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Abstract 

The neural representation of an object can change depending on its context. For instance, 

a horse may be more similar to a bear than to a dog in terms of size, but more similar to a 

dog in terms of domesticity. We used behavioral measures of similarity together with 

representational similarity analysis and functional connectivity of fMRI data in humans 

to reveal how the neural representation of semantic knowledge can change to match the 

current goal demand. Here we present evidence that objects similar to each other in a 

given context are also represented more similarly in the brain and that these similarity 

relationships are modulated by context specific activations in frontal areas. 
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Significance statement 

The judgment of similarity between two objects can differ in different contexts. Here we 

report a study that tested the hypothesis that brain areas associated with task context and 

cognitive control modulate semantic representations of objects in a task-specific way. 

We first demonstrate that task instructions impact how objects are represented in the 

brain. We then show that the expression of these representations is correlated with 

activity in regions of frontal cortex widely thought to represent context, attention and 

control.  

In addition, we introduce spatial variance as a novel index of representational expression 

and attentional modulation.  This promises to lay the groundwork for more exacting 

studies of the neural basis of semantics, as well as the dynamics of attentional 

modulation. 
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Introduction 

People often view the same set of stimuli differently under different contexts. For 

example, a horse may be more similar to a bear than to a dog in terms of size, but more 

similar to a dog in terms of domesticity. Similarity relationships among a given set of 

objects need not be fixed; they can change to match the current context or task demand. 

Evidence (Çukur et al., 2013) suggest that similarity among object representations 

changes according to task demand. But it is not yet clear what neural mechanism effects 

such a change in representation.  

Previous theories have proposed that brain areas known to be involved in cognitive 

control guide the flow of information in posterior cortices to execute task relevant 

behaviors (Miller and Cohen, 2001). Such cognitive control might effect shifts in 

attention to distinct dimensions of stimuli, thereby affecting how they are represented 

(Smith et al., 1974; Cohen et al., 1990; Kanwisher and Wojciulik, 2000; Maunsell and 

Treue, 2006), and thus, how similar they seem to be. We hypothesized that task demands 

affect semantic representations of objects and thereby similarity judgments about these 

objects, and that this effect is modulated in a task-specific way by activations in the 

frontal brain areas. 

Category membership of objects has been reliably decoded in functional magnetic 

resonance imaging (fMRI) studies using both univariate (Kanwisher and McDermott, 

1997; McCarthy et al., 1997; Aguirre et al., 1998; Epstein and Kanwisher, 1998; Chao et 

al., 1999; Gauthier et al., 1999; 2000) and multivariate methods (Haxby et al., 2001; Cox 

and Savoy, 2003; Kay et al., 2008; Haxby et al., 2011; Kriegeskorte, 2011; Connolly et 
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al., 2012). Multivariate pattern analysis methods have been especially useful in extracting 

and characterizing fine-grained information carried by fMRI data. One such method is 

representational similarity analysis (RSA) (Kriegeskorte et al., 2008). RSA explores the 

similarity structure among neural representations and provides a means to relate neural 

data to behavior (Kriegeskorte, 2011; Kriegeskorte and Kievit, 2013). Previous studies 

have shown that objects’	similarity relationships can be extracted from human and 

monkey neural data using RSA (Hanson et al., 2004; O'Toole et al., 2007; Kriegeskorte et 

al., 2008; Weber et al., 2009; Bruffaerts et al., 2013). Several studies using pictures have 

suggested that neural representations of visual images in human participants emphasize 

categorical boundaries, i.e. representations of images that belong in the same category 

tend to form clusters in representational space (Kriegeskorte and Kievit, 2013). More 

importantly, recent studies have tried to disentangle the effects of perceptual factors in 

visual images of objects from conceptual factors in the concepts of objects by using 

words instead of pictures as stimuli (Bruffaerts et al., 2013). These studies were able to 

decode the category of the objects or extract the similarity relationships among objects 

from neural data. In this study, we utilized representational similarity analysis to uncover 

brain areas that best represent context-specific semantic representation. 

