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Abstract

Genome-wide, cell-type-specific profiles are being sys-
tematically generated for numerous genomic and
epigenomic features. There is, however, no uni-
versally applicable analytical methodology for such
data. We present GSuite HyperBrowser, the first
comprehensive solution for integrative analysis of
dataset collections across the genome and epigenome.
The GSuite HyperBrowser is an open-source sys-
tem for streamlined acquisition and customizable
statistical analysis of large collections of genome-
wide datasets. The system is based on new com-
putational and statistical methodologies that per-
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mit comparative and confirmatory analyses across
multiple disparate data sources. Expert guidance
and reproducibility are facilitated via a Galaxy-
based web-interface. The software is available at
https://hyperbrowser.uio.no/gsuite

Introduction

Improvements in sequencing technologies in recent
decades have enabled the determination of the DNA
sequences of many large genomes as well as their func-
tional interrogation. Genome-wide profiles for a va-
riety of biological features are being systematically
generated for a wide range of cell types, often via
concentrated efforts by dedicated consortia. The En-
cyclopedia of DNA Elements (ENCODE) [1] project
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marked a substantial leap in this respect by mak-
ing available to the human genomics community a
broad collection of cell line-specific data on DNA ac-
cessibility and transcription factor binding. The NIH
Roadmap Epigenomics Mapping Consortium further
contributed a significant amount of additional tissue-
and cell-type-specific data to the public domain, in-
cluding DNA methylation and histone modification
profiles for a large number of primary cells that. Kun-
daje et al. [2] refer to the combined collection of EN-
CODE and Roadmap data as 127 human reference
epigenomes. Most of these datasets are in the form
of genomic tracks, i.e. sets of elements anchored to lo-
cations in a reference genome, which provide a good
foundation for the integration of data representing
disparate genomic features.

The widespread utilization of these immense
amounts of available data is hampered by a lack
of tools providing automatic data integration and
sound statistical analysis of large collections of di-
verse datasets. Frameworks and toolkits such as
Bioconductor [3] (R), bedtools [4] (command line),
Galaxy [5] and HyperBrowser [6] (web interface) have
enabled the robust processing and analysis of ge-
nomic tracks with reduced development effort using
a variety of interfaces. However, these tools are es-
sentially limited to analyses involving either a sin-
gle track or a pair of tracks, with no support for
the analysis of track collections beyond the trivial
concatenation of results per track. For investiga-
tions aiming to exploit larger data collections through
comparative analyses across epigenomes or across ge-
nomic features, no general solutions are available (on
any platform). Dedicated solutions do exist for spe-
cific applications (e.g., assessing a cell type-specific
accessibility of a set of single nucleotide polymor-
phisms (SNPs) [7, 8] or annotating genomic vari-
ants [9, 10, 11, 12]), for specific analytical scenar-
ios (e.g., enrichment analysis of one track against a
collection[13]), and for specific basic operations (e.g.,
calculating the number of base pairs covered by all
tracks in a collection [14] or computing the intersec-
tion of a collection of tracks with the elements of
a single query track [10]). Figure 1 presents these
different frameworks and dedicated solutions in con-
text. The lack of comprehensive methodologies leads

to ad hoc development of analytical solutions in at-
tempts to answer novel questions that draw on the
power of large public or in-house data collections.
This may severely limit exploitation of the full po-
tential of current experimental technologies and pub-
lic data repositories, particularly by research groups
with limited bioinformatics resources. Furthermore,
the prevalence of ad hoc solutions has a negative
impact on reproducibility. A new layer of compu-
tational methodology is thus needed to directly ap-
proach generic questions formulated in the domain of
track collections.

Here, we present GSuite HyperBrowser, the first
comprehensive solution for the analysis of track col-
lections across the genome and epigenome. GSuite
HyperBrowser is an open-source, web-based sys-
tem that enables analysis of a broad array of both
hypothesis-driven and data-driven questions that
may be posed using large collections of genomic
tracks. We focus on questions of a comparative na-
ture, where a track is contrasted to (or analyzed in
the context of) other tracks. The intended input is
one or more carefully assembled collections of tracks,
with the tracks of a collection typically varying along
a single dimension of interest. The input could be a
collection of tracks for the same histone modification
across cell types or a collection of tracks represent-
ing different histone modifications in the same cell
type. The system uses a formalized representation of
track collections and includes tools for compiling new
collections from local files or public repositories. An-
alytical questions may relate to which tracks stand
out from such a collection, which tracks of a collec-
tion are the most similar to a separate (query) track,
or how the occurrence or co-occurrence of elements
from individual tracks in the collection varies along
the genome. Included within the system is guidance
on how these generic questions can be meaningfully
interpreted with respect to a specific genomic feature.
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Results

Overview

The present work is concerned with sets of informa-
tion elements anchored to specific coordinates in a
reference genome, which we refer to as genomic tracks
(short form: tracks). A genomic track may denote
e.g. the genome-wide set of experimentally deter-
mined locations of DNA methylation or DNA binding
by a transcription factor. Often, an investigation may
involve a carefully selected collection of tracks repre-
senting either different genomic features for a single
cell type or a single feature for multiple cell types.
We refer to collections of tracks selected for a par-
ticular analytical purpose as suites of tracks (short:
suites).

