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	8	

Absract	9	

We	herein	describe	a	new	method	 to	 fine-map	GWAS-identified	 risk	 loci	based	10	

on	the	Bayesian	Least	Absolute	Shrinkage	Selection	Operator	(LASSO)	combined	11	

with	 a	 Monte	 Carlo	 Markov	 Chain	 (MCMC)	 approach,	 and	 corresponding	12	

software	 package	 (BayesFM).	 	 We	 characterize	 the	 performances	 of	 BayesFM	13	

using	 simulated	 data,	 showing	 that	 it	 outperforms	 standard	 forward	 selection	14	

both	 in	 terms	of	 sensitivity	and	specificity.	 	We	apply	 the	method	 to	 the	NOD2	15	

locus,	a	well-established	risk	 locus	 for	Crohn’s	disease,	 in	which	we	 identify	13	16	

putative	independent	signals.				 	17	
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Introduction	18	

Thousands	of	risk	loci	have	been	identified	by	Genome	Wide	Association	Studies	19	

(GWAS)	 affecting	 nearly	 all	 studied	 common	 complex	 diseases	 in	 humans	20	

(Welter	 et	 al.,	 2014,	 and	 http://www.ebi.ac.uk/gwas/).	 	 However,	 for	 the	 vast	21	

majority	 of	 risk	 loci	 the	 causative	 variants	 and	 genes	 remain	 unknown.	 	 This	22	

knowledge	is	essential	to	fully	capitalize	on	the	investments	in	GWAS,	including	23	

for	the	development	of	improved	diagnostic	and	therapeutic	applications.	24	

A	 number	 of	 issues	 complicate	 the	 identification	 of	 the	 causative	 variants	 by	25	

association	analysis.		The	first	is	that	the	utilized	case-control	cohorts	are	usually	26	

genotyped	for	only	a	subset	of	the	variants	segregating	in	the	population.		Ideally,	27	

fine-mapping	 would	 require	 sequencing	 of	 all	 cases	 and	 controls	 in	 the	28	

chromosome	 regions	 of	 interest,	 if	 not	 the	 entire	 genome.	 	 This	 will	 remain	29	

difficult	to	achieve,	at	least	in	the	short	term.			At	present,	the	best	alternative	is	30	

genotype	imputation	using	for	instance	the	data	from	the	1,000	Genomes	Project	31	

as	reference	set.		However,	the	reliability	of	the	imputed	genotypes	is	not	perfect,	32	

particularly	 for	 low	frequency	and	rare	variants.	 	Thus	the	 information	content	33	

varies	between	variants.		In	other	words,	the	effective	number	of	genotypes	may	34	

vary	 between	 variants,	 precluding	 fair	 comparison	 of	 the	 strength	 of	 their	35	

association.		36	

A	second	 issue	 is	 the	difficulty,	when	using	 the	most	commonly	applied	single-37	

marker	 analyses	 (i.e.	 testing	 for	 disease	 association	 one	marker	 at	 a	 time),	 to	38	

distinguish	 the	 association	 patterns	 of	 the	 causative	 variants	 from	 that	 of	39	

“passenger”	 variants	 that	 are	 merely	 in	 linkage	 disequilibrium	 (LD)	 with	40	

causative	 variants.	 	 	 In	 the	 case	 of	 allelic	 homogeneity	 (one	 causative	 variant	41	
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only),	one	 “asymptotically”	expects	 the	causative	variant	 to	show	the	strongest	42	

single-marker	association	(highest	–log(p)	value)	of	all	variants.			But	in	the	real	43	

world	the	causative	variant	may	be	overshadowed	by	passenger	variants	that	by	44	

chance	(or	as	a	result	of	unaccounted	confounding	effects),	and	given	the	limited	45	

size	 of	 the	 case-control	 cohorts,	 appear	 more	 strongly	 associated	 with	 the	46	

disease.			The	situation	becomes	even	trickier	in	the	case	of	allelic	heterogeneity	47	

(i.e.	the	segregation	of	multiple	causative	risk	variants	that	may	or	may	not	be	in	48	

LD),	 a	 scenario	 that	 is	 likely	 to	be	 very	 common.	 	 In	 this	 case,	 the	 lead	SNP	 in	49	

single-marker	analysis	may	be	a	“ghost”	variant	that	 is	 in	LD	with	two	or	more	50	

causative	 variants,	 hence	being	 “asymptotically”	more	 strongly	 associated	with	51	

the	 disease	 than	 either	 of	 them.	 	 	 Also,	 in	 the	 case	 of	 allelic	 heterogeneity,	52	

causative	 variants	 are	 by	 definition	 bound	 to	 exist	 amongst	 the	 “non	 lead”	53	

variants	in	single-marker	analysis.	54	

Improving	 the	 mapping	 resolution	 by	 analysis	 of	 association	 requires	 the	55	

development	 of	 statistical	 models	 that	 allow	 inclusion	 of	 confounding	 factors,	56	

estimation	of	the	effects	of	individual	variants	conditional	on	the	other	ones	(i.e.	57	

multi-marker	 analysis	 to	 distinguish	 causative	 from	 passenger	 variants),	 and	58	

identification	of	the	best	amongst	the	large	number	of	possible	models	(i.e.	what	59	

combination	of	variants,	assumed	to	be	causative,	explains	the	data	best).			60	

We	 herein	 introduce	 a	 software	 package	 (BayesFM)	 that	 uses	 Bayesian	 Least	61	

Absolute	 Shrinkage	 Selection	 Operator	 (LASSO)	 combined	 with	 a	 Monte	 Carlo	62	