To test our hypotheses, we asked participants to perform a similarity comparison task on 

a set of animals and, in a separate study, fruits. Before scanning, we obtained behavioral 

ranking of the similarity among the items (animals or fruits) under two different semantic 

contexts (domesticity and size for animals, taste and size for fruits). Then, while being 

scanned using fMRI, we asked the participants to compare the items under each of the 

two different semantic contexts. We expected to find brain areas for which the similarity 
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relationship among neural representations of the items correlated with that of the 

participant’s behavioral judgment of similarity. Importantly, we predicted this correlation 

to be context-specific; that is, we expected that the neural similarity relationship among 

the items would change according to the context under which they were being compared, 

so as to match the behavioral similarity judgment under that context.  

To identify areas the activity of which might be related to the expression of context-

specific similarity structure (and thus are candidates for the source of dimension-specific 

context effects), we performed a functional connectivity analysis. Using areas identified 

in the foregoing similarity analysis as seed regions, we examined correlations between 

these areas and the rest of the brain separately under the two different contexts. Notably, 

we correlated the spatial variance (variance across voxels at each time point) of the seed 

regions with the activation of the rest of the brain, using spatial variance as a proxy for 

the strength of representation. Our rationale was that, if attention acts to modulate 

representations (e.g. by influencing the gain of activity within the target region (Cohen et 

al., 1990; McAdams and Maunsell, 1999; Treue and Trujillo, 1999; Reynolds et al., 2000; 

Maunsell and Treue, 2006; Aboitiz and Cosmelli, 2008)), then increased attention should 

increase the activity of activated voxels and decrease the activity of suppressed voxels, 

thus increasing the variance of activity across voxels within the region.  Thus, we used 

spatial variance as an estimate of gain within a region; and we sought to identify areas the 

activity of which was correlated with such changes in gain, as candidates for the source 

of context (control) signals responsible for the changes in gain. We found significant 

correlations between neural and behavioral similarity for domesticity but not for size in 

animals. We also found significant correlations for taste but not for size in fruits. Our 
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connectivity analysis revealed correlations between regions that reflected behavioral 

similarity and other brain areas including dorsolateral prefrontal cortex (dlPFC) and 

inferior frontal gyrus (IFG) that were not only significant within context but also 

significantly differentiated between the two contexts. We also compared the results 

against that of using activation only connectivity analysis and found significant results 

only in the analysis using spatial variance, consistent with our hypothesis about the 

mechanism of action of attention (modulation rather than a change in mean activity). 

Together, these results suggest that the neural representation of objects reflects 

behaviorally determined, context-specific similarity structure, and that this may be 

expressed as a change in the gain of their representation (i.e., contrast) rather than a 

change in mean activity. They also suggest that the change in neural representation is 

modulated by context-specific activity in regions of frontal cortex. 
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Methods 

Participants 

Twenty-four participants (between 18-26 years old, fifteen women) performed the main 

fMRI study with animal stimuli. Sixteen participants (between 18-26 years old, thirteen 

women) performed the replication fMRI study with fruit stimuli. All experimental 

procedures were approved by the Institutional Review Board at Princeton University. 

Written informed consent was obtained from all participants. 

Stimuli and experimental procedure 

Stimuli for the main fMRI study comprised twelve animals that varied across two 

dimensions: domesticity and size (Figure 1a). Each dimension had two features (“wild”	

and “domestic”	for domesticity, “big”	and “small”	for size). Before the fMRI experiment, 

participants first ranked the animals along the two dimensions, from domestic to wild for 

domesticity and small to big for size. 

