta-cellular recordings. The dataset gave
us a total of 13 neurons for fig 5. C, with recordings between 4 and 10min each. Similarly to
the in vitro case, the detection thresholds for the juxta-cellular spikes were manually adjusted
based on the data provided by [Neto et al., 2016] and on spike-triggered waveforms. For the
validation with “hybrid” dataset, shown in fig. 4, we used the longest dataset recorded with
128 electrodes.

Details of the algorithm

In the following, we consider that we have Nelec channels, acquired at a sampling rate frate.
Every channel i is located at a physical position pi = (xi, yi) in a 2D space (extension to 3D
probes would be straightforward). The aims of our algorithm is to decompose the signal s over
all channels 1, . . . Nelec as a linear sum of spatio-temporal kernels or “templates” (see equation
1).

s(t) =
∑
ij

aijTj(t− ti) + bijUj(t− ti)) + e(t) (1)

where s(t) is the signal recorded over Nelec electrodes and over multiple time points. Tj(t− ti)
and Uj(t−ti) are the templates associated to each cell, which represents the waveform triggered
on the electrodes by cell j. Times ti are all the putative spike times over all the electrodes. aij
and bij are the amplitude factors for spike time ti for cluster j, and e(t) is the background noise.

The algorithm can be divided into two main steps, described below. After a preprocess-
ing stage, we first run a clustering algorithm to extract a dictionary of “templates” from the
recording. Second, we use these templates to decompose the signal with a template-matching
algorithm. We assume that a spike will only influence the extracellular signal over a time win-
dow of size Nt (typically 2ms for in vivo and 5ms for in vitro data), and only electrodes whose
distance to the soma is below r (typically, 100µm for in vivo and 200µm for in vitro data). For
every channel i centered on pi, we define N i

neigh as the ensemble of nearby channels such that
‖pi − pj‖2 ≤ r. In the following, we note si[tmin, tmax]i the temporal slice of all time samples
on channel i such that t ∈

[
tmin, tmax

]
.

Pre-processing

Filtering In a preprocessing stage, all the channels were individually high-pass filtered with a
Butterworth filter of order three and a cutoff frequency of 500Hz, to remove any low-frequency
components of the signals. We then substracted, for every channel i, the median such that
∀i,med(si) = 0.

Spike detection Once signals have been filtered, we computed a spike threshold θi for every
channel si(t): θi = kMAD(si(t)), where MAD is the Median Absolute Deviation, and k is a
free parameter. For all the datasets shown in this paper, we set k = 6. For every channel si we
detected the putative spike times tik as all the local minima below θi.

12

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 4, 2016. ; https://doi.org/10.1101/067843doi: bioRxiv preprint

https://doi.org/10.1101/067843

Whitening To remove spurious spatial correlations between nearby recordings channels, we
performed a spatial whitening on the data. To do so, we searched for a maximum of 20s of
recordings where there are no spikes (i.e no threshold crossings). We then computed the Covari-
ance Matrix of the noise Cspatial, and estimated its eigenvalues {di} and associated eigenvectors
{V }. From the diagonal matrix D = diag(1√

d+ε
), where ε = 10−18 is a regularization factor to

ensure stability, we computed the whitening matrix W as V DV T . In the following, each time
blocks of data are loaded, they are multiplied by W . After whitening, we recomputed the spike
detection threshold θi of each channel i in the whitened space.

Basis estimation (PCA) To identify the spatio-temporal waveforms embedded in the
data, we need to reduce their dimensionality. We collected up to Nw spikes on each channel,
at times tik. In order to compensate for sampling rate artifacts, we upsampled all the collected
waveforms by bicubic spline interpolation to 5 times the sampling rate frate, aligned on their local
minima, and then re-sampled at frate. We performed a Principal Component Analysis (PCA)
on these centered and aligned waveforms and kept only the first NPCA principal components.
In all the calculations, we used default values of Nw = 10000 and NPCA = 5. These Principal
components were used during the clustering step.

Clustering

The goal of the clustering step is to construct a dictionary of templates. As opposed to former
clustering approaches of spike sorting [Quiroga et al., 2004, Harris et al., 2000, Kadir et al., 2014],
because this clustering step is followed by a template matching, we do not need to perform the
clustering on all the spikes: the templates are extracted from the centroids of the clusters.