We define a simple and intuitive tabular format,
GSuite, to represent suites of tracks. The GSuite for-
mat can represent data at a local or remote server,
can include metadata, and can be seamlessly ex-
changed between individual tools in an analysis work-
flow. To allow efficient compilation of track suites
from a variety of public repositories (like ENCODE
and Roadmap Epigenomics) and thus enable integra-
tion of disparate data sources, we propose that rather
than downloading and reorganizing tracks according
to a unified structure, a concept akin to database
views is preferable; tracks can be browsed and se-
lected in a unified manner but are retrieved from their
respective sources only when a user assembles a track
suite.

Even for a pair of tracks, many different questions
can be asked regarding their relations [15]. In prin-
ciple, the number of possible relations that can be
queried for multiple tracks grows exponentially with
the number of tracks involved. Also, the complexity
of defining and interpreting analyses involving multi-
ple heterogeneous tracks is very high. A particularly
useful type of question is the comparative assessment
of tracks in a suite, where the tracks may be con-
trasted based on their relation to one another, to a
particular separate track or to tracks of another suite.
We delineate a set of generic questions that are useful
across a broad range of investigations, explore their
characteristics, and present a statistical methodology

for their resolution. Table 1 lists five of the main
questions, along with associated descriptive statistics
and hypothesis tests (details provided in Additional
file 1). The descriptive statistics can be based on dif-
ferent measures of similarity, and the hypothesis tests
can be based on different null models.

The representation, acquisition and analysis of
track suites are implemented in a comprehensive,
open-source software system, GSuite HyperBrowser.
The system builds on the Genomic HyperBrowser
[15, 6] and offers a web-based interface powered by
Galaxy [5], with several separate tools for the com-
pilation, preprocessing and analysis of track suites
(Figure 2). The web interface includes an interactive
tutorial to help new users quickly get up to speed with
meaningful analyses, guidance for every tool, and a
set of thoroughly annotated examples of biological
investigations.

Illustrative example

As an illustrative example, consider the exploration
of how binding sites for a given transcription factor
(TF) co-occur with binding sites of other TFs and
with various epigenomic marks. Because TF bind-
ing varies between cell types, such an exploration
should be conducted in a cell type-specific context.
Here, we describe a process for determining the co-
occurrence of ChIP-seq peaks for the GATA1 TF ver-
sus other TFs and functional epigenomic elements in
K562 cells, an established cell line for which abundant
experimental data are available. All analysis steps
are performed using tools within the GSuite Hyper-
Browser system. Further details of the analysis and
biological interpretations are discussed in Additional
file 2.

The first step is to browse available experimental
datasets for K562 cells in the ENCODE repository,
compile a GSuite file referring all K562 ENCODE
tracks and download these to the server (318 tracks).
Using tools for GSuite customization, we isolated a
single GATA1 track and compiled a suite of the 317
remaining tracks.

We then determined which tracks (in the suite)
exhibit the strongest similarity (in terms of peak co-
occurrence) with the GATA1 track. The most critical
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aspect of such an analysis is the precise specification
of the measure of similarity (co-occurrence). By se-
lecting the Forbes measure [16], we obtain a ranking
of track similarity that is unbiased by the strongly
varying number of elements in each track. By per-
forming the analysis in this manner, the transcrip-
tion factors SMARCA4, SIRT6 and SMARCBI (Inil)
were identified as high-ranking. These TFs have all
been previously reported as relevant for GATA1L (see
discussion in Additional file 2).