In the scanner, participants compared between pairs of stimuli presented in an event-

related design (Figure 1c). At the beginning of each block, a cue was presented for 4 s 

instructing the participants which feature to pay attention to. The cue was either	“wild”, 

“domestic”, “big”	or “small”. In each trial, participants were shown a pair of animals 

positioned on the left and right sides of the screen in the form of words in black against a 

grey background and participants then decided which animal of the pair was best 

described by the cued feature. For example, if the cue was “big”, they needed to decide 

which animal was bigger. The pair of animals stayed on the screen for 2 s, after which a 
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fixation cross appeared on the screen. Participants had to make a button press response 

within 1 s after the fixation cross appeared. Intertrial intervals were jittered between 4 – 

8s. Participants in the fruits experiment made comparisons among twelve fruits along the 

dimensions taste (“sweet”	and “tart”) and size. 

All possible pairs of twelve animals were presented once under each feature. There were 

a total of eleven scanning runs, and four blocks for all four features in each run. The 

order of features in each run was randomized. Each block had six trials. This behavioral 

ranking was used to gauge their performance in the scanner and to generate the 

experiment in such a way that left and right button presses were balanced in each block. 

Stimuli were presented using MATLAB software (MathWorks) and the Psychophysics 

Toolbox using a projector outside the MRI scanner that displayed the stimuli onto a 

translucent screen located at the end of the scanner bore, which participants viewed 

through a mirror attached to the head coil. 

fMRI data acquisition and preprocessing 

Functional (EPI sequence, 34 slices with full cerebrum coverage, resolution = 3 ×	3 ×	3 

mm with 1 mm gap, repetition time = 2.0 s, echo time = 30 ms, flip angle = 90°) and 

anatomical (MPRAGE sequence, 256 matrix, repetition time = 25 s, echo time = 438 ms, 

flip angle = 8°, resolution = 1 ×	1 ×	1 mm) images were acquired using a 3T Skyra MRI 

scanner (Siemens) at Princeton University. Data were processed using MATLAB and 

SPM8 (Wellcome Trust Centre for Neuroimaging, University College London). 

Functional data were motion corrected, and low-frequency drifts were removed with a 

temporal high-pass filter (cutoff of 0.0078 Hz). Images were normalized to Montreal 
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Neurological Institute (MNI) coordinates. Images were spatially smoothed with a FWHM 

5 kernel. In addition to the standard fMRI preprocessing procedure, reaction time was 

used as a regressor and was regressed out of the data. 

Univariate contrasts 

The main purpose of the univariate contrast was to find each animal’s neural 

representation as an input into generating the neural similarity matrix. A total of 24 

General Linear Model (GLM) analyses were run using SPM, one for each animal under 

each dimension (12 animals ×	2 dimensions). In each GLM, two regressors were set up: a 

regressor that indicated the trials in which a certain animal appeared under a certain 

dimension, and another regressor that indicated all the trials in the opposite dimension. 

These indicators were convolved with a standard hemodynamic response function. The 

representation of a certain animal under a certain dimension was defined by the contrast 

of trials in which the animal appeared in that dimension and all other trials in the opposite 

dimension. We hoped to average out the representation of other animals with GLM. For 

balance, all pairings for a certain animal appeared the same number of times under one 

dimension vs. the other dimension. 

Similarity searchlight analysis 

A searchlight analysis was performed across the whole brain to find areas that best 

predicted behavioral data. For each participant, a similarity matrix among twelve animals 

was generated for each dimension based on his/her behavioral ranking of the animals 

under that dimension. We used a searchlight sphere of 4 voxels radius. For each 

searchlight sphere, a similarity matrix was computed from the neural representations of 
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the animals (generated from the previous univariate contrasts) for each dimension. We 

then correlated the two similarity matrices from behavioral ranking and from neural 

representations and got a correlation coefficient for that sphere. The highest correlation 

coefficient across the whole brain was selected for each participant. To make sure that it 

is dimension-specific, we used the exact same sphere and correlated its neural similarity 

matrix with the behavioral similarity matrix of the opposite dimension. We took the 

absolute value of this correlation and subtracted it from the original correlation 

coefficient (Fisher transformed). This way, we made sure that the neural data under one 

dimension was not predictive of behavioral data under the other.  