Masking We first collected many spikes to perform the clustering. To minimize redundancy
between collected spikes, each time a local minimum tik was selected on a given channel i,
we prevented the algorithm to select any other minima in a spatio-temporal area around tik,
to avoid the selection of multiple threshold crossings originating from the same event. We
excluded all the peaks on the neighboring channels j ∈ N i

neigh during a time window centered

on tik: [tik −Nt/2, tik +Nt/2].

Pooling of the spikes In order to parallelize the problem, we used a divide and conquer
approach [Marre et al., 2012, Swindale and Spacek, 2014]. Each time a spike was detected at
time tik on electrode i, we searched for electrode φ where the voltage has the lowest value, i.e.
such that φ = argminjsj

[
tik − Nt/2, tik + Nt/2

]
. So for every electrode i we collected spikes

peaking on this electrode. Each of these spikes is represented by a spatio-temporal waveform
of size Nt ×N i

neigh. We projected each waveform on the PCA basis estimated earlier to reduce

the dimensionality to NPCA ×N i
neigh. Note that during this projection, the same up-sampling

technique described in the Pre-processing was used. For every channel i we collected N i
spikes

spikes, and each of them is a vector of size NPCA × N i
neigh. The maximal number of spikes

collected is defined by the user as at Nspikes, and we used a default value of Nspikes = 10000. To
reduce dimensionality even further before the clustering stage, for every channel i we performed
a PCA on the collected spikes, and kept only the first NPCA2

principal components (in all the
paper, NPCA2

= 5). Therefore, we performed a clustering in parallel for every channel, on at
max Nspikes described in a space of NPCA2

-dimension. Note that this pre-grouping does not
assume that the spikes are only detected on a single electrode. This clustering performed on
each spike ensemble used the information available on all the neighboring electrodes.

13

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 4, 2016. ; https://doi.org/10.1101/067843doi: bioRxiv preprint

https://doi.org/10.1101/067843

Clustering by search of local density peaks To perform the clustering, we used a
modified version of the algorithm published in [Rodriguez and Laio, 2014]. For N data points
xi, i ∈

{
1, . . . N

}
in a M dimensional space RM (in our case xi are spikes assigned to channel i

and M = NPCA2
), we computed the “density” ρ as the mean distance to the S nearest neighbors

of xi. S is chosen such that S = εN , with ε = 0.01. This density measure turned out to be
more robust than the one given in the original paper, and rather insensitive to changes in ε.
Then, for every point xi, we computed δi as the minimal distance to any other point xj 6=i such
that ρj < ρi. The intuition of the algorithm is that the centroids should be points with a high
density (i.e. low ρ), and far apart from each others (high δ).

Accurate estimation of the density landscape We performed the clustering only on
a subset of N i

spikes for each channel. To avoid potential inaccurate estimation of the densities
ρi, we collected iteratively additional spikes to refine this estimate. Keeping in memory the
spikes xi, we searched again in the data N i

spikes different spikes and used them to refine the
estimation of ρi of our selected points xi. When doing m passes, the complexity only scales as

O(mN i
spikes

2
). In all the following we used m = 3, and automatically stop updates if not enough

spikes can be found in the dataset.

Centroids and cluster definition To define the centroids we ranked the points as func-
tion of the products ρδ, we detected the best Nmax

clusters points as putative centroids. Clusters
were formed by an iterative rule, going from the points of lowest rho to the points of highest
ρ: each point was assigned to the same cluster than the closest point with a lower ρ [Rodriguez
and Laio, 2014]. We created at max Nmax

clusters clusters. Once this is done, we iteratively merged
pairs of clusters that were too similar to each others.