Markov	 Chain	 (MCMC)	 to	 achieve	 that	 goal.	 	 After	 describing	 the	 underlying	63	

algorithms,	we	 test	BayesFM	on	 simulated	data	 and	 compare	 its	 performances	64	

with	that	of	a	more	standard	“forward	selection”	approach.		We	then	describe	the	65	
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results	obtained	when	applying	BayesFM	to	 the	NOD2	 locus,	a	well	established	66	

risk	 locus	 for	 Inflammatory	Bowel	Disease	(f.i.	 Jostins	et	al.,	2015;	Huang	et	al.,	67	

2016).				68	

	69	

Materials	&	Methods		70	

BayesFM	algorithm	71	

Assumptions.	We	assume	 that	 GWAS	 studies	 have	 identified	 one	 or	more	 risk	72	

loci	 for	 a	 disease	 of	 interest	 in	 an	 available	 case-control	 cohort.	 	 	 We	 further	73	

assume	that	–	within	the	identified	risk	loci	-	the	genotypes	of	array-interrogated	74	

SNPs	 have	 been	 augmented	 in	 cases	 and	 controls	 with	 genotypes	 of	 as	 many	75	

variants	as	possible	either	by	imputation	or	by	sequencing.	 	We	herein	propose	76	

an	approach	 that	will	model	disease	outcome	as	a	 function	of	 the	genotypes	at	77	

one	or	more	variants	in	a	given	risk	locus	with	the	aim	to	fine	map	that	locus,	i.e.	78	

to	identify	causative	variants	within	that	locus.	 	Fine-mapping	is	conducted	one	79	

risk	locus	at	the	time.			Risk	loci	defined	by	GWAS	typically	span	∼250	Kb,	contain	80	

∼5	 genes	 (range:	 0	 to	 >50)	 and	 encompass	 thousands	 of	 common	 and	 low	81	

frequency	variants.						82	

Model.	 The	 proposed	 model	 is	 based	 on	 the	 standard	 assumption	 of	 an	83	

underlying,	normally	distributed	liability	y	with	threshold	t,	such	that	individuals	84	

for	which	y	>	t	are	affected	and	individuals	for	which	y	≤	t	are	healthy.	We	model	85	

the	liability	of	individual	i	(yi)	as	86	

𝑦! = 𝜇 + 𝛼!𝑧!"
!

!
+ 𝛽!𝑥!" + 𝜀!

!

!!!
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where	𝜇 is	the	population	mean,	𝛼! 	is	the	effect	of	principal	component	(PC)	k	of	87	

s,	𝑧!" 	is	the	value	of	PC	k	for	individual	i,		𝛽! 	is	the	effect	of	variant	j	of	m,	𝑥!"is	the	88	

dosage	of	the	alternative	allele	of	variant	j	 for	individual	i,	and	𝜀! 	is	the	residual	89	

error	 term	 for	 individual	 i.	 PCs	 were	 included	 to	 correct	 for	 population	90	

stratification,	and	values	of	𝑧!" 	were	computed	using	standard	procedures.		Other	91	

fixed	effects	could	be	added	to	the	model	in	exactly	the	same	way	as	PCs.		m,	i.e.	92	

the	 number	 of	 causative	 variants	 in	 the	 risk	 locus,	 was	 arbitrarily	 set	 at	 20,	93	

meaning	 that	we	did	not	 anticipate	more	 than	20	 independent	 effects	 per	 risk	94	

region.		In	other	words,	we	consider	that	there	can	be	multiple	causative	variants	95	

for	each	risk	region,	but	that	this	number	cannot	exceed	20.		The	challenge	is	to	96	

find	the	“at	most	20”	causative	variants	amongst	the	thousands	of	genotyped	or	97	

imputed	 variants	 in	 each	 locus.	 	𝜀! 	is	 assumed	 to	 be	 normally	 distributed	with	98	

mean	0	and	variance	𝜎!!.					99	

Prior	distributions.	Following	Sorensen	and	Gianola	(2002),	the	values	of	t	and	100	

𝜎!!	are	fixed	at	0	and	1,	respectively.	The	individual	liabilities,	𝑦! ,	are	assumed	to	101	

be	normally	distributed	102	

𝜋 𝑦! = 𝑁 𝑦! 𝜇 + 𝛼!𝑝!" + 𝛽!𝑥!" , 1
!

!!!

!

!!!
	

The	population	mean,	𝜇,	and	effects	of	the	PCs	capturing	population	stratification	103	

are	 assumed	 to	 follow	 uniform	 distributions	 (𝜋 𝜇 ∝ 1;𝜋 𝛼! ∝ 1).	 Following	104	

Fang	et	al.	 (2012),	 the	prior	distribution	of	 the	effect	of	variant	 j	 from	m,	𝛽! ,	 is	105	

assumed	to	follow	a	double-exponential	distribution:	106	

𝜋 𝛽! =
𝜆!
2 𝑒

!!! !! 	
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which	 is	 factorized	 in	 three	 sub-priors:	 (i)	 normally	 distributed	 𝜋 𝛽! 𝜏!! =107	

𝑁 𝛽! 0, 𝜏!! ;	 (ii)	 exponentially	 distributed	𝜋 𝜏!! 𝜆! = !!
!
𝑒!!!

!!!
! ! ;	 (iii)	 gamma	108	

distributed	𝜋
!!
!

!
= Γ(𝜉, 𝜉), 𝜉 → 0.	109	

Posterior	distributions	for	Gibbs	sampling.	Effects	𝛽! 	are	sampled	from	normal	110	

distributions	with	mean	111	

𝛽! = 𝑥!"!
!

!!!
+
1
𝜏!!

!!

𝑥!" 𝑦! − 𝜇 − 𝛼!𝑝!"
!

!!!
− 𝛽!𝑥!"

!

!!!