To analyze the data statistically, we used permutation test in which we scrambled the 

behavioral rankings and repeated the analysis to determine a null distribution and a p 

value for each voxel. At the group level, we then computed, for each voxel, the number 

of participants that passed the p = 0.05 threshold, and performed a binomial test. To 

correct for multiple comparisons, we thresholded the group result with p = 0.05 from the 

binomial test, and used AlphaSim (AFNI) to perform a randomization test on the group 

data to threshold the cluster size.  

Separately, we also performed a group-level statistical test on the maximum correlation 

coefficient in each participant. We corrected for multiple comparisons by using a 

permutation test: we scrambled the behavioral ranking and repeated the analysis, and 

repeated this 1000 times. This generated a null distribution of the dimension-specific 

correlation values for each participant. We then identified searchlights for which the 

dimension-specific correlation value passed p = 0.05 in the null distribution. Finally, we 

submitted the number of participants for whom one or more searchlights were significant 
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to a binomial test for group level statistics. In an additional test, we averaged the 

dimension-specific correlation values across all participants for each dimension. To 

determine whether this group averaged maximum correlation coefficient was significant, 

we again did a permutation test and generated a null distribution of group averaged 

maximum correlation coefficients. The real group average was compared to this 

distribution to determine the p-value. 

Connectivity searchlight analysis 

To determine whether the areas expressing similarity representations interacted with 

other areas in the brain, we used spheres in which neural similarity best correlated with 

behavioral similarity as seed regions to compute the correlation between these regions 

and the rest of the brain for each individual. Specifically, we computed the correlation 

between the spatial variance time series of the seed regions and the activation time series 

of the rest of the brain. To create the spatial variance time series, for each time point, we 

computed the variance across voxels within the searchlight sphere (Figure 3b). The 

purpose was to use spatial variance as a measure of the strength of similarity 

representation time point to time point. To make sure that the correlation is dimension-

specific, we computed correlations for two time series respectively for domesticity trials 

and for size trials, and contrasted the two correlations  (Figure 3a). For example, to look 

at the correlation between seed region that showed the best similarity representation of 

animals in domesticity and the rest of the brain, we computed the correlation between 

these two areas during size trials and subtracted from it the correlation during domesticity 

trials.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2016. ; https://doi.org/10.1101/067553doi: bioRxiv preprint 

https://doi.org/10.1101/067553
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 13 

Similar to the statistics done in the similarity searchlight analysis, we used permutation 

test in which we scrambled the time series of the seed regions and repeated the analysis to 

determine a null distribution and a p value for each voxel in each subject. At the group 

level, we then computed, for each voxel, the number of participants that passed the p = 

0.05 threshold, and performed a binomial test. To correct for multiple comparisons, we 

thresholded the group result with p = 0.05 from the binomial test, and used AlphaSim 

(AFNI) to perform a randomization test on the group data to threshold the cluster size.  

We also performed a group-level statistical test on the maximum correlation coefficient 

in each participant. We picked the maximum correlation coefficient for each participant 

under one dimension and subtracted from it the correlation between the same areas under 

the opposite dimension. We performed a permutation test in which we scrambled the 

activation time series 1000 times to compute a null distribution of the dimension-specific 

correlation values for each participant. We then identified searchlights for which the 

dimension-specific correlation value passed p = 0.05 in the null distribution. Finally, we 

submitted the number of participants for whom one or more searchlights were significant 

to a binomial test for group level statistics. We also did an additional test by averaging 

the dimension-specific correlation values across all participants for each dimension. We 

performed a permutation test to compute a null distribution of the group average of the 

maximum dimension-specific correlation. A p-value is obtained for each of the two 

dimensions. 
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Results 

Behavioral data 

In the first experiment, we used 12 animal stimuli that varied systematically along two 

dimensions: domesticity and size (Figure 1a). We repeated the experiment in a separate 

group of participants using fruits as stimuli instead, with taste and size as the two 

dimensions. Individual specific behavioral rankings were obtained by asking participants 

to rank the animals from “domestic”	to “wild”	for domesticity and “small”	to “big”	for 

size (“sweet”	to “tart”	for taste and “small” to “big” for size in fruits) before scanning. For 

each stimulus type (animals or fruits), the similarity matrices generated from the two 

dimensions were not significantly correlated with each other (animals r=0.027, t23=0.68, 

p=0.50; fruits r=0.058, t23=1.62, p=0.11). This ensured that the two dimensions were 

behaviorally distinguishable from one another, and thus had the greatest opportunity to 

yield dimension-specific neural representations.  