Merging similar clusters We computed a normalized distance ζ between each pair of
clusters y1 and y2. The center αi of cluster Yi was defined as αi = med(xi ∈ Yi), and we can
therefore project all the points from clusters Y1 and Y2 onto the axis joining the two centroids
γ1,2 = α1 − α2. We defined the dispersions around the centroids α1 and α2 as β1/2 =
MAD((xi∈Y1/2

.γ1,2)2), where . is scalar product of the two vectors, and the normalized distance
is:

ζ(Y1, Y2) =
‖med(xi∈Y1 .γ1,2)−med(xi∈Y2 .γ1,2)‖√

β2
1 + β2

2

(2)

We then iteratively merged all clusters (Yi, Yj) such that ζ(Yi, Yj) ≤ σsimilar. At the end of the
clustering, every cluster with less than ηN i

spikes was discarded. In all the manuscript, we used
σsimilar = 3, Nmax

clusters = 10, and η = 0.005.

Template estimation At the end of the clustering phase, pooling the clusters obtained
from every electrode, we obtained for every cluster Yk a list of spike times {tik}i. We computed
the first component from the raw data as the point-wise median of all the waveforms belonging to
the cluster: Tk(τ) = medi(s(t

i
k + τ)).Note that Tk is only different from zero on the electrodes

close to its peak (see fig. 1D). This information is used internally by the algorithm to save
templates as sparse structures. Moreover, during template estimation, we limited the number of
spike times per template to a maximal value of 500 to avoid memory saturation. To enhance the
compression level of the template Tk, we set to 0 all the channels j where |Tk(t)| < θj , if θj is
the detection threshold on channel j. This allowed us to remove channels without discriminant
information, and to increase the sparsity of the templates. Once the template first component Tk

had been extracted, we computed its minimal and maximal amplitudes a
min/max
k based on data

xi∈Yk
used during the clustering. If T̂k is the normalized template, such that T̂k = Tk/‖Tk‖,

14

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 4, 2016. ; https://doi.org/10.1101/067843doi: bioRxiv preprint

https://doi.org/10.1101/067843

we computed

amin
k = med(xj∈yk .T̂k)− 5MAD(xj∈yk .T̂k)

amax
k = med(xj∈yk .T̂k) + 5MAD(xj∈yk .T̂k)

Those boundaries are used during the template matching phase (see below). Finally, we
computed the projection of all snippets in the space orthogonal to the first component: ∀i ∈
yk, x

′
i = xi−αiTk, with αi = xi.Tk

‖Tk‖2 . The x′ are the projections, and from that we computed the

second component of the template, Uk(t) as the direction of largest variance that is orthogonal
to the average waveform Tk(t) (i.e. the first principal component).

Removing redundant templates To remove redundant templates that may be present
in the dictionary because of the divide and conquer approach (for example a neuron in between
two electrodes would give rise to two very similar templates on two electrodes), we computed
for all pairs of templates in the dictionary CCmax(i, j) = maxtCC(Ti,Tj), where CC stands for
normalized Cross-Correlation. If CCmax(i, j) ≥ ccsimilar, we considered those templates to be
equivalent and they were merged. In all the following, we used ccsimilar = 0.975. Note that we
are computing the Cross-Correlations between normalized templates, such that two templates
that have the same shape but different amplitudes are merged. Similarly, we searched if any
template Tk could be explained as a linear combination of two templates in the dictionary. If we
could find Ti and Tj such that CC(Tk,Ti + Tj) ≥ ccsimilar, Tk was considered to be a mixture
of two cells, and was removed from the dictionary.

Template matching

At the end of this “template-finding” phase, we have found a dictionary of templates (T , U). We
now need to reconstruct the signal s by finding the amplitudes coefficients aij and bij described
in Equation 1. Note that most aij and bij in this equation are equal to 0. For the other ones,
most aij values are around 1, because a spike usually appears on electrodes with an amplitude
close to the average first component T . In this template matching step, all the other parameters
have been determined by template extraction and spike detection, so the purpose is only to find
the values of these amplitudes. To do so, we used an iterative greedy approach to estimate the
aij for each subgroup ti, which bears some similarity to the matching pursuit algorithm [Mallat
and Zhang, 1993]. The fitting was performed in blocks of putative spike times, {ti}, that were
successively loaded in memory. Such an approach allowed us to easily split the load linearly
among several processors. Each block of raw data s was loaded and processed according to the
following steps during the template-matching phase:

1. Estimate the normalized scalar products s(t) · Tj(t− ti) for each template j and putative
spike time ti, for all the i and j in the block of raw data.