Because we did not filter out any K562 tracks in-
cluded in the suite, the ranking includes experimen-
tal replicates for GATA1 as well as non-TF datasets
such as histone modifications and DNase I accessi-
bility. This provides a broad view of co-occurrence,
including indications for TF cooperation, consistency
across experimental replicates for the same TF, and
the association of GATA1 with different chromatin
states. As a confirmatory extension of the analysis,
one can examine whether the high-ranked tracks are
significantly more similar to GATA1 than the average
for all tracks in the suite. This question can be an-
swered by a hypothesis test available in the same tool
used to produce the ranking; it uses a test statistic
comparing the similarity of each track to the average
of the suite. Different null models may be reason-
able; for instance, a null model may assume that the
data in the whole suite are fixed, whereas the peak
locations in the separate track (GATA1) are assumed
to be stochastic according to a distribution that pre-
serves the empirical distribution of lengths and dis-
tances between the peaks [15]. Because an average
across the suite forms part of this test statistic, data
for the whole suite are required to compute each sin-
gle measure, meaning that the analysis is at the in-
tegrative multiplicity level (as defined in the section
on Classes of multiplicity).

Representing suites of genomic tracks:
the GSuite format

Fundamentally, a collection of datasets is fully de-
fined by a set of references to its constituents. For
convenience, a plain text file of Uniform Resource Lo-
cators (URLs) for the contained datasets should be
valid as a representation of a dataset collection. To

further support relevant analyses, the format should
permit inclusion of metadata defining important at-
tributes of each individual dataset.

We have defined a simple format that meets these
requirements, GSuite. A plain text file of one URL
per line is a valid GSuite instance. The format further
allows the definition of headers that, among other
functions, declare whether the included datasets are
available locally or remotely. A tool that downloads
datasets referred to by a collection can then iterate
through the source GSuite, download each referred
file, and replace the URLs with paths to the locally
stored files. In addition to the URLs of the tracks, a
GSuite file may include tab-separated columns rep-
resenting metadata values for each dataset. A full
definition of the GSuite format is provided in Addi-
tional file 3.

Compiling suites from public reposito-
ries

Although repositories such as ENCODE and
Roadmap Epigenomics provide free access to large
amounts of data, they are not designed for the ex-
traction of large numbers of datasets according to
shared characteristics, e.g., extracting large suites of
tracks tailored toward a particular analysis. Further-
more, the different repositories do not use a com-
mon nomenclature, hindering the integration of re-
lated data from several repositories.

A common solution to the integration of data
from multiple repositories is to download all data
from their respective sources, and construct a meta-
repository structured according to a common termi-
nology (e.g., [17, 15, 18]). However, such manual
curation and organization is laborious, susceptible
to imprecision or misunderstanding, and can easily
become outdated. We therefore adopted a different
approach to integrate tracks from multiple sources.
Rather than downloading and re-organizing genomic
tracks, we use a concept akin to database views; users
can browse and select remotely located tracks based
on metadata, resulting in a list of URLSs of the chosen
tracks (GSuite). The GSuite can be further modified
and shared as a simple text file. The underlying ge-
nomic tracks are only downloaded when a user ex-


https://doi.org/10.1101/067561

bioRxiv preprint doi: https://doi.org/10.1101/067561; this version posted August 3, 2016. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

plicitly asks to create a local copy of the data.

As a low-level access point, we provide a single in-
terface for accessing different repositories according
to their original (repository-specific) metadata ter-
minology. This interface avoids the loss or misrep-
resentation of the exact metadata provided by the
individual repositories.

We also provide a high-level access point that sac-
rifices some degree of metadata precision to permit
selection of related tracks across sources according
to a unified vocabulary (e.g., all tracks for a partic-
ular histone modification across repositories). The
high-level access point builds on the low-level access
point and is based on a curated transformation of in-
dividual repository-level vocabularies into the unified
vocabulary.

The low-level and high-level access points currently
support ENCODE [1], Roadmap Epigenomics [2], the
International Cancer Genome Consortium data por-
tal [19] and the NHGRI-EBI GWAS Catalog [20].

Classes of multiplicity for analyses of
track suites

The analysis of multiple tracks ranges from simple
repetition of the same computation on each track to
analyses in which the tracks are highly intertwined
in the computations and interpretations. To better
delineate the different levels of integration associated
with various analyses, we define the following classes
of multiplicity for track suite analyses:

Trivial multiplicity: A statistic is computed for
each track in a suite, but the computed values are
neither compared nor integrated across tracks in the
suite of interest. This resulting list of values per track
can be convenient for obtaining an overview of a suite.
Because it is merely a repetition of computations, it
does not introduce any challenges related to multi-
plicity. An example of trivial multiplicity is to count
the number of peaks for each track for transcription
factor binding sites in a given cell type.