!

!!!
	

and	variance	112	

𝜎!!
! = 𝑥!"!

!

!!!
+
1
𝜏!!

!!

,	

in	which	n	 is	 the	 total	 number	of	 analyzed	 individuals	 (cases	+	 controls).	1 𝜏!!	113	

are	sampled	from	inverse	Gaussian	distributions	114	

𝜋 𝜏!! 𝑦,… = InvGauss
𝜆!!

𝛽!!
, 𝜆!! , 𝑗 = 1,… ,𝑚	

The	hyper-parameters	𝜆!!	are	sampled	from	gamma	distributions	115	

𝜋 𝜆!! 𝑦,… = Γ 1,
𝜏!!

2 , 𝑗 = 1,… ,𝑚	

PC	effects, 𝛼! ,	are	sampled	from	normal	distributions	with	mean	116	

𝛼! = 𝑝!"!
!

!!!

!!
𝑦! − 𝜇 − 𝛼!𝑝!" − 𝛽!𝑥!"

!

!!!

!

!!!

!

!!!
	

and	variance	117	
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𝜎!!
! = 𝑝!"!

!

!!!

!!
	

The	population	mean,	𝜇,	is	sampled	from	a	normal	distribution	with	mean	118	

𝜇 =
1
𝑛 𝑦! − 𝛼!𝑝!" − 𝛽!𝑥!"

!

!!!

!

!!!

!

!!!
	

and	variance	1 𝑛.	119	

For	 affected	 individuals	 (𝛾! = 1 ),	 the	 liabilities,	𝑦! ,	 are	 sampled	 from	 the	120	

truncated	normal	distributions	(such	that	𝑦! > 𝑡)	with	density	121	

𝜋 𝑦! 𝛾! = 1,… =
𝑁 𝑦! 𝜇 + 𝛼!𝑝!" + 𝛽!𝑥!" , 1!

!!!
!
!!!

1−Φ! 𝜇 + 𝛼!𝑝!" + 𝛽!𝑥!" , 1!
!!!

!
!!!

	

For	 unaffected	 individuals	 (𝛾! = 0),	 the	 liabilities,	𝑦! ,	 are	 sampled	 from	 the	122	

truncated	normal	distributions	(such	that	𝑦! ≤ 𝑡)	with	density		123	

𝑦! 𝛾! = 0,… =
𝑁 𝑦! 𝜇 + 𝛼!𝑝!" + 𝛽!𝑥!" , 1!

!!!
!
!!!

Φ! 𝜇 + 𝛼!𝑝!" + 𝛽!𝑥!" , 1!
!!!

!
!!!

	

In	 these,	 Φ! 𝜇 + 𝛼!𝑝!" + 𝛽!𝑥!" , 1!
!!!

!
!!! 	corresponds	 to	 the	 cumulative	124	

density	from	−∞	to	t.	125	

Variant	 sampling	 using	 the	 Metropolis-Hastings	 algorithm.	 We	 first	126	

hierarchically	 cluster	 variants	 that	 are	 in	 high	 LD	 using	 (1-r2)	 as	 distance	127	

measure	 and	 the	 “single	 linkage”	 approach	 implemented	 with	 the	 R	 “hclust”	128	

package.	 	 By	 doing	 so	 variants	 in	 distinct	 clusters	 will	 never	 have	 r2	 >	 C,	 yet	129	

variants	within	clusters	may	have	r2	<	C.		We	tested	C	values	of	0.9	and	0.5.		The	130	

m	(=20)	variants	to	include	in	the	model	are	sampled	such	that	each	cluster	can	131	

only	 be	 represented	 by	 one	 variant.	 	 At	 each	 round	 of	 the	 MCMC	 chain,	 we	132	
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sequentially	attempt	to	swap	each	of	 the	m	variants	 in	 the	model	with	a	better	133	

one,	 to	ultimately	 find	 the	best	overall	combination	of	variants.	 	The	substitute	134	

variants	are	selected	50%	of	the	time	from	variants	from	the	same	cluster,	and	135	

50%	of	 the	 time	 from	variants	of	unrepresented	 clusters.	 	 In	other	words,	 this	136	

means	 that	 the	 MCMC	 chain	 spends	 halve	 of	 its	 time	 searching	 for	 the	 best	137	

possible	 variants	 within	 clusters,	 and	 halve	 of	 its	 time	 for	 the	 best	 possible	138	

clusters.	When	a	substitute	variant	is	selected,	the	probability	to	“accept”	it	is	139	

𝛼 = 𝑚𝑖𝑛 1,
𝜋 𝑦 𝑥.!!"# ,…
𝜋 𝑦 𝑥.!!"# ,…

	

where	140	

𝜋 𝑦 =
1
2𝜋

exp
1
2 𝑦! − 𝜇 − 𝛼!𝑝!" − 𝛽!𝑥!"

!
	

and	𝑥.!!"# 		and	𝑥.!!"# 	correspond	to	the	genotype	indicator	variables	for	the	“new”	141	

and	“old”	positions,	respectively.	142	

Implementation	of	 the	MCMC	chain.	We	 initiate	 the	chain	by	assigning	values	143	

randomly	to	all	variables	(within	their	 legal	boundaries).	 	We	then	sequentially	144	

update	 the	 position	 of	 the	m	 variants	 by	 either	 choosing	 a	 variant	 in	 another,	145	

unrepresented	 cluster	 (50%)	 or	 in	 the	 same	 cluster	 (50%),	 using	 the	 M-H	146	

algorithm	described	above.	 	The	 likelihood	of	 the	new	proposition	 is	computed	147	

with	 the	 parameter	 values	 of	 the	 previous	 cycle.	 	 Corresponding	𝛽! ,	𝜏!!! and	𝜆! 	148	

