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Abstract

Matrix projection models are a central tool in many areas of population biology. In
most applications, one starts from the projection matrix to quantify the asymptotic
growth rate of the population (the dominant eigenvalue), the stable stage distribu-
tion, and the reproductive values (the dominant right and left eigenvectors, respec-
tively). Any primitive projection matrix also has an associated ergodic Markov chain
that contains information about the genealogy of the population. In this paper, we
show that these facts can be used to specify any matrix population model as a triple
consisting of the ergodic Markov matrix, the dominant eigenvalue and one of the
corresponding eigenvectors. This decomposition of the projection matrix separates
properties associated with lineages from those associated with individuals. It also
clarifies the relationships between many quantities commonly used to describe such
models, including the relationship between eigenvalue sensitivities and elasticities.
We illustrate the utility of such a decomposition by introducing a new method for
aggregating classes in a matrix population model to produce a simpler model with
a smaller number of classes. Unlike the standard method, our method has the ad-
vantage of preserving reproductive values and elasticities. It also has conceptually
satisfying properties such as commuting with changes of units.
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1. Introduction

Many simple models in population biology take the following form: a non-negative
vector gives the current abundances of types within the population; then, to deter-
mine the abundances of types at some future time, one multiplies this vector by
a non-negative matrix capturing the interconversion and reproductive rates of the
types. Examples include models of deterministic mutation-selection balance in pop-
ulation genetics (where the types correspond to genotypes, Nagylaki, 1992 Chapter
2; Bürger, 2000 Chapter 3) and models of spatially structured populations (where
the types correspond to demes, Rousset, 2004). The most common use of such mod-
els is in the ecological and demographic literature, where the types correspond to
age ranges or developmental stages. In this last context, such models are commonly
known as “matrix population models” and they play a critical role in both ecological
theory and applications to population management (Caswell, 2001).

In the ecological or demographic context, the entries in the update or projection
matrix are typically estimated based on observations from some natural popula-
tion (Salguero-Gómez et al., 2015; Salguero-Gómez et al., 2016). To better under-
stand the dynamics of the population, one then calculates various descriptors of the
resulting model such as the asymptotic growth rate of the population, the genera-
tion time, the asymptotic distribution of type frequencies, etc. (for a more complete
list, see e.g. Cochran and Ellner, 1992; Caswell, 2001). Here, we provide a method
to move in the opposite direction: given certain descriptors of the population, we
construct the corresponding projection matrix. Besides providing a means to con-
struct projection matrices with specified properties, our method provides a unifying
perspective on the theory of matrix population models by clarifying the relationships
between various commonly used descriptors.

The key idea is that any matrix population model is completely determined by
the specification of (1) its asymptotic growth rate, (2) its stable stage distribution
and (3) a Markov chain describing the sequence of classes visited when we consider
the lineages of individuals within the population. While this viewpoint is perhaps
implicit in the classical literature (Demetrius, 1974, 1975; Tuljapurkar, 1982, 1993),
its power has not been sufficiently appreciated because the strength of the connections
between this genealogical Markov chain and other population descriptors has only
recently come to light. In particular, recent work has revealed that certain hitting
times on this genealogical Markov chain determine the generation time (Bienvenu and
Legendre, 2015; Lehmann, 2014a), while the asymptotic frequencies of the transitions
of this Markov chain give the elasticities of the asymptotic growth rate with respect to
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the entries of the projection matrix (Bienvenu and Legendre, 2015). Since an ergodic
Markov chain is uniquely specified by the asymptotic frequencies of its transitions,
this means that if we specify the asymptotic growth rate, stable stage distribution
and matrix of eigenvalue elasticities, we can immediately write down the unique
projection matrix with these desired characteristics.

This construction provides a great deal of clarity, particularly concerning the
interpretation and biological meaning of eigenvalue elasticites. Indeed, merely rec-
ognizing that the matrix of elasticities is given by the asymptotic transition frequen-
cies of the genealogical Markov chain makes several facts obvious that are otherwise
rather mysterious from a classical perspective (Bienvenu and Legendre, 2015). For
instance, one can show that the total of the entries of the elasticity matrix must
sum to one by either direct calculation (de Kroon et al., 1986) or by an appeal to
Euler’s Theorem for homogeneous functions (Mesterton-Gibbons, 1993). However,
recognizing the elasticities as the asymptotic transition frequencies of a Markov chain
make it obvious that they sum to one, since the asymptotic frequencies of the tran-
sitions form a probability distribution (the chain must always transition from one
state to another). Similarly, the row sums of the matrix of elasticities equal its col-
umn sums (van Groenendael et al., 1994) due to the simple fact that at stationarity
the probability of arriving in a state must equal the probability of exiting that state.
Furthermore these row and column sums are just the class reproductive values, which
when appropriately normalized are themselves just the asymptotic frequencies of the
classes visited by the genealogical Markov chain.

The present work shows how a Markov chain perspective can be carried further
to illuminate other aspects of the theory of matrix population models. For instance,
it is helpful to classify descriptors of the matrix population models in terms of their
dependencies on the triple of growth rate, stable stage distribution, and genealogical
Markov chain: in our parametrization, elasticities depend only on the genealogical
Markov chain, whereas the sensitivities of the asymptotic growth rate to perturba-
tions in the entries of the projection matrix do not depend on the asymptotic growth
rate but do depend on both the genealogical Markov chain and the stable stage dis-
tribution. Similarly, whereas matrix population models most frequently track the
number of individuals in a given class, they can also be written in terms of other
units such as the biomass present in each class. It turns out that specifying the
stable stage distribution is equivalent to making a choice of units, so that, for exam-
ple, the matrix of sensitivities depends on the choice of units whereas the matrix of
elasticities does not. Indeed, the genealogical Markov chains arise by expressing the
matrix population model in units of reproductive value, so that the choice of stable
stage distribution can be fruitfully viewed as determining the conversion factor be-
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tween reproductive value and number of individuals. That is, two models can have
the same genealogical Markov chain and asymptotic growth rate but different stable
stage distributions because of different choices concerning how reproductive value is
packaged into individuals.

To demonstrate the power of this approach, we present a new solution to the
problem of how to aggregate states in a matrix population model. This problem
is important for two reasons. First, it has long been known that estimates of var-
ious population descriptors depend on the number of organismal states used in the
matrix population model (Silvertown et al., 1993; Enright et al., 1995; Benton and
Grant, 1999; Ramula and Lehtilä, 2005; Salguero-Gómez and Plotkin, 2010; Picard
and Liang, 2014). As a result, when comparing matrix projection models of different
species, the dimensionality of the projection matrix is sometimes reduced by aggre-
gating or “collapsing” multiple states into one so that the dimensionality is the same
for all species being compared (Enright et al., 1995; Salguero-Gómez and Plotkin,
2010). Second, because one needs to observe multiple transitions between pairs of
classes to accurately estimate vital rates, there is a trade-off between error in esti-
mating the vital rates and the degree of within-state heterogeneity that is neglected
by the model (Vandermeer, 1978; Moloney, 1986; Caswell, 2001). Thus, some degree
of collapsing necessarily arises in the construction of matrix population models, a de-
fect which in part motivated the proposal of integral projection models (Easterling
et al., 2000).