Similarity searchlight analysis 

To test whether objects that were rated as similar to each other were also represented 

more similarly in the brain, we compared object similarity matrices generated from the 

behavioral data (outside the scanner) with similarity matrices generated from the 

participants’	fMRI data acquired while performing an object comparison task in the 

scanner. 
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In the scanner, at the beginning of each block of trials, participants were cued with an 

“anchoring feature” along one of the two dimensions (e.g., for animals:  “domestic”, 

“wild”, “small”	or “big”). On each trial of the block, they were shown a pair of stimuli 

and asked to decide which one of the two was best described by the cued feature. For 

example, in the animals experiment, if the cue was “big” participants needed to decide 

which animal was bigger (Figure 1c). We extracted the dimension-specific representation 

of each animal by running a Generalized Linear Model (GLM) with a regressor that 

indicated all the trials involving a specific animal judged along a specific dimension. 

Furthermore, to remove the potential confound of task difficulty as a factor in the neural 

similarity measurements, we used reaction time as proxy for task difficulty and regressed 

it out of the signal before analysis (Todd et al., 2013). 

To examine the relationship of neural similarity to behavioral similarity along each 

dimension, we examined the dimension-specific neural representations over local 

searchlights throughout the entire brain. Within each participant, we compared the 

similarity matrix generated from the neural representations within a spotlight with that 

from that participant’s behavioral data (Figure 2a). We then identified searchlights that 

best predicted each participant’s behavioral similarity scores. To ensure that the neural 

similarity matrices were dimension-specific and did not predict behavioral data for the 

other dimension, we subtracted the absolute correlation between neural data for one 

dimension and behavioral data for the other dimension from the correlation between 

neural and behavioral data for the same dimension. We corrected for multiple 

comparisons by using a permutation test, by generating a null distribution of the 

dimension-specific correlation values for each participant, and then identifying 
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searchlights for which the dimension-specific correlation value passed p = 0.05 in the null 

distribution. Finally, we submitted the number of participants for whom one or more 

searchlights were significant to a binomial test for group level statistics. For animals, we 

found a significant number of participants who exhibited searchlights exceeding p = 0.05 

for domesticity (6 out of 24, binomial p (one-tailed) =10-4, average r = 0.54) across 

participants, but only a trending significance for size (3 out of 24, binomial p (one-tailed) 

= 0.086, average r = 0.51). For fruits, we found regions exhibiting a significant 

correlation for taste (6 out of 16, binomial p (one-tailed) = 10-5, average r = 0.57) but, 

again, not for size (2 out of 16, binomial p (one-tailed) = 0.15, average r = 0.51). In 

addition, we also compared the group average of the best correlations across subjects 

against the null distribution generated by the permutation test. We found the group 

average to be significant for domesticity in animals (p = 0.045) and trending significant 

for taste in fruits (p = 0.069). We did not find significant results for size in both animals 

(p = 0.8) and fruits (p = 0.47).  

To identify the regions that exhibited significant effects in the similarity analysis at the 

group level, we used a permutation test to threshold the p value and a randomization test 

to threshold the cluster size. For domesticity in animals, the largest significant cluster 

across participants spanned middle frontal gyrus (MFG) and dACC (p < 0.05 corrected; 

Figure 2b; Table 2). For fruits, the largest significant cluster spanned right inferior 

parietal lobule (IPL) and right angular gyrus (AG) (p < 0.02 corrected; Figure 2b; Table 

2) for taste. 
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These results suggest that, in a statistically significant number of participants, neural 

representations of objects (at least when attending to domesticity and taste) reflect 

behaviorally determined, context-specific similarity structure.  