are	updated	by	50	rounds	of	Gibbs	sampling.		After	each	round	of	update	of	the	m	149	

variants,	 we	 update	𝜇, the	𝛼! ‘s	 and	𝑦! ‘s	 by	 one	 round	 of	 Gibbs	 sampling.	 	 The	150	

complete	process	was	repeated	500,000	(simulated	data)	or	1	million	times	(real	151	
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data).	 	 The	 first	 100,000	 (simulated	 data)	 or	 500,000	 cycles	 (real	 data)	 were	152	

used	as	burn-in	and	ignored	when	compiling	the	summary	statistics.	153	

Summarizing	 the	 results.	 	 We	 computed	 posterior	 probabilities	 (PP)	 for	154	

clusters	 as	 well	 as	 individual	 variants	 from	 the	 proportion	 of	MCMC	 cycles	 in	155	

which	 they	were	 included	 in	 the	model.	 	 	Within	clusters,	we	defined	 “credible	156	

sets”	 of	 markers	 by	 ranking	 them	 on	 PP	 and	 considering	 the	 minimal	 set	 of	157	

markers	that	would	jointly	account	for	95%	of	the	PP	of	the	cluster.		158	

Clusters	with	posterior	probability	≥	0.50	were	retained	for	further	validation	by	159	

fitting	 their	 corresponding	 lead	 SNPs	 jointly	 in	 a	 logistic	 regression	 model.			160	

Clusters	exceeding	the	set	significance	threshold	were	considered	to	be	positive.		161	

We	 used	 thresholds	 of	 10-4,	 10-6	 and	 10-8	 that	 might	 be	 considered	 as	 locus-162	

specific,	 multi-locus	 (∼100	 loci;	 cfr.	 Huang	 et	 al.,	 2016)	 and	 genome-wide	163	

thresholds.																																																								164	

		165	

Forward	Selection	166	

The	 performance	 of	 BayesFM	 was	 compared	 with	 that	 of	 a	 standard	 forward	167	

selection	 approach	 implemented	 by	 logistic	 regression	 in	 R.	 	 Significance	168	

thresholds	 were	 the	 same	 as	 defined	 above	 (10-4,	 10-6	 and	 10-8).	 	 	 We	 built	169	

credible	sets	associated	with	selected	“lead”	(l)	variants	by	computing	the	PP	for	170	

all	n	variants	in	high	LD	(r2	>	C,	as	defined	above)	with	l.	 	The	PP	probability	of	171	

variant	j	of	n	was	computed	as:	172	

𝑃𝑃! = 𝐿! 𝐿!
!

!!!
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where	𝐿! 	is	 the	 maximum	 likelihood	 of	 the	 data	 considering	 variant	 j	 in	 the	173	

model.	 	 Likelihoods	were	 computed	 using	 the	 glm()	 function	 (binomial	 family,	174	

logit	 link	 function,	and	 logLik)	 in	R.	Credible	sets	 (associated	with	a	given	 lead	175	

variant)	corresponded	to	the	smallest	set	of	variants	that	would	jointly	account	176	

for	 95%	 of	 the	 PP.	 Variants	 included	 in	 a	 credible	 set	 were	 ignored	 when	177	

pursuing	the	forward	selection.		178	

	179	

Datasets	180	

Simulated	 data.	 We	 took	 advantage	 of	 the	 Immunochip	 dataset	 of	 the	181	

International	IBD	Genetics	Consortium	(IIBDGC)	and	Multiple	Sclerosis	Genetics	182	

Consortium	 (IMSGC),	 consisting	 of	 18,967	 Crohn’s	 disease	 cases,	 14,628	183	

ulcerative	 colitis	 cases,	 and	 34,257	 controls,	 all	 of	 European	 ancestry.	 	 We	184	

randomly	 selected	 a	 genomic	 region	 corresponding	 to	 a	 GWAS-identified	 risk	185	

locus	for	Inflammatory	Bowel	Disease	(chr5:	40,286,967-40.818,088)	with	2,978	186	

markers	 either	 interrogated	 by	 the	 Immunochip	 (936),	 or	 imputed	 from	 the	187	

1,000	 Genomes	 project	 with	 quality	 score	 >	 0.4	 (2042)	 (Huang	 et	 al.,	 2016).			188	

Within	this	region,	we	randomly	selected	one	(model	I),	three	(model	II)	or	five	189	

(model	III)	variants	with	MAF	≥	0.01,	to	act	as	causative	variants.		The	variance	190	

explained	by	 the	 locus	 (𝜎!!)	was	 set	 at	2%	 	 (see	hereafter).	 	 	 In	 the	 cases	with	191	

multiple	 causative	 variants,	 the	 proportion	 of	 the	 variance	 explained	 by	 the	192	

distinct	causative	variants	was	set	at	4/7,	2/7	and	1/7	(three	variants,	model	II)	193	

or	16/31,	8/31,	4/31,	2/31,	1/31	(five	variants,	model	III).	194	
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The	effect	of	a	causative	variant	 j	 (𝛽!)	was	assumed	to	be	additive	and	 to	have	195	

numerical	 value	𝛽! = 𝜎!! 𝜎! 𝑥!" ,	 as	𝜎!! = 𝜎! 𝛽!𝑥!" .	 	 The	 value	 of	𝜎!! ,	 the	196	

variance	 due	 to	 variant	 j,	was	 set	 as	 described	 above,	 i.e.	 2%	 (model	 I)	 or	 the	197	

corresponding	fraction	of	2%	(models	II	&	III).		The	value	of	𝜎! 𝑥!" ,	where	𝑥!"is	198	

–	as	before	-	the	genotype	dosage	if	individual	i	for	variant	j,	was	computed	from	199	

the	 Immunochip	data.	 	 	The	procedure	described	 thus	 far	does	not	account	 for	200	

the	LD	that	may	exist	between	the	multiple	causative	variants	 in	models	 II&III,	201	

which	may	cause	𝜎!!	to	deviate	from	2%.		Indeed,	202	

𝜎!! = 𝜎! 𝛽!𝑥!"
!,! !" !