The standard method for collapsing states in matrix population models was pro-
posed by Enright et al. (1995) and generalized by Salguero-Gómez and Plotkin
(2010). It essentially assumes that the population is at its stable stage distribu-
tion and then aggregates a group of classes by considering what we would observe
if we did not distinguish between classes within this collapsed group. Remarkably,
this procedure preserves both the asymptotic growth rate and the stable stage dis-
tribution (Hooley, 2000; Salguero-Gómez and Plotkin, 2010). However, its effects
on reproductive values and elasticities are poorly characterized and can be sub-
stantial (Enright et al., 1995; Benton and Grant, 1999; Ramula and Lehtilä, 2005;
Salguero-Gómez and Plotkin, 2010; Picard and Liang, 2014).

Here we show that this behavior arises because the standard method, while pre-
serving the stable stage distribution and asymptotic growth rate, fails to preserve
the genealogical Markov chain. By applying our decomposition to the projection
matrix, we propose a method wherein the stable stage distribution and genealogical
Markov chain are collapsed separately and subsequently recombined to construct the
collapsed projection matrix. This method optimally preserves reproductive values,
the genealogical Markov chain, the matrix of elasticities, and the generation time
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in addition to the stable stage distribution and the asymptotic growth rate. The
method is also independent of the units used to describe the population in the sense
that, unlike the standard collapsing method, it commutes with changes of units. We
return to the practical applicability of this new collapsing method in the Discussion.

2. Genealogical Markov chains associated with matrix population models

A matrix population model is given by a non-negative matrix A = (aij). The
model assumes that if there are nj(t) individuals in the population of class j at time t,
these individuals will make a contribution of aij nj(t) individuals to the total number
of individuals of class i at time t + 1. That is, the dynamics of the population are
governed by the matrix equation

n(t+ 1) = An(t) , (1)

where n(t) = (ni(t)) is the vector giving the number of individuals in each class at
time t.

While equation (1) describes the dynamics of the size and composition of the
population, it is also sometimes useful to consider the sequence of classes occupied
by a particular individual, its ancestors, and descendants. We begin by reviewing
the features of two Markov chains that capture the dynamics along such lineages.
These ideas are due to Demetrius (1974, 1975), and have been further exploited in
Tuljapurkar (1982, 1993).

2.1. The backward chain, P

Suppose we want to know the probability that an individual observed in class i
at time t comes from class j, which can have one of two meanings: if the individual
was alive at time (t − 1), we want to know the probability that it was in class j;
conversely, if the individual is a newborn at time t, we ask what is the probability
that its mother was in class j. Let A = (aij) be the population projection matrix
and n(t) = (ni(t)) be the population vector. Since there are ni(t) individuals in
class i at time t, aij nj(t−1) of which come from class j, this probability is given by

pij =
aij nj(t− 1)

ni(t)
. (2)

Now, let us assume that A is primitive, i.e. that there exists a non-negative integer
t such that all the entries of At are strictly positive. In that case, the population
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structure will converge to a unique stable distribution given by the vector w whose
entries sum to one and satisfying

Aw = λw , (3)

where λ, the greatest eigenvalue of A, gives the asymptotic growth rate of the pop-
ulation (Caswell, 2001). If we then assume that the population is at its stable stage
distribution, n(t) ∝ w, we have nj(t−1)/ni(t) = wj/(λwi) and Equation (2) becomes

pij =
aijwj
λwi

. (4)

Because each individual in the population at time t is descended from some
individual at t − 1, the rows of the matrix P = (pij) sum to one, so that it is a
Markov matrix. Furthermore, the associated Markov chain is ergodic due to the
primitivity of A, since P and A have the same pattern of non-zero entries. This
Markov chain allows one to track the classes visited by a lineage backwards in time,
i.e., it records the (infinite) sequence of stages occupied by an individual and its
ancestors.

The stationary probability distribution of P, which corresponds to the asymptotic
proportion of time that this backwards-time lineage spends in each class, is given by
π, the left eigenvector of P satisfying π = πP, whose entries have been scaled to
sum to 1. Moreover,

πi = viwi , (5)

where v, the (row) vector of reproductive values satisfying vA = λv, has been scaled
so that vw = 1. This product viwi = πi is also known as the class reproductive value.
Whereas the individual reproductive value vi gives the asymptotic contribution of
an individual of class i to the total size of the population far in the future, the
class reproductive value gives the asymptotic proportional decrease in the size of the
population far in the future if we were to kill all class i individuals at the present
time in a population at its stationary stage distribution. Thus, equation (5) shows
that the asymptotic proportion of time a lineage spends in class i going backward in
time, πi, is equal to the proportional reduction in long-term population-size due to a
single culling event of all individuals in class i in an otherwise stationary population.

The matrix P also appears in several other contexts. In population-genetics, it is
known as the “backward migration matrix” and plays a central role in the theory of
evolution in class-structured populations where it is used to update the class-specific
allele frequencies from one generation to the next (Bodmer and Cavalli-Sforza 1968,
Taylor 1990, Rousset and Ronce 2004, Rousset 2004, pp. 190-192). In that literature,
the key observation is that the allele frequency in class i in the current generation,
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xi(t), is the average of the allele frequencies for the other classes j in the previous
generation weighted by the probability that an individual currently in class i was
descended from an individual in class j, so that xi(t) =

∑
j pijxj(t− 1).

In ecology, the importance of the Markov chain defined by P arises due to the
close connection between the backwards-time Markov chain defined by P and the
eigenvalue elasticities of the transition matrix. In particular, the frequencies of tran-
sitions between states in the stationary chain defined by P (i.e. transitions along the
arcs of the life-cycle graph) are equal to the elasticities of the asymptotic growth rate
λ to the entries of the projection matrix (Bienvenu and Legendre, 2015):

πipij = eij where eij =
aij
λ

∂λ

∂aij
. (6)

Many formal features of the matrix of elasticities E = (eij), such as the fact that
the entries sum to one (de Kroon et al., 1986) and the fact that the row sums equal
the column sums (that is,

∑
i eik =

∑
j ekj, van Groenendael et al. 1994) are obvious

once one recognizes the matrix of elasticities as the asymptotic transition frequencies
of this genealogical Markov chain. At the same time the stationary distribution π
(class reproductive values) gives the diagonal entries of the sensitivity matrix, i.e.

πi =
∂λ

∂aii
,

and the generation time is simply related to certain sums of the stationary transition
probabilities πipij (Bienvenu and Legendre, 2015).

2.2. The forward chain, Q

The transition matrix P allows us to study how a lineage moves through the set
of classes as we look backwards in time. We now define a corresponding process that
describes the classes occupied by the descendants of a given individual as we look
along its lineage forward in time. The following construction is based on Tuljapurkar
(1982, 1993), with a straightforward generalization from Leslie matrices to arbitrary
primitive projection matrices.