Contrasting multiplicity: A statistic is computed
separately for each track of a suite, possibly in re-
lation to reference tracks (outside the suite), with
an aim of contrasting (typically ranking) the val-
ues computed for each track from the suite. Co-

occurrence is typically at the core of the compu-
tations. Although the computations are performed
separately (as with trivial multiplicity), the aim of
comparing the computed values puts additional re-
quirements on the statistics used. As discussed in
Additional file 2, measures designed to capture the
similarity /co-occurrence of tracks may have biases
related to e.g., the number of elements in a track.
An example of contrasting multiplicity is to evaluate
the co-occurrence of binding sites of a selected tran-
scription factor (TF) against each track from a suite
of transcription factor ChIP-seq peak tracks *. In
this example, using the Forbes measure [16] to assess
co-occurrence resulted in a biologically very reason-
able ranking of potentially cooperating TFs, whereas
the Jaccard measure [21] produced a ranking that
appeared severely biased by the number of peaks in
each track from the suite.

Integrative multiplicity: A statistic is computed
based on pair-wise measures across all tracks in a
suite. The statistic may be a single value represent-
ing the suite as a whole or it may be in the form of
one value per track from the suite. For descriptive
statistics computed per track, integrative multiplic-
ity implies that the value of a given track will depend
on the context of other tracks included in the suite.
An example of integrative multiplicity is the compu-
tation of how typical each track in a suite is with re-
spect to the suite, i.e., its average co-occurrence with
other tracks in the suite. A computational challenge
associated with the integrative multiplicity class is
that the data for each track are typically used in
several parts of the computations. A simple algo-
rithm would thus either need to read the same data
repeatedly from physical storage or simultaneously
store the data for all tracks in memory. More ad-
vanced algorithms based on map-reduce and memo-
ization of intermediate computations would therefore
generally be preferable (and are applied in GSuite
HyperBrowser).

Higher-order multiplicity: A statistic is defined
based on higher-order relations (beyond pairwise) be-
tween the tracks in a suite, implying that a compu-

*As in ”Exploring transcription factor co-occurrence using
two alternative measures of similarity”, one of the complex
example analyses on the GSuite HyperBrower website.
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tation must work on elements from many/all tracks
from a particular genomic region simultaneously (a
statistic that cannot be subdivided into multiple
pairwise across-track computations). An example is
the computation of how many base pairs across the
genome are associated with open chromatin in more
than half of a set of considered cell types (covered by
more than half of the genomic tracks of a suite).

Hypothesis testing

A hypothesis test for multiple tracks investigates
whether the aspect of interest for the track or tracks
in question is present in the data more/less than what
is expected by chance. For all questions in Table 1,
we have defined an associated statistical test that can
facilitate the assessment of the robustness of the ef-
fects observed in the descriptive statistics (Additional
file 1).

Statistical tests can be based on parametric dis-
tributions or Monte Carlo simulations. Due to the
complex structure of a genome, genomic data sets
are often not well described by simple parametric dis-
tributions. For this reason, simulation has been the
preferred choice even for relations involving only a
pair of tracks [15, 22]. We have further demonstrated
that the simplifying assumptions that are typically
required to allow parametric testing on genomic track
data will often increase the risk of false-positive find-
ings [23]. Based on such considerations, we find that
for the questions of Table 1, the limitations and sim-
plifying assumptions required for parametric testing
make Monte Carlo-based simulation a more promis-
ing direction.

The following are the main elements of a Monte
Carlo-based statistical test: 1) a test statistic: a mea-
sure that describes the aspect of interest; 2) a null
model: a model that tracks would follow if generated
by chance; 3) a null distribution: the distribution of
the test statistic when data follow the null model,
and 4) a p-value: the proportion of the null distribu-
tion that is more extreme than the value of the test
statistic on the observed (real) data. For statisti-
cal testing to be meaningful, a test statistic must be
specified that precisely matches a particular aspect
(question) of interest and assumes a realistic (rele-

vant) null model.

Our approach follows [15]; we argue that good
models can be obtained by preserving some struc-
ture from the tracks and by randomizing others. Af-
ter specifying what we consider relevant null model
assumptions, we derive algorithms for sample tracks
from a particular null model and compute the test
statistic for each simulated track. We observe that
the relevant null models (and thus the associated sim-
ulation algorithms) are mostly shared between ques-
tions and can be divided into the following three cat-
egories (described in terms of simulation algorithms):

e Sampling algorithms that treat each track sepa-
rately. Any sampling algorithm for single tracks
can be extended in this manner to suites, e.g.,
those presented in [15].

e Sampling algorithms that sample elements
across tracks from a suite. Track segments (pairs
of reference genome coordinates) can be placed
in a single pool shared across tracks and sam-
ple segments for each track with or without re-
placements from this pool and with or without
preserving the variation of frequency and length
of segments across the tracks. A particular chal-
lenge with this sampling approach is how to han-
dle intra-track overlap of segments without in-
troducing sampling biases. Further details on
alternative sampling algorithms are provided in
Additional file 1.

e Sampling algorithms sampling across suites.
These fall into the following two types: one type
that pools track elements across both tracks and
suites and thus represents a (slight) further com-
plication of the previous category and a second
type that permutes entire tracks between suites.
Further details are provided in Additional file 1.