2. Choose the (i, j) pair with the highest scalar product, excluding the pairs (i, j) which have
already been tried and the ti’s already explored (see below).

3. Set aij equal to the amplitude value that best fits the raw data: aij =
s(t).Tj(t−ti)
‖Tj(t−ti)‖ .

4. Check if the aij amplitude value is between amin
j and amax

j .

5. If so, then accept this value, subtract the scaled template from the raw data: s(t) →
s(t)− aijTj(t− ti). Then set bij equal to the amplitude value that best fits the raw data
with Uj , and subtract it too.

6. Return to step 1 to re-estimate the scalar products on the residual.

7. Otherwise, increase by one ni, which counts the number of times any template has been
rejected for spike time ti. If ni reaches nfailures = 3, label this ti as “explored”. If all ti
have been explored, quit the loop. Otherwise return to step 1 and iterate.

15

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 4, 2016. ; https://doi.org/10.1101/067843doi: bioRxiv preprint

https://doi.org/10.1101/067843

The parameters of the algorithm were the amplitude thresholds amin
j and amax

j , computed
as described in the Template Estimation section.

Semi-automated merging

To speed up the manual stage where a human operator has to review all the templates (and thus
putative neurons) and decide which one are duplicated or truncated, we developed a dedicated
Graphical User Interface (GUI). Such a GUI is especially useful when the number of detected
neurons is important, which is the case with the new generation of dense probes. Templates
likely to be merged are templates that look alike, and such that the combined cross-correlogram
between the two cell’s spike trains show a clear dip near 0ms, indicating that the merged spike
trains do not show any refractory period violation (fig 3D, E). To speed up considerably the
time spent in processing those datasets, and reducing the inherent variabilities of a human
interaction on the sorting process, we provided, for all pairs of templates, a mathematical
quantification of the similarity between templates, and of the dip in the cross-correlogram.
In all the following CCi,j(t) represents the Cross Correlogram between the spike times of Ti

and those of Tj . For the template similarity, we computed, for every pair of templates (Ti,Tj),
α(Ti,Tj) = maxtCCi,j(t). To quantify the dip in the cross-correlogram, we computed the cross-

correlogram CCi,j(t) between the spikes of Ti and those of Tj and a control version ĈCi,j(t)
obtained by keeping the spike times from Ti but reversing in time those from Tj . We then

computed the average value over time of 〈CCi,j(t)〉 and 〈ĈCi,j(t)〉 for t ≤ τ0. In the following
we used τ0 = 2ms. This value will depend on the dataset and can be chosen by the user in our
Graphical User Interface. From that, we computed the normalized value:

β(Ti,Tj) =
〈ĈCi,j(t)〉 − 〈CCi,j(t)〉
〈ĈCi,j(t)〉+ 〈CCi,j(t)〉

(3)

The dip measure β(Ti,Tj) is termed normalized CC metric in fig. 3D,E. It is compared to

〈ĈCi,j(t)〉, termed Reverse CC in the same figure. For a better visualization, in the insets of
fig. 3D,E, the cross-correlograms are such that the mean over time is equal to 1.

For two templates, α(Ti,Tj) allowed us to quantify how similar they are, while β(Ti,Tj)
gave us an insight about how strong is the dip in the cross-correlogram between their spike
times. To guide the human into the process of merging pairs, we then showed in 2D plots all
pairs of templates as function of α(Ti,Tj) and β(Ti,Tj). In such a space, the user can quickly
define at once a whole set of pairs that need to be merged. After merging, quantities α and β
are re-computed, and the workflow can keep going until the user decides to stop merging (see
fig. 3).

Simulated ground truth tests

Injection of artificial templates In order to assess the performance of the algorithm,
we injected new templates in real datasets (see fig. 4 A-D). To do so, we ran the algorithm on a
given dataset, and obtain a list of putative templates T

i∈
{
1,...N

}. Then, we randomly selected

some of those templates Ti and shuffled the list of their channels, before injecting them elsewhere
in the datasets at controlled firing rates [Harris et al., 2000, Rossant et al., 2016, Kadir et al.,
2014]. This allowed us to properly quantify the performance of the algorithm. In order not to
bias the clustering, when a template Ti was selected and shuffled as a new template T j centered
on a new channel j, we ensured that the injected template was not too similar to one that would
already be in the data: ∀i ∈