While looking at lineages going backwards in time was relatively simple because
each individual has exactly one ancestor at any prior time, looking at lineages going
forwards in time is more complex due to the branching nature of genealogies. Thus,
to follow a lineage forwards in time requires decisions about which branches to follow.
Most importantly, we need to ensure that we will not get trapped in a ‘dead-end’ by
following a lineage that does not leave any descendants after a certain time.
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We can do so by picking an individual in the distant future and identifying its
ancestor at the present time. We then start from this ancestor and choose to follow
the branches that lead to the individual that we picked in the distant future. Because
far in the future the population is at its stationary stage distribution, when we trace
this lineage backwards in time the sequence of classes visited is described by the
Markov chain P of the previous section. Therefore, to describe it in forward time all
we have to do is to consider the time-reversed Markov chain of P, i.e. the Markov
chain Q whose probability transitions are given by

qij =
πjpji
πi

. (7)

Equation (7) simply expresses the fact that, at stationarity, the probability of going
from i to j in forward time is the same as the probability of going from j to i in
backward time. Note that the ergodicity of P is required to ensure that πi > 0 in
the definition of Q, and that Q is ergodic (since it has the same pattern of non-zero
entries as PT). Finally, it is easy to check that

∑
j qij = 1 and that the stationary

probability distribution of Q is π. For more on time-reversed Markov chains, see
e.g. section 5.3 of Kemeny and Snell (1976).

Substituting for pij and πi in equation (7), we get

qij =
vjaji
λvi

. (8)

This expression has a straightforward biological interpretation, which can in fact be
used to define Q without referring to P: first, recall that reproductive values give
the contributions of individuals to the long-term growth of the population. Indeed,

as τ → +∞, n(τ) ∼ vn(0)λτ w (9)

so each of the ni(0) individuals in class i at time 0 contributes viλ
τ to the

∑
i vi ni(0)λτ

individuals in the population at time τ (a proof of equation (9) can be found in
Chapter 1 of Seneta, 2006). Therefore, we can write down the probability that an
individual at time τ � t had its ancestor in class j at time t+ 1 given that its ances-
tor was in class i at time t: indeed, the ancestor at time t will leave aji descendants
in class j at time t + 1, each of them contributing vjλ

τ−(t+1) to the population at
time τ . Thus, out of the viλ

τ−t individuals left by the ancestor in class i at time t,
vjλ

τ−(t+1)aji will be descended from an individual in class j at time t+1. As a result,

qij =
vjλ

τ−(t+1)aji
viλτ−t

=
vjaji
λvi

,

and we recover equation (8).
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3. The genealogical decomposition

So far we have worked from a given projection matrix A, derived the correspond-
ing Markov chains defined by P and Q and discussed some of the properties of these
chains. This is in line with the most common applications of matrix population mod-
els where one estimates A from data and then computes various descriptors of the
population using the entries of A. However, sometimes it might be useful to work in
the opposite direction, for instance if we have observed the values of some descriptors
and we want to know the set of all projection matrices that are compatible with the
observed values (e.g. if we know the generation time and stable stage distribution,
what values are possible for the unobserved vital rates?). Moreover, from a the-
oretical perspective it is useful to understand whether the value of one descriptor
constrains the possible values of another, or alternatively if the two descriptors can
be “chosen” arbitrarily, in the sense that for any pair of values we can construct a
corresponding projection matrix.

In particular, given a forward or backward time genealogical Markov chain defined
by a primitive matrix P or Q, we would like to construct a corresponding projection
matrix A that exhibits the appropriate genealogy. To do this, first notice that P,
Q and the matrix of elasticities E all uniquely determine each other, and each of
these also determines the vector of class reproductive values π. In particular, π is
the dominant left eigenvector of P and Q and is also given by the row and column
sums of E, that is,

πk =
∑
i

eik =
∑
j

ekj . (10)

Given π, one can then convert between the entries of P, Q, and E using equations
(6) and (8).

Once P, Q or E is specified, we can then construct a corresponding matrix A by
solving for aij in equation (4):

aij = λ pij
wi
wj

. (11)

Thus, for a given choice of P, Q or E we can explicitly construct all possible compat-
ible projection matrices by making a choice of stationary stage distribution w and
asymptotic growth rate λ. Alternatively, we can choose the vector of reproductive
values v and the growth rate λ since, once P, Q or E is given, w and v determine
each other by the relations πi = viwi. Assuming that the specified w (or v) and λ
are strictly positive, the resulting A is primitive because it has the same pattern of
non-zero entries as P, which is primitive. Note that these positivity conditions on
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w (or v) and λ do not represent a substantial constraint on our choice of w and λ
because, by the Perron-Frobenius Theorem, these conditions hold for any primitive
matrix A.

The previous paragraphs shows that it is possible to specify the P matrix indepen-
dently of w and λ. But from an intuitive perspective, the fact that the genealogical
dynamics can be decoupled from the relative abundances of the classes at stationar-
ity is perhaps surprising. To see why this is the case, it is helpful to consider what
happens to a matrix population model when we change the units that the model is
expressed in. For instance, instead of tracking the number of individuals in each class
we could track the amount of biomass in each class, where individuals within a class
have uniform masses. Indeed, this might be quite useful for management purposes
in the case of forests or fisheries where we might primarily be interested in yields
rather than the number of individual organisms. Using units different from individ-
uals might also be relevant in situations where it is hard to count individuals (e.g.,
plants forming thick mats where it is hard to isolate individuals but easy to count
the number of fruits or to measure the area of the mat; colonies of microorganisms,
etc) or in which we are interested in the number of gene copies and individuals in
different classes have different ploidy. More generally, if ci is the number of new units
in class i for each old unit in class i (e.g. ci is the mass in grams per individual of
class i), then the entries of the matrix population model in the new units are given
by

ci aij
cj

, (12)

and the new stable stage distribution has entries proportional to ciwi and reproduc-
tive values (per unit) of vi/ci. Importantly, when we calculate the backward Markov
chain we see that it is invariant to changes of units since

(ciaij/cj) (cjwj)

λ (ciwi)
=
aijwj
λwi

.

This corresponds to the simple fact that when tracing genealogies, it doesn’t matter
whether we track where a given gram came from in the previous time step or where
the individual containing that gram came from. The genealogical Markov chains
are likewise independent of the asymptotic growth rate λ because changes in λ only
change the absolute size of the population and not the proportions in each class. Be-
cause the stable stage distribution depends on the choice of units (picking a random
gram is different than picking a random organism), by choosing the units appropri-
ately, we can produce an arbitrary stable stage distribution while maintaining a fixed
genealogical Markov chain.
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The concept of changes of units also provides an additional perspective on the
matrices P and Q in that these matrices arise when we express A in terms of its
natural units. In particular, if we pick ci = vi, so that the dynamics of the population
are expressed in units of reproductive value, then the new projection matrix is λQT

(see Equation 8; the transpose arises because we are following the convention that
projection matrices act on column vectors and transition matrices act on row vectors)
and the stable stage distribution is π, the vector of class reproductive values. Thus,
another way of viewing the stable stage distribution of the original projection matrix
A is as a way of partitioning a given amount of class reproductive value, πi, to a
certain number of individuals. For a fixed value of πi = wivi, one can choose to have
either a large number of individuals each with a small reproductive value (large wi,
small vi) or a small number of individuals each with a relatively large reproductive
value (large vi, small wi). This flexibility is another way of understanding why a
fixed set of genealogical dynamics is compatible with an arbitrary observed stable
distribution of the population across classes.