There is a crucial difference in the interpretation
between hypothesis tests at contrasting and integra-
tive multiplicity levels. A statistical test that uses
a pairwise track similarity measure as a test statis-
tic and a sampling algorithm that treats each track
separately will result in p-values at the contrasting
multiplicity level (p-values relate to the null hypoth-
esis for each track from a suite in isolation). Such
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p-values do not provide information about how a par-
ticular track is differentiated from other tracks in a
collection, but the p-values of different tracks can be
compared to assess the relative confidence. By con-
trast, if either the test statistic is defined across tracks
from the suite or if the sampling algorithm draws el-
ements across tracks, the resulting p-values will be at
the integrative multiplicity level. Such p-values may
represent null hypotheses related to whole suites or
how a given track is differentiated from the remaining
tracks in the suite.

The basic mode as an interactive tuto-
rial of the system

To accommodate a broad range of usage scenarios,
the main tools in the GSuite HyperBrowser are de-
fined in a generic and highly customizable manner.
Generality of tools and a rich palette of parameter
options are often indispensable for appropriate han-
dling of data during the course of an actual project
(and often have important consequences for the in-
terpretation of results), but might mean unnecessary
complexity for new users who wish to first familiar-
ize themselves with the system. The system therefore
includes a dedicated tutorial version of the tool inter-
face, which simplifies the definitions of basic analyses
and streamlines the learning experience. This ”ba-
sic mode” of the system offers a simplified view of
a tool’s parameter list, hiding options that are typ-
ically sufficiently represented by the default values
during initial exploratory test runs by users. Perhaps
most importantly, the entry point of the basic mode
is a set of interactive analysis examples that illustrate
the typical usage of the GSuite tools within partic-
ular domains (e.g., the study of genome variation or
the study of transcription factor binding). Each ex-
ample includes detailed instructions for performing
a simple integrative analysis and provides relevant
datasets necessary for its execution. The examples
also offer information regarding generalization of the
presented analyses and guidance for utilizing one’s
own datasets. Entering and leaving the tutorial mode
is possible at any time, which will respectively hide
or reveal the full set of parameters defined for each
tool.

Examples of biological investigations
using the system

While the interactive tutorial illustrates core analyti-
cal approaches for a breadth of biological questions, a
full investigation will usually involve its own specific
steps for data preparation and supporting analysis.
To provide an impression of the variety of aspects
that may be involved, we include a set of transpar-
ent and reproducible examples of biological investi-
gations using the system. The investigation exam-
ples are available under the ”Examples” tab on the
system front page and include an example that re-
produces individual findings from the literature (re-
lationship between mutations in a given cancer and
cell-specific open chromatin), an example of novel in-
vestigations (whether SNPs associated with various
diseases are located in miRNA genes), an example of
studying experimental biases/artifacts (clustering of
tracks associated with different cell types and experi-
mental setups) and an example of studying computa-
tional biases (how the exact formula used to measure
track similarity has a decisive impact on the results
and interpretations).

Discussion and Conclusions

Reference genomes have allowed a broad range of ge-
nomic features to be represented in a uniform man-
ner, which facilitates data integration and the dis-
covery of relations and interplay between various fea-
tures. With recent initiatives to unravel data from
multiple epigenomes (cell-type-specific data for a va-
riety of epigenetic marks), a new layer of computa-
tional methodology is needed. Similar to the previ-
ous generation of computational tools that allowed
a question regarding a genome-scale data set to be
resolved through a single operation, the next genera-
tion of tools (or an updated version of existing tools)
should directly approach questions formulated in the
domain of collections of genomic tracks.

The most trivial level of functionality for analyz-
ing data collections, based on iterative, single or
pair-wise analysis of genomic tracks, is already avail-
able on various platforms for genomic track analy-
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sis. More complex solutions regarding track collec-
tions have been provided only for specific questions
by means of dedicated tools (e.g., LOLA [13]). The
analysis of track collections (e.g., analysis across a
set of functional elements or cell types) has received
little attention in the literature. We present here a
first step in this direction.

The present work includes three distinct contri-
butions: 1) a computational and statistical method-
ology for compiling and analyzing collections of ge-
nomic tracks; 2) an implementation of the proposed
methodology in the form of a large open-source, inte-
grated software system; and 3) a web-based interface
to the developed functionality. The user interface en-
ables meaningful analysis customization by providing
expert guidance.