!!!
= 𝜎! 𝛽!𝑥!" + 2 𝛽!𝛽!!𝑐𝑜𝑣𝑎𝑟 𝑥!"𝑥!!!

!,! !" !

!!!!

!,! !" !

!!!

≥ 𝜎! 𝛽!𝑥!"
!,! !" !

!!!
	

Thus,	 we	 rescaled	 the	 effects	𝛽! 	to	𝛽!∗ = 𝛽! 2% 𝜎!!.	 Substituting	𝛽!∗	for	𝛽!in	 the	203	

previous	equation	indeed	gives	𝛼!! = 2%.	204	

To	 generate	 a	 simulated	 case-control	 cohort	we	 sampled	 1	million	 individuals	205	

from	 the	 Immunochip	 dataset	with	 replacement	 and	without	 discrimination	 of	206	

real	case-control	status.		For	each	of	these,	we	generated	a	liability,	𝑦! ,	as	(i)	the	207	

sum	of	the	genotype	effects	at	the	1,	3	or	5	causative	variants:	 𝛽!!,!!"!
!!! 𝑥!" 	,	plus	208	

(ii)	 a	 residual	 effect,	𝜀! ,	 drawn	 from	 a	 normal	 distribution	 with	 mean	 0	 and	209	

variance	of	1.			Thus	the	variance	explained	by	the	locus	as	a	fraction	of	the	total	210	

liability	variance	is	in	fact	0.02 1+ 0.02 ≈ 0.02.		Assuming	an	incidence	of	the	211	

disease	 of	 1/400,	 we	 kept	 the	 2,500	 individuals	 with	 highest	 liability	 as	 case	212	

cohort.			We	randomly	sampled	2,500	individuals	from	the	remaining	1,000,000-213	
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2,500	 =	 997,500	 individuals	 to	 serve	 as	 controls.	 	 We	 generated	 100	 such	214	

simulated	 case-control	 datasets	 to	 compare	 the	 performance	 of	 BayesFM	with	215	

that	 of	 a	 more	 standard	 forward	 selection	 procedure.	 	 When	 analyzing	 the	216	

simulated	datasets,	we	did	not	fit	PC	in	the	statistical	models.	217	

Real	 data.	 	 For	 the	 analysis	 of	 real	 data,	 we	 likewise	 took	 advantage	 of	 the	218	

Immunochip	dataset	of	the	International	IBD	Genetics	Consortium	(IIBDGC)	and	219	

Multiple	 Sclerosis	 Genetics	 Consortium	 (IMSGC),	 consisting	 of	 18,967	 Crohn’s	220	

disease	 cases,	 and	 34,257	 controls,	 all	 of	 European	 ancestry.	 	We	 selected	 the	221	

genomic	 region	 corresponding	 to	 the	 GWAS-identified	 risk	 locus	 for	222	

Inflammatory	Bowel	Disease	encompassing	the	NOD2	gene	(chr16:	50,692,364-223	

50,847,022)	with	1,048	markers	either	 interrogated	by	 the	 Immunochip	 (283),	224	

or	 imputed	 from	 the	 1,000	 Genomes	 project	 with	 quality	 score	 >	 0.4	 (765)	225	

(Huang	et	al.,	2016).			The	analysis	was	restricted	to	Crohn’s	disease.	226	

		227	

Results	228	

Simulated	data.	As	expected,	the	True	Positive	Rate	(TPR,	i.e.	the	proportion	of	229	

true	positive	signals	amongst	the	total	number	of	true	signals	(true	positives	plus	230	

false	 negatives))	 was	 decreasing	 for	 both	 methods	 (BayesFM	 and	 FS)	 with	231	

increasing	 significance	 threshold	and	decreasing	variance	accounted	 for	by	 the	232	

considered	 variant	 (Table	 1	 and	 Supplemental	 Table	 1).	 	 	 Mapping	 resolution	233	

(defined	as	the	size	of	the	credible	sets)	was	comparable	between	BayesFM	and	234	

FS	and	only	very	mildly	affected	by	significance	threshold	and	variance	explained.		235	

As	expected,	it	decreased	with	LD	threshold	used	to	define	clusters/credible	sets	236	
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(average	number	of	variants	per	cluster/credible	set	of	∼25	(r2=0.9)	versus	∼30	237	

(r2=0.5)).	 	Otherwise,	LD	threshold	(r2=0.5	or	0.9)	had	only	very	modest	effects	238	

on	TPR	.	239	

For	given	thresholds	and	variance	explained,	the	TPR	tended	to	be	slightly	better	240	

for	BayesFM	than	for	FS,	especially	at	the	higher	significance	thresholds,	but	the	241	

differences	were	modest	 (Table	1	and	Supplemental	Table	1).	 	However,	when	242	

considering	models	 II	 and	 III,	 characterized	by	multiple	 causative	 variants,	 the	243	

False	Discovery	Rate	(FDR,	i.e.	the	proportion	of	false	positives	amongst	the	total	244	

number	of	positive	signals	(true	positives	and	false	positives))	was	considerably	245	

higher	for	FS	than	for	BayesFM	(Table	1	and	Supplemental	Table	1).		Thus,	while	246	