{
1, . . . N

}
,maxtCC(Ti,Tj) ≤ 0.8. Before being injected, T j was

normalized it such that mintT j = αjθj . Therefore, the normalized amplitude αj of T j , was the
relative amplitude, expressed as function of θj , the detection threshold on the electrode where

16

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 4, 2016. ; https://doi.org/10.1101/067843doi: bioRxiv preprint

https://doi.org/10.1101/067843

the template is peaking. If αj ≤ 1, it means that the template has the same height than the
noise level, and its spikes should not be detected; if α ≥ 1 the spikes should be detected.

Injection of correlated templates In fig. 4E, we selected a particular template T ,
and kept constant the part on the electrode i where it was peaking the most, while shuffling
all its neighboring channels. By doing so, we obtained 5 distinct copies of the template T 1...5,
representing 5 neurons whose soma would be located next to the same channel i. The normalized
amplitudes of those templates were equal to 2. To demonstrate how the code could resolve the
problem of overlapping spikes, we injected them into the data such that they were all firing
at 10Hz, but with a controlled correlation coefficient c that could be varied (using a Multiple
Interaction Process [Kuhn et al., 2003]). This parameter c allowed us to quantify the percentage
of pairwise correlations recovered by the algorithm for overlapping spatio-temporal templates.

Generation of artificial spike trains To illustrate the meta-merging GUI, we generated
artificial spike trains where we can have a ground truth for which pairs should be merged. We
generated 10 spikes trains ωi at 10Hz with a correlation coefficient c = 0.01 (using a Multiple
Interaction Process [Kuhn et al., 2003]), and a refractory period of τref = 5ms. Then, for every
spike trains ωi, we split it in N i

k sub spike trains, with N i
k uniformly drawn between [1, 5]. This

gave us a number of cells between 10 and 50 (see fig. 3D). The same procedure is repeated in
fig. 3E, but starting from 10 neurons obtained after a real sorting session from the rat retina.

Estimation of false positive and false negative To quantify the performance of the
algorithm, we matched the spikes recovered by the algorithm to the real ground-truth spikes
(either synthetic or obtained with juxta-cellular recordings). A spike was considered to be a
match if it had a corresponding spike in the ground truth at less than 2ms. Spikes in the ground-
truth datasets that had no matches in the spike sorting results in a 2 ms window were labeled
as “False Negative”, while those that are not present while the algorithm detected a spike were
“False Positive”. False negative rate was defined as the number of false negative divided by the
number of spikes in the ground truth recording. False positive rate was defined as the number
of false positive divided by the number of spikes in the spike train extracted by the algorithm.
In the paper, the error is defined as mean of the False negative and the False positive rates (see
fig. 4, 5). Note that to take into account the fact that a ground-truth neuron could be split in
several templates at the end of the algorithm, we always compared the ground-truth cells with
the combination of templates that minimized the error.

Theoretical estimate To quantify the performance of the software with real ground-truth
recordings (see fig. 5), we computed the Best Ellipsoidal Error Rate (BEER), as described in
[Harris et al., 2000]. This BEER estimate gave an upper bound on the performance of any
clustering-based spike sorting method using elliptical cluster boundaries. After thresholding
and feature extraction, snippets were labeled according to whether or not they contained a true
spike. Half of this labeled data set was then used to train a perceptron whose decision rule is
a linear combination of all pairwise products of the features of each snippet. If xi is the i-th
snippet, projected in the feature space, then the optimized function f(x) is:

f(x) = xTAx+ bTx+ c (4)

We trained this function f by varying A, b and c with the objective that f(x) should be 1 for
the ground truth spikes, and -1 otherwise. These parameters were optimized by a stochastic
gradient descent with a regularization constraint. The resulting classifier was then used to
predict the occurrence of spikes in the snippets in the remaining half of the labeled data. Only
the snippets where f(x) > 0 were predicted as true spikes. This prediction provided an estimate

17

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 4, 2016. ; https://doi.org/10.1101/067843doi: bioRxiv preprint

https://doi.org/10.1101/067843

of the false negative and false positive rates for the BEER estimate. The mean between the two
was considered to be the BEER error rate.