The main approach for the integration of data in
the bioinformatics field has been to download data
from multiple sources and restructure it according to
a uniform hierarchy ([17, 24]). Here, we adopted a
different approach by developing solutions to allow
users to retrieve data from databases when a spe-
cific collection of tracks is needed (instead of down-
loading and re-organizing data in a general manner
in advance). This approach has advantages and dis-
advantages. Downloading and integrating track col-
lections as needed introduces a delay for users at
the time of compilation compared to relying on pre-
collected data. This delay is to some degree rectified
by a scheme for locally caching data previously down-
loaded (by any user). The advantage of the chosen
approach is that as long as the repositories continue
to release their data according to the same protocol,
the tool will continuously provide access to all avail-
able data in their latest versions. Another strong ad-
vantage is the transparency of the approach—users
can directly view the URLs at which data were re-
trieved and the exact time the data were retrieved
from a given repository. The currently supported
repositories all contain data for the human genome,
but the methodology can be readily applied to data
connected to any reference genome.

Due to the size and heterogeneity of the genomes
of higher organisms, even analyses of single genomic
tracks can be complex. Integrative analyses across
multiple tracks (typically across cell types or fea-

tures) add a further layer of complexity. To cope
with this complexity, highly customizable tools and
extensive user guidance are essential. By developing
an integrated software system with a set of robust
components for data handling and statistical analysis
at the core, we have enabled a range of sophisticated
analyses to be performed with limited effort. The
developed methodology is accessible to a broad user
base via the system’s web interface, which provides
inbuilt tool guidance and offers an interactive tuto-
rial with a rich list of domain-specific analysis sugges-
tions. Transparency and reproducibility of analyses
are ensured by integration with the Galaxy frame-
work, where data, tool and parameter choices are au-
tomatically tracked in the background and any step
in the analysis can be repeated with the option of
changing the original data or parameters.

The methodology presented here does not cover
the full spectrum of analyses that can be envisioned
for collections of genomic tracks. First, the current
statistics and null models only relate to pure loca-
tion data (Point and Segment tracks [25]). Extend-
ing the work to handle Valued Points and Segments
(e.g., genes with expression values and tracks from
case vs. control elements) as well as Function tracks
(e.g., signal tracks with ChIP-seq intensities) would
clearly broaden the range of supported biological in-
vestigations. Second, the present methodology is pri-
marily focused on questions that can be reduced to
pairwise track relations. Analysis of higher-order re-
lations between functional elements is a very inter-
esting challenge but requires methodological devel-
opment beyond what is described here. Third, even
for the class of analyses considered here, there are
many further questions for which statistical method-
ology would be useful. Fourth, although data from
any source can be uploaded to the system, a con-
sistent terminology for track metadata would enable
better unified access to track data sources and their
content. We believe that the development of a widely
accepted ontology for describing biological and exper-
imental characteristics of tracks should be given high
priority to ease data integration and avoid misinter-
pretation of results achieved when employing public
data for research. Fifth, experimental data at the
single-cell level is rapidly becoming a powerful tool in
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biomedical research [26, 27]. Although the method-
ology presented here can be used directly on single-
cell data, these data may give rise to a range of ad-
ditional questions beyond what is considered in the
present work. Through a principled methodological
approach and implementation based on generic core
components, the open-source GSuite HyperBrowser
system is prepared for future extensions in a variety
of dimensions.

In conclusion, we believe the GSuite HyperBrowser
would permit robust and reproducible solutions to a
breadth of cases for which ad hoc development is the
only current possibility.

Methods

System implementation

The GSuite HyperBrowser is an integrated software
system written mainly in Python, with extensive
use of the NumPy library for efficient data han-
dling, as well as some supporting code in R and
Javascript (in total, 170,000 lines of code). The
GSuite HyperBrowser makes use of code components
from the Genomic HyperBrowser [15] to represent
individual tracks and to analyze single tracks and
pairwise relations between tracks. The user inter-
face is based on the Galaxy system [5], which ensures
robust user and dataset management, and includes
features supporting reproducible research. To pro-
vide users with a more dynamic user interface, the
tools in GSuite HyperBrowser is based upon Galaxy
ProTo (https://github.com/elixir-no-nels/proto), an
alternative tool definition API for the Galaxy frame-
work. To ensure computational efficiency, track
data are preprocessed into an indexed, binary for-
mat based upon arrays written consecutively to disk
[25], while analysis computations are based on a map-
reduce scheme that limits memory requirements and
a scheme for memoizing intermediate computations

[15].