3.1. Descriptors and their relations

The above discussion helps clarify the relationships between several commonly
used descriptors of matrix population models. In particular, it is helpful in under-
standing the relationship between the sensitivities and elasticities of λ with respect to
the aij. While the elasticities are completely determined by the genealogical Markov
chain, the sensitivities

sij =
∂λ

∂aij
= viwj (13)

depend on both the genealogical Markov chain and the choice of units. This makes
sense because elasticities measure the effects of multiplicative perturbations which
are independent of the choice of units (doubling a rate results in twice as much out-
put, whether the input and output are measured in individuals or grams), whereas
sensitivities measure the effects of additive perturbations, which depend on the choice
of units (producing an extra fraction of an individual per individual is physically dif-
ferent than producing an extra fraction of a gram per gram if individuals of different
classes do not have the same mass). The exception to this dependence on the choice
of units are the diagonal entries of the matrix of sensitivities sii = viwi = πi, since
the aii are invariant to the choice of units and the sensitivities are equal to the class
reproductive values. Interestingly, the sensitivities only depend on the genealogical
Markov chain through its stationary distribution (i.e. through the class reproductive
values πi). Thus, sensitivities contain information not contained in the elasticities in
that they reflect a choice of units, but elasticities contain information not contained
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in the sensitivities in that they reflect the specific paths that lineages tend to take
through the life cycle and not just the fraction of time lineages take in each stage.

Another important set of descriptors are the full set of eigenvalues of the projec-
tion matrix. These are determined by λ together with the genealogical Markov chain
and are independent of the choice of units, reflecting the more general fact that the
eigenvalues of a matrix are independent of the basis it is expressed in. Importantly,
the genealogical Markov chain alone determines the ratios between eigenvalues (e.g.
the damping ratio), which explains why knowledge of the genealogical Markov chain
alone is sufficient to understand the approach to stationarity (Tuljapurkar, 1982,
1993).

3.2. Two parametrizations of 2× 2 models

To illustrate the discussion above, we work out the (P,w, λ) parametrization
in the case of 2 × 2 models. Any 2 × 2 matrix model can be parametrized by 4
non-negative numbers a, b, c and d through the projection matrix

A =

(
a b
c d

)
.

Though these four parameters usually have straightforward individual-based inter-
pretations, in the general case the link between them and the descriptors of the
population is not immediate.

To write out the (P,w, λ) parametrization, we start by noting that any ergodic
Markov matrix P can be parametrized by two numbers p and q in ]0, 1], where either
p or q can be equal to 1, but not both:

P =

(
1− p p
q 1− q

)
.

Similarly, any stable distribution vector w is parametrized by a single number x > 0:

w =
1

1 + x

(
x
1

)
,

Choosing λ as the fourth parameter and using equation (11), we get the following
parametrization for A:

A = λ

(
1− p px
q/x 1− q

)
.

Although it looks more complicated than the (a, b, c, d) parametrization, this parametriza-
tion has the advantage of taking important population-level descriptors such as the
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growth rate λ or the ratio x = w1/w2 directly as parameters. Similarly, the elasticity
and sensitivity matrices of these models are given by

E =
1

p+ q

(
q(1− p) pq
pq p(1− q)

)
and S =

1

p+ q

(
q q/x
px p

)
,

and the eigenvalues are λ and λ(1− p− q) so that the damping ratio is 1/|1− p− q|
(which, as noted previously, depends only on p and q).

In principle, the (P,w, λ) parametrization could provide an alternative way to
build a projection matrix from field data (for instance, in the 2 × 2 case, λ can be
estimated by n(t+ 1)/n(t); x by n1(t)/n(t); p by the fraction of newborns and 1− q
by the fraction of individuals in class 2 that were already in class 2 in the previous
year). However, our results are likely to be most useful in theoretical studies of matrix
populations models: for instance, by providing a way to specify “random” projection
matrices with prescribed descriptors (e.g., to test a conjecture), or to compare models
(e.g., see what the fertilities and survival probabilities must be to have a model with
the same stationary distribution and elasticities but a higher growth rate). As an
illustration of the utility of our approach, we turn now to our main application of the
genealogical decomposition: reducing the number of states in a matrix population
model while optimally preserving the properties of the original model.

4. Application: collapsing states

We have suggested that in some cases it might be more enlightening to think of
a matrix population model as a (genealogy, partitioning of class reproductive value,
growth rate) ≡ (P,w, λ) triple rather than as a population projection matrix. We
illustrate this by proposing a new method for aggregating a set of states in a matrix
population model into a single state. As discussed in the Introduction, this is an
important practical problem when trying to compare projection matrices of different
sizes, because the dimensionality of the matrix population model is known to affect
the estimates of various descriptors (Silvertown et al., 1993; Enright et al., 1995;
Benton and Grant, 1999; Ramula and Lehtilä, 2005; Salguero-Gómez and Plotkin,
2010; Picard and Liang, 2014).

4.1. Individualistic collapsing

The most natural way to collapse a model is to put oneself in the shoes of the
experimenter building the model, and then simply disregard the now superfluous
distinctions between individuals in the collapsed classes. To do so, we use the model
that we want to collapse to “simulate” the population dynamics. Then, we build
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the collapsed model by counting individuals in terms of the collapsed classes and
interpreting the entries of the matrix as per capita contributions – that is, ak` is the
number of individuals of class k that come from class ` divided by the number of
individuals that were in class `. As a result, the total contribution of collapsed class j
to collapsed class i is obtained by counting the number of individuals coming from
any class ` collapsed to j that are present in any class k collapsed to i. Dividing by
the total number of individuals in collapsed class j, we get the per-capita contribution
of collapsed class j to collapsed class i:

âij(t) =

∑
k∈ϕ−1(i)

∑
`∈ϕ−1(j)

ak` n`(t)∑
`∈ϕ−1(j)

n`(t)
,

where the ak`’s are the entries of the original model and the âij’s those of the collapsed
model, and ϕ is the collapsing function, which is defined by ϕ(k) = i if and only if
class k corresponds to class i in the new model. ϕ−1(i) denotes the preimage of i by

ϕ, i.e. the set of classes in A that are collapsed to i in Â. For simplicity, from now
on we will note k ⊂ i for k ∈ ϕ−1(i), the justification for this notation being that k
can be thought of as a subclass of i.

If we want this collapsing to be independent of the composition of the population,
we can assume that the population is at its stable stage distribution, w, in which
case we have

âij =

∑
k⊂i

∑̀
⊂j
ak`w`∑̀

⊂j
w`

. (14)

We call this method individualistic collapsing and hereafter refer to Â as the individ-
ualistic model and to A as the original (or extended) model. We use hats to denote
any quantity associated with the individualistic model.