Decimation of the electrodes In order to increase the number of data points for the
comparison between our sorting algorithm and the non-linear classifiers defined by the BEER
metric (see fig. 5), we ran the analysis several times on the same neurons, but removing some
electrodes, to create recordings at a lower electrode density. We divided by a factor 2 or 4 the
number of electrodes in the 252 in vitro Multi-Electrode Array or the 128 in vivo silicon probe.

Implementation and Source Code

The code is a pure python package, based on the python wrapper for the Message Passing
Interface (MPI) library [Dalcin et al., 2011] to allow parallelization over distributed computers,
and is available with its full documentation at http://spyking-circus.rtfd.org. Results can easily
be exported to the kwik or phy format [Rossant and Harris, 2013]. All the datasets used in this
manuscript will also be available on-line, for testing and comparison with other algorithms.

Acknowledgments

We would like to thank Steve Baccus and Sami El Boustani for insightful discussions. We also
would like to thanks Kenneth Harris, Cyrille Rossant and Nick Steimetz for feedbacks and the
help with the interface to the phy software.

Funding This work was supported by ANR-14-CE13-0003 to P.Y., ANR TRAJECTORY,
ANR OPTIMA, the French State program Investissements d’Avenir managed by the Agence Na-
tionale de la Recherche [LIFESENSES: ANR-10-LABX-65], a EC grant from the Human Brain
Project (FP7-604102)), and NIH grant U01NS090501 to OM, ERC Starting Grant (309776) to
JD.

References

J. Benda, T. Gollisch, C. K. Machens, and A. V. Herz. From response to stimulus: adaptive
sampling in sensory physiology. Curr. Opin. Neurobiol., 17(4):430–436, Aug 2007.

Luca Berdondini, PD Van Der Wal, Olivier Guenat, Nicolaas F de Rooij, Milena Koudelka-Hep,
P Seitz, R Kaufmann, P Metzler, N Blanc, and S Rohr. High-density electrode array for
imaging in vitro electrophysiological activity. Biosensors and bioelectronics, 21(1):167–174,
2005.

G. Bertotti, D. Velychko, N. Dodel, St. Keil, D. Wolansky, B. Tillak, M. Schreiter, A. Grall,
P. Jesinger, R. Rohler, M. Eickenscheidt, A. Stett, A. Moller, K.H. Boven, G. Zeck, and
R. Thewes. A cmos-based sensor array for in-vitro neural tissue interfacing with 4225 recording
sites and 1024 stimulation sites. Biomedical Circuits and Systems Conference (BioCAS), 2014
IEEE, pages 304–307, 22-24 Oct. 2014.

G. Buzsaki. Neural syntax: cell assemblies, synapsembles, and readers. Neuron, 68(3):362–385,
Nov 2010.

18

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 4, 2016. ; https://doi.org/10.1101/067843doi: bioRxiv preprint

https://doi.org/10.1101/067843

Lisandro D. Dalcin, Rodrigo R. Paz, Pablo A. Kler, and Alejandro Cosimo. Paral-
lel distributed computing using Python. Advances in Water Resources, 34(9):1124–
1139, September 2011. ISSN 03091708. doi: 10.1016/j.advwatres.2011.04.013. URL
http://dx.doi.org/10.1016/j.advwatres.2011.04.013.

Gaute T Einevoll, Felix Franke, Espen Hagen, Christophe Pouzat, and Kenneth D Harris. To-
wards reliable spike-train recordings from thousands of neurons with multielectrodes. Current
opinion in neurobiology, 22(1):11–17, 2012.

Michele Fiscella, Karl Farrow, Ian L Jones, David Jäckel, Jan Müller, Urs Frey, Douglas J
Bakkum, Péter Hantz, Botond Roska, and Andreas Hierlemann. Recording from defined
populations of retinal ganglion cells using a high-density cmos-integrated microelectrode array
with real-time switchable electrode selection. Journal of neuroscience methods, 211(1):103–
113, 2012.

Felix Franke, David Jäckel, Jelena Dragas, Jan Müller, Milos Radivojevic, Douglas Bakkum,
and Andreas Hierlemann. High-density microelectrode array recordings and real-time spike
sorting for closed-loop experiments: an emerging technology to study neural plasticity. Closing
the Loop Around Neural Systems, page 31, 2014.