GSuite representation

Collections of tracks are represented as lists of ref-
erences (URLs) with corresponding metadata in the
GSuite tabular text format. The system includes ro-
bust functionality for composing, modifying and val-
idating collections in this format. The system also
includes functionality for crawling and for search-
ing and retrieving data from public repositories.
The crawling functionality works similarly to a web
crawler, accessing metadata from supported reposito-
ries to generate a database of the available datasets in
the form of URLs along with metadata accompany-
ing each dataset. This database can then be queried
on metadata contents, resulting in a novel GSuite
file containing Uniform Resource Identifiers (URIs)
to original, remotely stored datasets. Before analy-
sis, remote datasets of a GSuite file can be retrieved
and stored locally on the web server in hidden Galaxy
history elements, resulting in a transformed GSuite
file with custom Galaxy URIs that point to such stor-
age. A caching scheme is also implemented, making
sure that the datasets for each unique URI that refers
to stable content is only retrieved once. The caching
simply stores the Galaxy URI for the first retrieval in
a register and makes sure that consecutive retrievals
result in the same URI.

Descriptive statistics and null models

The test statistic needs to be custom-tailored to a
particular question. It will thus vary between differ-
ent questions involving suites of tracks, and will also
vary according to slight variations of each question.
Still, we find that test statistics for the whole range
of questions we have studied can be defined based on
a shared hierarchy:

e Pairwise track statistic (T): computes a measure
of co-occurrence between a pair of tracks, e.g.
the Forbes measure (%W’ where A; and

A, are the set of genome locations (bps) covered

by two tracks 7 and j, while IV is the size of the

genome) [16]. This can be a final per-track result
in itself (at the contrasting multiplicity level) or
part of a higher order computation.
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e Integrative statistic (Q): combines values of T for
multiple track pairs. This operates on a struc-
ture of track pairs (and corresponding T values),
e.g. a single track paired with each other track
of a suite. The combination of T values can e.g.
be the average, max or min of values of T (e.g.,
7+ 2, T(Aiy Aj), where n is the number
of tracks in the suite). Analyses based on a Q-
statistic are by definition at the integrative or
higher-order multiplicity levels.

e Suite statistic (R): Statistic that describes an
entire suite. It may combine multiple values
of Q. Each Q-value will typically represent a
one-to-many computation between tracks in a
suite, with the R-value typically representing a
many-to-many combination of tracks in a suite.
The combination of @ values can e.g. be the
average, max or min of values of Q (e.g., % *
> Q(A;, A_;)). Analyses based on a R-statistic
are by definition at the integrative multiplicity
level.

e Pairwise suite statistic (S): Statistic that de-
scribe the relationship between two suites. Also
this statistic may combine multiple values of Q
in the same manner as the R-statistic. Analyses
based on an S-statistic are by definition at the
integrative or higher-order multiplicity level.

Most hypothesis tests in the system are based on
Monte Carlo evaluation of p-values, where a particu-
lar simulation algorithm produces explicit tracks for
the null model and a particular test statistic is used
to generate values for the null distribution. Several
alternative simulation algorithms are proposed, pre-
serving distinct properties within the scope of indi-
vidual tracks or across the collection.

Detailed formulas for descriptive and test statistics,
as well as detailed sampling algorithms for Monte
Carlo evaluation of statistical significance, are pro-
vided in Additional file 1.

List of abbreviations

ENCODE, The Encyclopedia of DNA Elements;
SNP, Single Nucleotide Polymorphism; TF, Tran-

scription Factor; URI, Uniform Resource Identifier;
URL, Uniform Resource Locator

Availability of data and materi-
als

All data and analyses referred to in the manuscript
are available from the ”Examples” tab on the
front page of the GSuite HyperBrowser web page:
https://hyperbrowser.uio.no/gsuite

The analyses are available as Galaxy histories,
which can be viewed or ”"imported” for further inspec-
tion. Full analysis specifications are available through
the ”run this job again” button present on history el-
ements (this functionality also allows the analyses to
be re-run in original or modified form). Data and
results can be directly viewed or downloaded.