Individualistic collapsing is the standard method used for collapsing projection
matrices. It was introduced by Enright et al. (1995) and later generalized by Salguero-
Gómez and Plotkin (2010). Its properties, which we now review, have been studied
by Hooley (2000).

We start by noting that individualistic collapsing preserves the asymptotic growth
rate and the stable stage distribution. Indeed, let

ŵi =
∑
k⊂i

wk . (15)
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Then, ∑
j

âijŵj =
∑
j

∑
k⊂i

∑
`⊂j

ak`w`
ŵj

ŵj

=
∑
k⊂i

∑
j

∑
`⊂j

ak`w`

=
∑
k⊂i

λwk

= λŵj

Moreover, if A is primitive, then clearly so is Â and thus the Perron-Frobenius
theorem ensures that there is only one (that is, up to a multiplicative constant) right

eigenvector of Â with only positive entries (Seneta, 2006). Since this is the case of

the vector ŵ defined in (15), it is the dominant right-eigenvector of Â and λ is the
associated eigenvalue.

What about reproductive values? The classic interpretation of these quantities
suggests that we should have

v̂i
?
=

∑
k⊂i

vkwk∑
k⊂i

wk
.

However, unless ∀i, ∀k, ` ⊂ i, vk = v` = v̂i, that is, if the classes collapsed together
have the same reproductive value (in which case we clearly have vÂ = λv̂), this

candidate is not a left-eigenvector of Â. Furthermore, reproductive values behave in
a highly unintuitive way under individualistic collapsing, as illustrated by the fact
that collapsing a set of classes can change the reproductive values of other classes
that are not collapsed.

Another shortcoming of individualistic collapsing is that it does not commute
with the construction of the genealogical matrices, in the sense that the descriptors
of the Markov chain P constructed from A are not compatible with those of the
Markov chain P̂ constructed from Â. Take for instance the stationary probability
distributions, π and π̂: clearly, since the time spent in class i by a lineage is the
sum of the time spent in each of the subclasses of i, π̂i should be equal to

∑
k⊂i πk.

However, this is not the case, since, unless v̂i =
∑

k⊂i vkwk/
∑

k⊂iwk,

π̂i = v̂iŵi 6=
∑
k⊂i

vkwk .

As a result of this, the biological descriptors which depend on P, such as the gener-
ation time, will not be the same for A and Â. Most importantly, the elasticities are
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affected: since they quantify the relative change in λ in response to a multiplicative
perturbation of the entries of the matrix, we should expect the elasticity of the col-
lapsed entry âij to be the relative change in λ when all the corresponding entries in
A are subjected to the same multiplicative perturbation. Thus, if we write

ak` =

{
c bk` if k ⊂ i and ` ⊂ j

bk` otherwise

and evaluate around c = 1 (which implies ∂ak`
∂c

= akl if k ⊂ i and ` ⊂ j, and 0
otherwise), then we should have

êij =
âij
λ

∂λ

∂âij

?
=

1

λ

∂λ

∂c

=
1

λ

∑
k, `

∂λ

∂ak`

∂ak`
∂c

=
∑
k⊂i

∑
`⊂j

ak`
λ

∂λ

∂ak`

=
∑
k⊂i

∑
`⊂j

ek` ,

i.e. the elasticity of λ to âij should be the sum of the elasticities of λ to the cor-
responding entries of A, in accordance with the interpretation of the elasticities as
asymptotic frequencies of traversal of the arcs. However, this is not the case with
individualistic collapsing, since π̂i 6=

∑
k⊂i πk.

Finally, note that individualistic collapsing does not commute with changes of
units, in the sense that if we define the collapsed conversion factors naturally as the
weighted average within each collapsed class, i.e.

ĉi =

∑
k⊂i ck wk∑
k⊂iwk

, (16)

then we see that switching to a given unit, collapsing and then switching back to the
original unit gives a model different from the one obtained by collapsing alone. In
other words, individualistic collapsing depends on the units the model is expressed
in.

4.2. Genealogical collapsing

Given the limitations of individualistic collapsing, we look for an alternative
method. Our framework suggests collapsing the (genealogy, partitioning of repro-
ductive value, growth rate) triple rather than the projection matrix A, as illustrated
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by figure 1. The idea behind this approach is that we will be able to choose how we
collapse each of the separate components of the triple in order to preserve specific
properties. This construction can be done using either of P, Q or E for the genealog-
ical part of the triple, and either of w or v for the distribution of class reproductive
value among the classes of the model – all these possibilities are equivalent and will
give the same result. Here we use (P,w, λ).

Figure 1: Graphical comparison of the two collapsing strategies.

If we want to preserve the asymptotic growth rate and the stable stage distribu-
tion, then w and λ should be collapsed according to

w?i =
∑
k⊂i

wk and λ? = λ . (17)

Therefore, all we have to do is specify how to collapse P. Some precaution is needed
here as, in the general case, it is impossible to collapse a Markov chain – in the
sense that the process we obtain by aggregating the states of a Markov chain is
not a Markov chain. To see this, consider a Markov chain that goes from state i
to state i + 1 and then from i + 1 to i + 2 with probability 1. If states i and
i + 1 are to be collapsed together, the resulting system should spend exactly two
time intervals in the collapsed state – a behavior that cannot be accounted for by a
Markov chain; similarly, discarding information about the state space of a Markov
chain usually results in a loss of the Markov property. When it does not, the chain
is said to be lumpable. The reader is referred to chapter VI of Kemeny and Snell
(1976) for more on this subject. Here, we will not try to find conditions on the
life-cycle graph for the strong or weak lumpability of P, let us only mention that
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(1) from Theorem 6.3.2 of Kemeny and Snell (1976), the Markov matrix associated
with most models encountered in practice are not strongly lumpable and (2) at the
very least, we need the chains associated with P to be weakly lumpable when using
π as initial probability distribution, but even this is not easy to turn into simple
necessary and/or sufficient conditions on the life-cycle graph.

Therefore, rather than restricting ourself to the (probably very restricted) class
of matrix population models that have lumpable ergodic chains, we recognize that,
in general, the process obtained by observing the original Markov chain on the set
of collapsed classes is non-Markovian, but we seek to approximate it with a Markov
chain. It remains to specify what sense we would like to give to this approximation,
i.e. which properties we would like the original and the collapsed model to share.