BayesFM	and	FS	appear	to	have	comparable	sensitivity,	BayesFM	outperforms	FS	247	

in	 generating	 a	 smaller	 number	 of	 false	 positives	 in	 situations	 of	 allelic	248	

heterogeneity.		249	

To	examine	whether	BayesFM	and	FS	might	be	complementary	and	might	best	250	

be	used	in	combination	as	done	in	Huang	et	al.	(2016),	we	measured	the	TPR	and	251	

FDR	for	a	specific	scenario	(model	III,	log(1/p)	threshold	8)	considering	(i)	both	252	

approaches	 separately,	 (ii)	 overlapping	 findings,	 and	 (iii)	 approach-specific	253	

findings.	 	As	 expected	 the	TPR	was	highest	when	considering	both	approaches	254	

individually.	 	 	 For	 the	 examined	 scenario,	 the	 sensitivity	measured	by	 the	TPR	255	

was	31%	for	BayesFM	and	28%	for	FS.	 	The	corresponding	FDRs	were	16%	for	256	

BayesFM	 and	 24%	 for	 FS.	 	 	 Hence	 and	 as	 mentioned	 before,	 BayesFM	257	

outperformed	FS	especially	with	regards	to	specificity	 in	 this	scenario	of	allelic	258	

heterogeneity.	 	When	only	 considering	positive	 results	 found	by	both	methods	259	

(overlapping	findings),	the	sensitivity	dropped	only	very	slightly	when	compared	260	
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to	FS	alone	(TPR	=	26%),	while	the	specificity	increased	considerably	especially	261	

when	compared	to	FS	(FDR	=	12.5%).		Considering	BayesFM-specific	findings	in	262	

addition	to	the	overlapping	findings	(BayesFM	and	FS)	increased	the	yield	of	true	263	

positives	by	nearly	20%,	with	a	 still	 reasonable	FDR	of	28%.	 	 	Considering	FS-264	

specific	 findings	 in	addition	 to	 the	overlapping	 finings	would	only	 increase	 the	265	

yield	of	true	positives	by	9%,	with	an	abysmal	FDR	of	68%	(Figure	1).																				266	

There	are	at	least	two	scenarios	in	which	BayesFM	is	expected	to	beat	Forward	267	

Selection.		The	first	is	a	situation	in	which	a	passenger	variant	is	in	LD	with	two	268	

or	more	causative	variants	and	single-handedly	accounts	for	a	higher	proportion	269	

of	 the	 variance	 than	 any	 of	 the	 causative	 variants	 alone.	 	 Standard	 Forward	270	

Selection	will	then	irreversibly	include	it	in	the	model,	which	may	subsequently	271	

preclude	 the	actual	 causative	variants	 from	entering	 it.	 	 	An	example	of	 such	a	272	

scenario,	previously	referred	to	as	“ghost”	effect,	is	illustrated	in	Figure	2A,	and	273	

Table	 2.	 	 	 It	 generates	 both	 false	 positives	 and	 false	 negatives	 with	 Forward	274	

Selection.	A	second	scenario	where	BayesFM	is	expected	to	outperform	Forward	275	

Selection	 is	when	 two	 causative	 variants	 are	 in	 LD,	 and	 the	 risk	 alleles	 are	 in	276	

repulsion	hence	neutralizing	each	other	effects.				An	example	of	such	a	situation	277	

is	shown	in	Figure	2B	and	Table	2.																278	

Real	data.	We	 then	examined	 the	results	obtained	with	BayesFM	on	 the	NOD2	279	

locus	 (chr16:	50,692,364-50,847,022),	 a	well-established	 risk	 locus	 for	Crohn’s	280	

disease.		We	analyzed	the	dataset	of	the	IIBDGC	described	in	Huang	et	al.	(2016)	281	

and	 comprising	 18,967	 Crohn’s	 disease	 cases	 and	 34,257	 matched	 controls.			282	

Table	3	summarizes	 the	results	 that	were	obtained	using	either	r2	>	0.9	or	r2	>	283	

0.5	as	LD	threshold	to	define	clusters	of	variants	(see	M&M).		For	both	analyses,	284	
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we	report	the	clusters	with	PP	>	0.50.		Thirteen	such	signals	were	obtained	with	285	

r2	>	0.9,	and	 fourteen	with	r2	>	0.5.	 	The	average	number	of	variants	per	signal	286	

was	 1.15	 with	 r2	>	 0.9	 and	 3.14	 with	 r2	>	 0.5.	 	 	 Single	 variant	 resolution	 was	287	

obtained	 for	 11/13	 signals	 with	 r2	 >	 0.9	 and	 8/14	 signals	 with	 r2	 >	 0.5,	288	

highlighting	 the	 remarkable	 resolving	 power	 that	 can	 be	 achieved	 for	 at	 least	289	

some	loci	with	BayesFM.		The	log(1/p)	value	obtained	by	fitting	the	lead	variant	290	

(with	highest	PP)	of	each	signal	in	a	multivariate	logistic	regression,	exceeded	6	291	

for	 10/13	 signals	 with	 r2	 >	 0.9	 and	 10/14	 signals	 with	 r2	 >	 0.9.	 	 The	 lowest	292	

log(1/p)	value	was	3.33	 for	 the	signal	 that	was	detected	using	r2	>	0.5	only.	 	 It	293	

was	>	4	for	all	others.				294	

Using	 very	 stringent	 criteria,	 nine	 independent	 signals	 were	 retained	 for	 the	295	

same	 locus	and	 reported	 in	Huang	et	 al.	 (2016)(Table	3).	 	All	 but	one	of	 these	296	

were	 detected	 by	BayesFM,	whether	 using	 r2	>0.9	 or	 0.5.	 	 These	 included	 four	297	

signals	 corresponding	 to	 single	 variant	 resolution	 of	 non-synonymous	 (NS)	298	

variants	 in	NOD2	 (fs1007insC,	R702W,	G908R,	N289S,	 all	with	PP∼1),	 and	 one	299	

signal	 with	 two-variant	 resolution	 corresponding	 to	 two	 non-synonymous	300	

variants	each	(V793M	and	S431L;	resolved	to	V793M	by	BayesFM	when	setting	301	

r2	>0.9).			The	remarkable	enrichment	in	NS	variants	testifies	of	the	specificity	of	302	

the	 fine-mapping	 methods	 utilized	 in	 Huang	 et	 al.	 (2016)	 including	 BayesFM.		303	