Espen Hagen, Torbjørn V. Ness, Amir Khosrowshahi, Christina Sørensen, Marianne Fyhn,
Torkel Hafting, Felix Franke, and Gaute T. Einevoll. ViSAPy: a Python tool for
biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algo-
rithms. Journal of neuroscience methods, 245:182–204, April 2015. ISSN 1872-678X. URL
http://view.ncbi.nlm.nih.gov/pubmed/25662445.

Lei Hamilton, Marc McConley, Kai Angermueller, David Goldberg, Massimiliano Corba, Louis
Kim, James Moran, Philip D Parks, Sang Chin, Alik S Widge, et al. Neural signal processing
and closed-loop control algorithm design for an implanted neural recording and stimulation
system. In Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual Inter-
national Conference of the IEEE, pages 7831–7836. IEEE, 2015.

Kenneth D Harris, Darrell A Henze, Jozsef Csicsvari, Hajime Hirase, and György Buzsáki. Accu-
racy of tetrode spike separation as determined by simultaneous intracellular and extracellular
measurements. Journal of neurophysiology, 84(1):401–414, 2000.

Gerrit Hilgen, Martino Sorbaro, Sahar Pirmoradian, Jens-Oliver Muthmann, Ibolya
Kepiro, Simona Ullo, Cesar Juarez Ramirez, Alessandro Maccione, Luca Berdon-
dini, Vittorio Murino, Diego Sona, Francesca Cella Zanacchi, Upinder Bhalla, Eve-
lyne Sernagor, and Matthias H Hennig. Unsupervised spike sorting for large scale,
high density multielectrode arrays. bioRxiv, 2016. doi: 10.1101/048645. URL
http://biorxiv.org/content/early/2016/04/13/048645.

Daniel N Hill, Samar B Mehta, and David Kleinfeld. Quality metrics to accompany spike sorting
of extracellular signals. The Journal of Neuroscience, 31(24):8699–8705, 2011.

David Hubel. Tungsten microelectrode for recording from single units. Science, 125(3247):549-
50, 2015.

Shabnam N Kadir, Dan FM Goodman, and Kenneth D Harris. High-dimensional cluster analysis
with the masked em algorithm. Neural computation, 2014.

Alexandre Kuhn, Ad Aertsen, and Stefan Rotter. Higher-Order Statistics of Input En-
sembles and the Response of Simple Model Neurons. Neural Computation, 15(1):
67–101, January 2003. ISSN 0899-7667. doi: 10.1162/089976603321043702. URL
http://dx.doi.org/10.1162/089976603321043702.

19

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 4, 2016. ; https://doi.org/10.1101/067843doi: bioRxiv preprint

https://doi.org/10.1101/067843

A. Lambacher, M. Jenkner, M. Merz, B. Eversmann, R.A. Kaul, F. Hofmann, R. Thewes,
and P. Fromherz. Electrical imaging of neuronal activity by multi-transistor-array (mta)
recording at 7.8Â µm resolution. Applied Physics A, 79(7):1607–1611, 2004. ISSN 1432-0630.
doi: 10.1007/s00339-004-2991-5. URL http://dx.doi.org/10.1007/s00339-004-2991-5.

C. Leibig, T. Wachtler, and G. Zeck. Unsupervised neural spike sorting for high-density mi-
croelectrode arrays with convolutive independent component analysis. J. Neurosci. Methods,
271:1–13, Jun 2016.

Michael S Lewicki. Bayesian modeling and classification of neural signals. Neural computation,
6(5):1005–1030, 1994.

AM Litke, Bezayiff N, Chichilnisky EJ, Cunningham W, Dabrowski W, Grillo AA, Grivich M,
Grybos P, Hottowy P, Kachiguine S, Kalmar RS, Mathieson K, Petrusca D, Rahman M,
and Sher A. What does the eye tell the brain? development of a system for the large scale
recording of retinal output activity. IEEE Transactions on Nuclear Science, 51(4):1434–1440,
2004.