If we want to preserve elasticities, which correspond to the stationary probability
distribution on the arcs of P, we would like P? and P to have compatible stationary
probability distribution, i.e. π?i =

∑
k⊂i πk. Looking at the calculations that showed

that individualistic collapsing preserves the stable stage distribution, we see that this
can be achieved by letting

p?ij =

∑
k⊂i

∑̀
⊂j
πk pk`∑

k⊂i πk
. (18)

And indeed, it is then immediate that π?P? = π?.
Having collapsed (P,w, λ) into (P?,w?, λ?), all we have to do is reconstruct A?

from (P?,w?, λ?) using equation (11). After simplifications, we get

a?ij =

∑
k⊂i

∑̀
⊂j
vk ak`w`(∑

k⊂i vkwk∑
k⊂i wk

) ∑̀
⊂j
w`

. (19)

It is easy to check that

v?i =

∑
k⊂i

vkwk∑
k⊂i

wk
and w?j =

∑
`⊂j

w` (20)

are, respectively, left and right eigenvectors of A? associated with λ? = λ. By the
same argument as previously, A? being primitive, we conclude that v?, w? and λ?

are indeed the vector of reproductive values, the stable stage distribution, and the
growth rate of A?, respectively – in accordance with intuition. Similarly, one can
check that

e?ij =
∑
k⊂i

∑
`⊂j

ek` .
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We call this new method for collapsing genealogical collapsing. In addition to
preserving the growth rate, stable stage distribution, reproductive values and elas-
ticities, this method also has conceptually satisfying properties such as the fact that
it commutes with unit conversion, provided that the collapsed conversion factors are
defined by

c?i =

∑
k⊂i ck wk∑
k⊂iwk

. (21)

The easiest way to see why this is the case is to remember that, in the (P,w, λ)
decomposition, only w is affected by the choice of units and, clearly, collapsing w
commutes with changes of units, since

∑
k⊂i ck wk = c?i w

?
i .

The fact that genealogical collapsing commutes with unit conversion is conceptu-
ally satisfying because there is something arbitrary in the choice of units (even though
in the case of population models, the individual usually imposes itself as the natural
unit). Moreover, the previous discussion about units allows us to better interpret ge-
nealogical collapsing: from formula (19), we can see that it consists in expressing the
model in terms of reproductive values, as described by (12), with ci = vi, performing
individualistic collapsing on the resulting model, and then switching units back to
individuals again. This allows us to understand where individualistic collapsing fails:
in individualistic collapsing, individuals of different classes are added. But, strictly
speaking, an individual of class k is not the same unit as an individual of class ` 6= k.
By contrast, reproductive value is a “central” unit in the sense that only the amount
of reproductive value counts, not the individuals carrying it – in accordance with
the intuition behind formula (20) for the collapsing of reproductive value. Thus, in
genealogical collapsing, adding contributions is made possible by the fact that they
have been converted to a common unit first.

Before closing this technical presentation of genealogical collapsing, it should be
noted that if the reproductive values of the classes collapsed together are the same
(∀k, ` ⊂ i, vk = v` = v?i ), then equation (14) and equation (19) give the same results,
that is, genealogical collapsing reduces to individualistic collapsing.

4.3. Examples

We close our presentation of genealogical collapsing by working out a few exam-
ples that illustrate the difference between individualistic and genealogical collapsing.
More specifically, we give three simple models that correspond to very different bio-
logical situations but yield almost identical individualistic models.
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A B

C D

Figure 2: A–C, the life-cycle graphs associated with the projection matrices A(1), A(2) and A(3),
respectively. D, the structure of the life-cycle graph obtained by collapsing states 2′ and 2′′ in any
of these three models.

Consider the projection matrix

A(1) =

 0 2 2
0.33 0.66 0
0.33 0 0.66

 ,

whose life-cycle graph is depicted in figure 2.A. It corresponds to a model with two
identical adult classes. The dominant eigen-elements of A(1) are

λ(1) = 1.53 , v(1) =
(
0.64 1.47 1.47

)
and w(1) =

0.57
0.22
0.22


It can be checked from equation (14) that, conforming to intuition,

Â(1) =

(
0 2

0.66 0.66

)
Moreover, v

(1)
2 = v

(1)
3 , i.e. the classes that are collapsed have the same reproductive

value. We have seen that in that case, genealogical collapsing and individualistic

collapsing yield the same projection matrix. Therefore, A(1)? = Â(1).
But now consider the matrix

A(2) =

 0 0.1 6.35
0.33 0.9 0
0.33 0 0.1


20
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with dominant eigen-elements

λ(2) = 1.52 , v(2) =
(
0.83 0.13 3.71

)
and w(2) =

0.57
0.30
0.13

 .

This projection matrix, whose life-cycle graph is depicted in figure 2.B, corresponds
to a very different biological situation, where the two adults types are radically
different: one has a low fertility and high survival while the other has a high fertility
and low survival. This translates into the first one having a lower reproductive value
while making-up a bigger proportion of the stable population. Collapsing states 2
and 3 in A(2) gives us:

Â(2) =

(
0 2.00

0.66 0.66

)
and A(2)? =

(
0 2.00

1.04 0.16

)
,

so that different from A(1) though A(2) is, Â(2) ≈ Â(1). Furthermore, notice that

Â(2) and A(2)? are actually quite different, demonstrating that individualistic and
genealogical collapsing can give quite different results, even on simple models. More
subtly, the bottom left entry of A(2)? also illustrates the fact that, unlike individual-
istic collapsing, genealogical collapsing does not guarantee that collapsing transitions
of weight smaller than 1 yields a transition of weight smaller than 1, forbidding one
to interpret the collapsed weight as a survival probability. We will return to this
issue in the Discussion.

Finally, consider yet another projection matrix (shown in figure 2.C):

A(3) =

 0 2 2
0.66 0.22 0

0 0.66 0.23

 ,

with dominant eigen-elements

λ(3) = 1.53 , v(3) =
(
0.69 1.59 1.06

)
and w(3) =

0.57
0.29
0.15

 ,

which collapses to

Â(3) =

(
0 2.00

0.66 0.66

)
and A(3)? =

(
0 2.00

0.74 0.55

)
.
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A(3) is yet another example of model that is very different from A(1) and A(2) and
yet shares the same individualistically collapsed matrix.

Table 1 gives some classic biological descriptors for each of the models presented
above. It shows that the difference between the descriptors of the individualistic
model and those of the genealogical one can be non-negligible. Note that, on these
particular examples, the net reproductive rate R0

? of the genealogical model seems
to be a better approximation of real value (i.e. the R0 of the original model) than

the net reproductive rate R̂0 of the individualistic model.

A(1) A(2) A(3)

v̂ ( 0.64 1.47 ) ( 0.64 1.48 ) ( 0.64 1.47 )
v? ( 0.64 1.47 ) ( 0.83 1.22 ) ( 0.69 1.41 )

T̂ 2.76 2.76 2.76
T = T ? 2.76 2.12 2.57

R̂0 3.88 3.85 3.89
R0

? 3.88 2.48 3.31
R0 3.88 2.66 3.14

Ê
(

0 0.36
0.36 0.28

) (
0 0.36

0.36 0.27

) (
0 0.36

0.36 0.28

)
E?