The	signal	 that	remained	undetected	by	BayesFM	was	characterized	by	a	PP	of	304	

0.24	with	r2>0.9	and	0.20	with	r2>0.5.		It	is	worth	noting	that	the	corresponding	305	

lead	variant	 (rs104895467)	has	a	Phastcons	conservation	score	of	1,	 increasing	306	

the	likelihood	of	it	being	a	genuine	causative	variant.			307	
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Amongst	the	six	additional	putative	signals	detected	by	BayesFM	when	applying	308	

more	 lenient	 thresholds,	 three	were	 characterized	by	 a	NS	NOD2	 lead	variants	309	

(A585T,	 R676C	 and	 A891D).	 	 	 This	 remarkable	 enrichment	 in	 NS	 variants	310	

strongly	suggests	that	at	least	some	of	these	signals	are	true.			311	

Two	of	the	detected	signals	are	characterized	by	very	common	risk	alleles	(31%	312	

and	61%	in	cases,	respectively).		Both	of	these	signals	are	characterized	by	fairly	313	

large	 clusters	when	 using	 either	 FS	 or	 BayesFM	 (r2>0.5),	 indicating	 that	many	314	

variants	are	in	high	LD	with	the	corresponding	causative	variants.	 	 	Four	of	the	315	

signals	are	characterized	by	low	frequency	risk	alleles	(1%	<	frequency	<	5%	in	316	

controls)	and	include	the	well-known	fs1007incC,	R702W,	G908R	and	rs72796367	317	

variants.		The	remaining	signals	correspond	to	rare	risk	alleles	with	frequencies	318	

below	1%	in	controls.																																								319	

	320	

Discussion		321	

Identifying	causative	variants	in	GWAS-defined	risk	loci	is	important	in	order	to	322	

gain	a	better	understanding	of	 the	molecular	mechanisms	underlying	 inherited	323	

disease	 predisposition,	 including	 the	 identification	 of	 the	 causative	 genes.	 	 	 A	324	

number	of	fine-mapping	strategies	have	been	explored	to	achieve	this	goal	using	325	

association	 information	 in	 case-control	 cohorts.	 	 These	 include	 Bayesian	326	

approaches	 to	 define	 credible	 sets	 that	 are	 likely	 to	 contain	 the	 causative	327	

variants	(f.i.	Wellcome	Trust	Case	Control	Consortium	et	al.,	2012;	van	de	Bunt	et	328	

al.,	2015).	 	However,	the	corresponding	methods	make	the	unlikely	assumption	329	

of	 allelic	 homogeneity	 at	 the	 considered	 loci,	 i.e.	 the	 occurrence	 of	 single	330	
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causative	variants	only.	 	 	Searching	for	multiple	independent	causative	variants	331	

in	 a	 given	 locus	 –	 a	 more	 realistic	 scenario	 -	 is	 most	 often	 conducted	 using	332	

variations	of	 stepwise	 forward	 selection	 approaches.	 	 	 In	 these	 approaches	 -	 if	333	

deemed	significant	-	the	strongest	signal	is	sequentially	added	as	covariate	to	the	334	

model.	 	 	 Two	 of	 the	 methods	 utilized	 in	 Huang	 et	 al.	 (2016)	 are	 advanced	335	

Bayesian	versions	of	this	approach.			It	is	relatively	easy	to	imagine	scenarios	in	336	

which	 these	 forward	 selection	 approaches	 may	 either	 miss	 true	 signals	 or	337	

incorporate	 non-causative	 variants	 into	 the	 model	 (see	 results	 section	 on	338	

simulated	data).	 	Alternative	Bayesian	variable	selection	approaches,	combined	339	

with	Monte	Carlo	techniques,	have	been	devised	to	overcome	these	 limitations.			340	

In	 the	 field	 of	 fine-mapping,	 these	 include	BimBam	 (Servin	&	 Stephens,	 2007),	341	

GUESSFM	 (Wallace	 et	 al.,	 2015),	 and	 BayesFM	 presented	 in	 this	 manuscript.			342	

Simulations	(including	in	this	study)	indicate	that	they	are	generally	superior	to	343	

the	other	approaches.		In	our	simulations,	BayesFM	appeared	to	have	improved	344	

sensitivity	 and	 specificity	 when	 compared	 to	 a	 standard	 implementation	 of	345	

forward	selection.		Our	analyses	confirm	the	benefits	of	selecting	signals	that	are	346	

detected	 by	 forward	 selection	 and	 BayesFM,	 the	 strategy	 followed	 in	 part	 by	347	

Huang	et	al.	(2016).		It	considerably	improves	specificity	with	limited	impact	on	348	

sensitivity.	 	 	We	 nevertheless	 note	 that	 the	 signals	 detected	 by	 BayesFM	 only	349	

(and	not	FS)	 appear	 to	be	 characterized	by	an	acceptable	 specificity,	while	FS-350	

only	signals	were	in	essence	not	trustworthy		(Figure	1).													351	

Ideally,	fine-mapping	should	be	done	with	complete	sequence	information	in	the	352	

utilized	 case-controls.	 	 While	 this	 may	 become	 possible	 in	 the	 near	 future	 as	353	

sequencing	 costs	 continue	 to	 diminish,	 present	 studies	 typically	 augment	354	