S. G. Mallat and Zhifeng Zhang. Matching pursuits with time-frequency dictionaries. Signal
Processing, IEEE Transactions on, 41(12):3397–3415, December 1993. ISSN 1053-587X. doi:
10.1109/78.258082. URL http://dx.doi.org/10.1109/78.258082.

Olivier Marre, Dario Amodei, Nikhil Deshmukh, Kolia Sadeghi, Frederick Soo, Timothy E Holy,
and Michael J Berry. Mapping a complete neural population in the retina. The Journal of
Neuroscience, 32(43):14859–14873, 2012.

Markus Meister, Jerome Pine, and Denis A Baylor. Multi-neuronal signals from the retina:
acquisition and analysis. Journal of neuroscience methods, 51(1):95–106, 1994.

Joana P. Neto, GonÃ§alo Lopes, Joao Frazao, Joana Nogueira, Pedro Lacerda, Pedro Ba-
iao, Arno Aarts, Alexandru Andrei, Silke Musa, Elvira Fortunato, Pedro Barquinha, and
Adam R. Kampff. Validating silicon polytrodes with paired juxtacellular recordings: method
and dataset. Biorxiv, 2016.

Marius Pachitariu, Nicholas Steinmetz, Shabnam Kadir, Matteo Carandini, and Ken-
neth D Harris. Kilosort: realtime spike-sorting for extracellular electrophysiol-
ogy with hundreds of channels. bioRxiv, 2016. doi: 10.1101/061481. URL
http://biorxiv.org/content/early/2016/06/30/061481.

Jonathan W Pillow, Jonathon Shlens, EJ Chichilnisky, and Eero P Simoncelli. A model-based
spike sorting algorithm for removing correlation artifacts in multi-neuron recordings. PloS
one, 8(5):e62123, 2013.

C. Pouzat, O. Mazor, and G. Laurent. Using noise signature to optimize spike-sorting and to
assess neuronal classification quality. J Neurosci Methods, 122(1):43–57, 2002.

Jason S Prentice, Jan Homann, Kristina D Simmons, Gašper Tkačik, Vijay Balasubramanian,
and Philip C Nelson. Fast, scalable, bayesian spike identification for multi-electrode arrays.
PloS one, 6(7):e19884, 2011.

R Quian Quiroga, Zoltan Nadasdy, and Yoram Ben-Shaul. Unsupervised spike detection and
sorting with wavelets and superparamagnetic clustering. Neural computation, 16(8):1661–
1687, 2004.

20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 4, 2016. ; https://doi.org/10.1101/067843doi: bioRxiv preprint

https://doi.org/10.1101/067843

A. Rodriguez and A. Laio. Clustering by fast search and find of density peaks. Science,
344(6191):1492–1496, June 2014. ISSN 0036-8075. doi: 10.1126/science.1242072. URL
http://dx.doi.org/10.1126/science.1242072.

Cyrille Rossant and Kenneth D Harris. Hardware-accelerated interactive data visualization for
neuroscience in python. Frontiers in neuroinformatics, 7, 2013.

Cyrille Rossant, Shabnam N Kadir, Dan FM Goodman, John Schulman, Mariano Belluscio,
Gyorgy Buzsaki, and Kenneth D Harris. Spike sorting for large, dense electrode arrays.
Nature Neuroscience, pages 19, 634–641, 2016.

Ronen Segev, Joe Goodhouse, Jason Puchalla, and Michael J Berry. Recording spikes from a
large fraction of the ganglion cells in a retinal patch. Nature neuroscience, 7(10):1154–61,
Oct 2004.

Nicholas V. Swindale and Martin A. Spacek. Spike sorting for polytrodes: a divide and conquer
approach. Frontiers in systems neuroscience, 8, 2014. ISSN 1662-5137. doi: 10.3389/fn-
sys.2014.00006. URL http://dx.doi.org/10.3389/fnsys.2014.00006.

G. Zeck, A. Lambacher, and P. Fromherz. Axonal transmission in the retina introduces a small
dispersion of relative timing in the ganglion cell population response. PLoS ONE, 6(6):e20810,
2011.

21

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted August 4, 2016. ; https://doi.org/10.1101/067843doi: bioRxiv preprint

https://doi.org/10.1101/067843