(
0 0.36

0.36 0.28

) (
0 0.47

0.47 0.06

) (
0 0.39

0.39 0.22

)
Table 1: The reproductive value vectors v, generation times T , net reproductive rates R0 and
elasticity matrices E of the individualistically collapsed and genealogically collapsed models for
each of the three models presented in the main text. Small discrepancies such as the fact that the

entries of Ê(2) sum to 0.99 are due to the fact that, as in the rest of the section, the results have
been rounded to two digits to be displayed.
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5. Discussion

Matrix population models are used to calculate the ecological properties of a pop-
ulation (e.g., the population growth rate, the stable stage structure, etc.) from the
traits of the individuals composing it (survival probabilities and fertilities). However,
the link between the descriptors of the individuals and those of the population can
be complex, making it hard to see how some of the ecological descriptors of the pop-
ulation are related. We have suggested an alternative framework to partly solve this
problem, in which matrix population models are parametrized by a set of descriptors
that capture various aspects of the population dynamics. In this parametrization,
rather than directly specify the entries of the population projection matrix (n2 de-
grees of freedom, where n is the number of stages) we instead specify the elasticities,
which contain information about the realizations of the life-cycle along the lineages
of the genealogy of the population (n2 − n degrees of freedom); the stable stage
distribution – or, equivalently, the reproductive values – which determines the par-
titioning of class reproductive value into individuals (n− 1 degrees of freedom); and
the asymptotic growth rate, which describes the expansion of the population over
time (1 degree of freedom).

The genealogical decomposition follows directly from previously known facts
about matrix population models (Demetrius, 1974, 1975; Tuljapurkar, 1982, 1993),
but to our knowledge had not previously been recognized as an alternative way of
specifying a matrix population model. The main conceptual insight this decompo-
sition offers is that some properties of a structured population depend only on the
genealogical properties of the population. Furthermore, these properties are inde-
pendent of the units we use to keep track of organisms (biomass, individuals, etc.),
or equivalently, the form of the stationary stage distribution.

This primary insight is in some ways a generalization of the well-known obser-
vation that although demographic events (birth, death, survival) as a rule happen
to individuals in various states, to compare the importance of these events for the
population dynamics, one needs to “convert” individuals in different states to a com-
mon unit by weighing them with their reproductive values (Fisher, 1930). Our results
show that one can go one step further, and characterize the dynamics of a population
in this common unit separately from the description of how the dynamics manifest
themselves in units of individuals.

This kind of separation seems well suited for theoretical studies of matrix popula-
tion models because, whereas changing one entry of the projection matrix will affect
many biological descriptors, changing a parameter in our parametrization will leave
many of them unchanged, or affect them in a straightforward way. The parametriza-
tion also makes it easy to build projection matrices with prescribed properties. Fi-
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nally, if clarifies the link between widely used descriptors by showing how some of
them can be decoupled.

For instance, there has been a long-going debate about when to use elasticities
or sensitivities. Our framework suggests that elasticities should be favored when the
properties one is interested in depend only on the genealogy of the population – or,
equivalently, when the units used to build the model do not matter; by contrast,
when units play a crucial role, using sensitivities seems a better option.

Our framework also helps make sense of recent results on the accumulation of
neutral mutations in structured populations (Balloux and Lehmann, 2012; Lehmann,
2014b; Allen et al., 2015; Amster and Sella, 2016). These results show that the
neutral substitution rate can be very different than the expected mutation rate of a
random individual drawn from the population, in apparent contradiction of classical
results in population genetics (Kimura et al., 1968). However, these results appear
very natural under our framework because the neutral substitution rate is simply
the long-term frequency of mutations along lineages. Thus, the neutral substitution
rate depends only on the genealogies and stage-dependent mutation rates and is
completely uncoupled from the stationary stage distribution (and hence from the
expected mutation rate in a randomly drawn individual).

A third potential use of the genealogical decomposition is to uncover underly-
ing similarities in the life-history of different species that are not apparent in the
individual-based projection matrices. Our two-state examples in section 3.2 illus-
trate this: if the two states are, say, juveniles and adults, populations with very
different ratios of juveniles to adults (e.g., high or low x) might nonetheless have
similar P matrices. This would mean that the dynamics of lineages are similar in
the two populations, and therefore the populations would also have similar elastic-
ities, generation times, and class reproductive values despite their grossly different
compositions.

An important limitation of our analysis arises from the deterministic nature of
matrix population models. One interpretation of these models is that they describe
the dynamics of the expected abundances of the types in a discrete time multi-type
branching process (see chapter 5 of Athreya and Ney (1972) for a mathematical
presentation of multi-type branching processes, and chapter 16 of Caswell (2001)
for more on the link with matrix population models), and all of the ingredients
of the genealogical decomposition are available in this framework. For instance, a
rich literature exists on the structure and convergence properties of the genealogical
Markov chains and their relation to the asymptotic growth rate in the broader con-
text of multi-type branching processes (Hermisson et al., 2002; Georgii and Baake,
2003; Baake and Georgii, 2007; Leibler and Kussell, 2010; Wakamoto et al., 2012;
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Sughiyama et al., 2015; Kobayashi and Sughiyama, 2015). However, there are also
important differences between the determistic and the stochastic setting: whereas in
a deterministic setting the choice of units is in some sense arbitrary, in branching
processes the choice of some particle as the unit is central to the specification and
analysis of the model, as the particles make independent contributions to the next
generation.

Another important stochastic generalization of matrix population models arises
when considering the joint genealogy of two or more individuals sampled from the
population, as in coalescent-based approaches for studying structured populations (e.g.,
Rousset, 2004). In this context, the choice of units again becomes important because
the number of individuals in the class determines the probability of coalescence. Note,
however, that the theoretically important unit of individuality in this context is the
chromosome rather than the organism. Thus, whereas our analysis depends on the
ability to change units while preserving many features of the model, more detailed
stochastic models will often have a single natural choice of unit.

We illustrated the practical potential of the genealogical decomposition by show-
ing how it naturally leads to a new solution to the problem of aggregating stages
in a matrix population models. This new method, which we dubbed “genealogi-
cal collapsing”, has many properties not enjoyed by the standard, “individualistic”
method for collapsing, such as the fact that it preserves the reproductive values and
the elasticities, and that it is independent of the units of the model.

One obvious application of genealogical collapsing is to allow demographic com-
parisons between species modeled with different numbers of stages (e.g. Enright et al.,
1995). In this case, the applicability of the method is the same as that of individual-
istic collapsing: any set of classes of any primitive projection matrix can be collapsed
thanks to equation (19). Therefore, a natural question arises: when should genealog-
ical collapsing be favored over individualistic collapsing? If the classes collapsed to-
gether have the same reproductive value, both methods are equivalent. However, as
shown in section 4.3, when the reproductive values of the classes collapsed together
differ, the differences can be substantial.

If one is primarily interested in descriptors such as the reproductive values, the
elasticities, or descriptors that are expected to be closely related to these, then
genealogical collapsing should be used. If by contrast what matters most is the
interpretation of the entries of the projection matrix as per capita contributions,
then individualistic collapsing seems a better option. In that case, classes should
preferentially be grouped based on similarity of the reproductive values, rather than
by their similarity in terms of other demographic traits; if the reproductive values of
the classes collapsed together differ substantially, then one should be careful about
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the resulting collapsed model. In any case, it is probably best to compare the results
obtained with both methods. Finally, note that if one is only interested in global
(that is, non class-specific) quantities such as the net reproductive rate, etc, then
these should of course be computed from the original model.