Additional files

Additional file 1: A text document describing sta-
tistical measures and hypothesis tests for suites of
genomic tracks. The document contains detailed
formulas and algorithms for statistical methodology
used by the GSuite HyperBrowser system. (PDF for-
mat, 13 806 KB)

Additional file 2: A text document providing a
critical evaluation (on simulated and real data) of
how particular choices of similarity measures may in-
fluence genome-level analysis results. (PDF format,
1233 KB)

Additional file 3: A text document with a detailed
specification of the GSuite file format. (PDF format,
65 KB)
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Figure 1: The GSuite HyperBrowser in the context of existing tools and frameworks for genomic track
analysis. The codebases of frameworks such as bedtools [4], BioPython [28], Bioconductor [3], Galaxy [5]
and the Genomic HyperBrowser [15] add a domain-specific layer on top of general programming languages,
providing generic constructs for representing genomic track data and core operations on tracks (including
some minimal support for analyzing multiple tracks). The GSuite HyperBrowser codebase is the first general
platform to add a new layer of constructs for directly representing collections of tracks and providing core
operations (analyses) to be applied to such track collections. Although the functionality of this codebase is
provided through a web interface, the codebase is open source, and the same constructs may be used by any
other relevant Python-based platform. Also, the underlying approach is general and could be correspond-
ingly implemented in other programming languages. In addition to such general purpose framework, there
are a variety of purpose-specific tools for track data. GenometriCorr [29], deepTools2 [30] and GREAT [31]
are examples of tools that operate on single/pairs of tracks and support specific analyses or domains. Fur-
thermore, several tools implicitly make use of collections of genomic tracks for analyses in specific domains
(e.g., FORGE [8], GREGOR [7] and CISTROME [18]) or for specific types of analyses (e.g., EpiGraph [32],
MULTOVL [14], EpiExplorer [33] and LOLA [13].
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Figure 2: Overview of typical analysis phases and the tools included in the GSuite HyperBrowser system
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Table 1: Analytical questions on track collections

Question Input Descriptive Hypothesis tests fo- | Hypothesis tests | Example of us-
data results cused on individual | focused on full | age
tracks suite
Which tracks | A single | Ranking of | Is the most represen- | Are the tracks in | Check for
(in a suite) | suite  of | tracks based | tative track of the | the suite (as a | outliers in a
are most rep- | tracks on aggre- | suite more similar | whole) more simi- | collection of
resentative gated  (*C) | to the rest than one | lar than expected | replicate exper-
and most co-occurrence | would expect any | by chance? imental tracks
atypical for against all | of the tracks to be of DNasel
the suite? other tracks | representative of by hypersensitivity
of the suite chance? (*A)
Which A single | Ranking Does a given track | Do the tracks in | Compare  the
tracks (in | suite  of | of tracks | from the suite co- | the suite (as a | enrichment of
a suite) co- | tracks and | based on | occur with the sepa- | whole) coincide | a set of trait-
incide most | a  single | co-occurrence | rate track more than | with the sepa- | associated SNPs
strongly track against the | one would expect by | rate track more | in open chro-
with a sepa- separate chance? (*B) than expected by | matin regions of
rate track? track chance? different tissues
Do  certain | Two A heatmap of | Is a track from one | Does the dis- | Assess the
tracks of | suites of | co-occurrence | suite co-occurring | tribution of | enrichment
one suite | tracks for all pair- | with a track from | co-occurrence of somatic
coincide wise combi- | the second suite more | values for pairwise | variants of dif-
particularly nations of | than  expected by | track combina- | ferent cancer
strongly tracks from | chance (given the gen- | tions have more | types in het-
with cer- the two suites | eral propensity of each | extreme values | erochromatin
tain  tracks of the two tracks to | than it would | of different cell
of  another co-occur with tracks | be expeted by | types
suite? of the other suite)? chance?
In which | A single | Ranking of | Is the aggregated (*C) | Is the occurrence | Find genes with
regions of | suite  of | bins based on | coverage by tracks in | of segments for | particularly
the genome | tracks and | aggregated the given bin higher | tracks of a suite | high frequency
do tracks of | a set of | (*C) coverage | than one would as- | varying between | of somatic vari-
a suite have | genome by tracks in | sume from the cover- | bins more than | ants across a
the most | regions to | the bin ages of different tracks | expected by | set of cancer
occurrences? | be used as across the genome as a | chance? patients
bins whole?
In which re- | A single | Ranking of | Do  the segments | Does the degree | Find regions
gions of the | suite  of | bins based on | co-occur more than | of co-occurrence | of the genome
genome do | tracks and | aggregated expected in a given | between segments | where ChIP-seq
tracks of a | a set of | (*C) pairwise | bin (given their gen- | for tracks of a | peaks repre-
suite exhibit | genome co-occurrence | eral propensity to | suite vary more | senting binding
the strongest | regions to | of all tracks | co-occurr across the | between bins | of a set of
tendency to | be used as | of the suite | genome)? than expected by | transcription
co-occur? bins against each chance? factors co-occur
other frequently
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