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted August 4, 2016. ; https://doi.org/10.1101/067801doi: bioRxiv preprint 

https://doi.org/10.1101/067801


BayesFM:	Fine-mapping	disease	risk	loci	 	 Page	18/28	

genotyping	 data	 from	 SNP	 arrays	 with	 imputation	 using	 the	 for	 instance	 the	355	

1,000	Genomes	Project	data	as	reference	(f.i.	Huang	et	al.,	2016).		The	imputation	356	

accuracy	 varies	 between	 variants	 and	 is	 typically	 inferior	 for	 low	 frequency	357	

variants.	 	 	 This	 is	 very	 likely	 affecting	 the	 precision	 of	 fine-mapping	 and	 very	358	

difficult	 to	 overcome	 by.	 	 	 An	 accurate	 evaluation	 of	 the	 impact	 of	 imputation	359	

accuracy	 on	 the	 outcome	 of	 fine-mapping,	 including	 with	 Bayesian	 model	360	

selection	approaches	such	as	BayesFM	is	needed.		361	

In	its	present	version,	BayesFM	assumes	that	the	identified	risk	variants	operate	362	

“additively”,	 i.e.	 we	 ignore	 the	 possibility	 of	 dominance	 within	 variants	 and	363	

epistatic	 interaction	between	variants.	 	BimBam	allows	modeling	of	dominance	364	

effect	 within	 variants	 (Servin	 &	 Stephens,	 2007).	 	 The	 impact	 of	 this	365	

simplification	on	power	and	accuracy	remains	to	be	determined.			Modeling	these	366	

higher	 order	 effects	 implies	 the	 estimation	 of	 additional	 parameters.	 As	 a	367	

consequence,	impact	on	power	and	accuracy	is	likely	to	be	a	function	of	sample	368	

size.			369	

The	 results	 of	 our	 simulations	 (data	 simulated	 under	 a	 simplified	 additive	370	

model)	 indicate	 that	 fine-mapping	 results	 need	 to	 be	 considered	with	 caution.		371	

FDR	was	>	10%	even	when	considering	signals	detected	both	by	FS	and	BayesFM,	372	

and	 this	 is	 likely	 to	 be	 an	 underestimate.	 	 	 Nevertheless,	 applying	 FS-type	373	

methods	 in	 conjunction	 with	 BayesFM	 on	 a	 large	 case-control	 cohort	 for	374	

Inflammatory	 Bowel	 Disease	 lead	 to	 the	 fine-mapping	 of	 42	 signals	 with	375	

resolution	<	5	variants.				The	causality	of	the	corresponding	variants,	especially	376	

when	non-coding,	can	now	be	tested	directly	by	CRISPR-CAS9	technology	in	cell	377	

culture	systems.									378	
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	419	

Figure	 1:	 Simulated	data.	True	Positive	Rates	 (TPR)	and	False	Discovery	 rates	420	
(FDR)	 obtained	when	 (i)	 considering	BayesFM	 (MCMC)	 and	 Forward	 Selection	421	
(FS)	 separately,	 (ii)	when	considering	overlapping	 results	 (MCMC	and	FS),	 (iii)	422	
when	 considering	 method-specific	 results	 (MCMC	 not	 FS,	 and	 FS	 not	 MCMC).		423	
The	scenario	under	consideration	was	model	 III	 (five	causative	variants)	and	a	424	
genome-wide	significance	threshold	of	log(1/p)	=	8.		425	

	426	
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427	

	428	

Figure	 2:	 Simulated	 data.	 	 Statistical	 significance	 of	 disease	 association	 for	429	
credible	sets	of	variants	selected	(PP	≥	50%)	using	BayesFM	(log(1/p),	positive	430	
values)	 or	 	 Forward	 Selection	 (-log(1/p),	 negative	 values),	 estimated	 by	431	
multivariate	 logistic	 regression.	 	 The	 positions	 of	 the	 five	 simulated	 causative	432	
variants	(model	III)	are	shown	by	the	numbered	green	dots.		The	yellow	and	blue	433	
dots	mark	the	position	of	the	variants	in	the	credible	sets	identified	by	BayesFM	434	
and	Forward	Selection,	respectively.		The	red	dots	mark	the	positions	of	the	lead	435	
variants	 in	 the	 corresponding	credible	 sets.	 	Causative	variants	within	 credible	436	
sets	 are	 circled.	 	 A.	 Example	 of	 a	 “ghost	 QTL”	 effect.	 	 Forward	 Selection	437	
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erroneously	identifies	a	cluster	of	passenger	variants	that	is	in	LD	with	multiple	438	
causative	variants	 thereby	single-handedly	achieving	a	higher	significance	 than	439	
any	 of	 the	 causative	 variants.	 	 It	 is	 therefore	 erroneously	 and	 irreversibly	440	
introduced	 into	 the	 forward	 selection	 model.	 	 BayesFM	 avoids	 this	 trap	 and	441	
correctly	 identifies	 at	 least	 causative	 variants	 1	 and	 2.	 B.	 Example	 of	 two	442	
causative	 variants	 in	 LD	 with	 an	 excess	 of	 haplotypes	 with	 risk	 alleles	 in	443	
repulsion.	 	 By	modeling	 them	 simultaneously,	 BayesFM	uncovers	 risk	 alleles	 2	444	
and	3.	By	modeling	them	sequentially,	Forward	Selection	misses	both	2	and	3	as	445	
they	neutralize	each	other’s	effects.	 	446	
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