Another possible application of genealogical collapsing is to simplify integral pro-
jection models (Easterling et al., 2000; Ellner and Rees, 2006; Merow et al., 2014),
where some aspects of the organismal state are continuous, to standard matrix pop-
ulation models containing only discrete states. While current discretization methods
often require a very fine grid over the continuous states to provide a good approx-
imation (Zuidema et al., 2010), the theoretical guarantees on the performance of
genealogical collapsing suggests that genealogical collapsing might provide more sat-
isfactory results for coarse discretizations. We note, however, that the rigorous anal-
ysis of integral projection models is quite technical (Ellner and Rees, 2006) and that
the methods described here are only applicable to the extent that a fine discretiza-
tion provides a sufficiently accurate approximation to the full integral projection
dynamics.

A third possible application of collapsing is to assess the impact of within-class
heterogeneity in the vital rates. The fact that the vital rates are homogeneous within
a class is an underlying assumption of matrix population models, but it is rarely met
in practice so it is natural to wonder how this can affects the output of a given
model. To estimate this, one can formulate a specific hypothesis about how the
heterogeneities are distributed within the classes by thinking of the classes as being
composed of several subclasses. The model can then be “extended” into a compatible
model, i.e. a model that will give the model from which we started when collapsed us-
ing individualistic collapsing. For instance, if the initial model was built by counting
individuals and interpreting the entries of the projection matrix as per capita contri-
butions, then the initial model can be seen as the individualistically collapsed model
associated with the “true” extended model. Comparing the initial model with the
model obtained via genealogical collapsing of the extended model can thus be used
to get an idea of how important the discrepancies introduced by the heterogeneities
of the vital rates within the classes can be. Note that this scheme has the advantage
of allowing for a very selective relaxation of the within-class homogeneity hypothesis,
because all the other assumptions on which the study of matrix population models
is based are kept.

All of this is in the spirit of the examples presented in section 4.3, where A(2)

and A(3) can be viewed as two different hypotheses about the form of heterogeneity

in the vital rates of class 2 of model Â(2) ≈ Â(3). Similarly, most matrix population
models encountered in practice are either age-based (Leslie models) or size-based,
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whereas the vital rates are usually known to depend on both variables. Collapsing
can be used to convert between these two types of models, by extending a size-based
model into an (age, size)-based model and then collapsing it into an age-only model,
as depicted in figure 3. In particular, given a size-based model, once can construct
an extended version of this model where the states are (age, size) pairs, but the vital
rates are determined entirely by size as in the original model. Collapsing such a
model to include only size classes recovers the original model because the vital rates
(and hence reproductive values) are determined solely by size. However, reproductive
value will typically vary within age classes, and so the results of collapsing to an age-
only model will depend on the collapsing method used.

size

a
g
e

size
a
g
e

size

a
g
e

Figure 3: An (age, size)-based model and the corresponding age-based model and size-based model,
both obtained by collapsing some of the classes of the (age, size) model. Recovering the original
model from the collapsed one requires additional hypotheses about the distribution of vital rates
within the classes, made on a per case basis and based on a good knowledge of the organism and
of the population being studied. Comparing the individualistic and genealogical model can be used
to test how these hypotheses impact the output of the model.

The discussion above highlights an important conceptual implication of our re-
sults: since in practice models are built by counting individuals, any matrix pop-
ulation model can be viewed as the individualistically collapsed version of a “real”

27

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 1, 2017. ; https://doi.org/10.1101/067793doi: bioRxiv preprint 

https://doi.org/10.1101/067793
http://creativecommons.org/licenses/by-nc-nd/4.0/


extended model to which we do not have access. As a result, computing descriptors
such as the elasticities or the reproductive values can give incorrect results, even
if there is no error in the entries of the projection matrix. In particular, it is a
fundamental limitation of matrix population models that they are not resilient to
within-class heterogeneities when it comes to computing the reproductive values or
the elasticities; by contrast, under stationarity they give consistent estimates of the
asymptotic growth rate and of the stable population structure.

A theoretical solution to this problem would be to count contributions in terms
of reproductive value rather than in individuals, but this is unlikely to be of much
use in practice since reproductive value cannot be measured directly.

Since collapsing is about discarding information from a model, any collapsing
method is bound to have shortcomings. We now discuss some of the limitations of
genealogical collapsing. The biggest problem of the method is that is does not retain
the interpretation of the entries of the population projection matrix as per-capita
entries. For instance, we have seen that collapsing transitions that correspond to
survival probabilities might yield a transition whose weight is greater than 1, so
that it cannot be interpreted as a probability. By contrast, this cannot happen with
individualistic collapsing, since the weight obtained by collapsing survival probabili-
ties individualistically is simply the observed average survival probability across the
collapsed classes for a population at its stable stage distribution.

However, this defect of genealogical collapsing may not be as much of a drawback
as it first appears because great care is needed in the interpretation and analysis
of survival probabilities in collapsed models even when using individualistic collaps-
ing. For instance, the classic method most notably developed in Cochran and Ellner
(1992) and reviewed in chapter 5 of Caswell (2001) consists in interpreting survival
probabilities as the transition probabilities of an absorbing Markov chain that tracks
the moves of individuals between the classes of the model during their life-time.
However, when viewed in the reduced state-space, the paths taken by individuals
under the original model will typically not be Markovian, violating a key assump-
tion of the Cochran and Ellner (1992) method. While individualistic collapsing does
optimally preserve the one-step survival probabilities, other descriptors calculated
by the Cochran and Ellner (1992) method will generally not be preserved. On the
other hand, genealogical collapsing results in transition rates that cannot be inter-
preted as survival probabilities but which nonetheless maintain several key global
properties of the population dynamics such as the generation time and reproductive
values, and which optimally preserve the one-step transition probabilities of the sta-
tionary genealogical Markov chains defined by the matrices P and Q. Furthermore,
while entries of the genealogically collapsed projection matrix cannot be interpreted
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as per-capita contributions, their interpretation is actually straightforward from a
different point of view: since it does not make sense to add-up individuals from
different classes, we express all contributions in terms of reproductive values, sum
them, and then convert back the result in terms of individuals by using the collapsed
reproductive value as the conversion factor.

It should also be noted that even though individualistic collapsing is the de facto
standard for collapsing projection matrices, in some specific situations other methods
have been suggested. For instance, Yearsley and Fletcher (2002) proposed a method
that preserves the asymptotic growth rate, the stable stage distribution and the
generation time when collapsing adjacent stages in what are often called size-based
models (cf figure 3). Genealogical collapsing also enjoys all of these properties, but in
addition preserves the reproductive values and the elasticities, and is more general in
that it can be used to collapse any group of classes in any primitive matrix population
model.

Although genealogical collapsing is interesting in its own right, it is important
to see that that its properties flow fundamentally from its close relationship with
the reparameterization of matrix population models described here. Because this
parametrization allows the different global properties of the model to be altered in-
dependently from each other, each can be collapsed separately and thereby optimally
preserved. By clarifying the relationship between various global features of matrix
population models, we hope that this reparameterization will spur further innovation
in the inference and analyses of these models.
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