Connectivity searchlight analysis 

We used connectivity analysis to identify areas of activity that were reliably related to the 

context-specific similarity relationships observed above. To do so, we used areas 

exhibiting the strongest correlation between neural and behavioral similarity measures as 

seed regions (Table 1), and computed the correlations between these and the rest of the 

brain during domesticity trials in the animals experiment, and during taste trials in the 

fruits experiment (Figure 3a). We used all of the participants’ data to maximize power, 

and accommodate the possibility that meaningful similarity structure may have been 

present in some subjects that fell below the stringent level used to determine statistical 

significance in the foregoing analysis, but may nevertheless be modulated by the activity 

of areas we sought to identify in the correlational analysis. 

For computing the correlations, we used the spatial variance over voxels within the seed 

region rather than mean activity. Our rationale was that if attention acts to modulate the 

expression of neural representations by regulating their gain (McAdams and Maunsell, 

1999; Treue and Trujillo, 1999; Reynolds et al., 2000; Maunsell and Treue, 2006; Aboitiz 

and Cosmelli, 2008), then higher gain would be associated with greater spatial variance. 

This measure also has the virtue of being sensitive to the multivariate nature of the 

representations (and the similarity structure among them) used to identify the seed 

regions in the first phase of analysis. Thus, for each seed region and each dimension, we 
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constructed a time series the elements of which were the spatial variance across the 

voxels in that region at each point in time during which judgments were being made 

along that dimension (Figure 3b). We then conducted a search for voxels whose 

activation time series best correlated with the spatial variance time series of the seed 

region during trials involving each dimension. To make sure that the correlation was 

dimension-specific, we computed the difference between this correlation and the 

correlation between the voxel and the seed region during trials of the other dimension 

(Figure 3a). We then tested the significance of this difference in correlation using a 

permutation test.  Finally, we submitted the number of participants for whom one or more 

regions exhibited a significant correlation to a binomial test for group level statistics. We 

found a significant number of participants passed this test for domesticity in the animal 

group (13 out of 24, binomial p (one-tailed) = 10-6, average r = 0.31) and taste in the fruit 

group (9 out of 16, binomial p (one-tailed) = 10-6, average r = 0.32). In addition, we 

compared the group average to the null distribution generated by the permutation test, 

and found the group average to be significant in both domesticity in animals (p = 0.001) 

and taste in fruits (p = 0.001). 

To determine whether using spatial variance provided information that was different from 

the use of mean activity, we repeated the same analysis using the time series of mean 

activity instead of spatial variance in the seed regions. We did not find significant results 

for this analysis in either group (domesticity: 2 out of 24, binomial p (one-tailed) = 0.22, 

taste: 0 out of 16, binomial p (one-tailed) = 0.44).  

To identify the regions that exhibited significant effects in the connectivity analysis at the 

group level, we used a permutation test to threshold the p value and a randomization test 
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to threshold the cluster size. For animals, the largest cluster most significant across 

participants spanned right inferior frontal gyrus (IFG) and right dlPFC (Brodmann areas 

10, 46) for domesticity (p < 0.05 corrected; Figure 3c; Table 3). For fruits, the largest 

significant cluster spanned left IFG (Brodmann areas 45, 47) and left dlPFC (Brodmann 

area 10) (p < 0.02 corrected; Figure 3c; Table 3) for taste. Again, repeating the analysis 

using activation instead of spatial variance did not yield any significant clusters. 
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Discussion 

We investigated the relationship between perceived similarity relationships among 

objects and their representations in the brain, and how these are influenced by the 

direction of attention to different feature dimensions. Specifically, we tested the 

hypotheses that behavioral judgments of similarity are significantly associated with the 

similarity of neural representations, and that this relationship is sensitive to the dimension 

of the objects being attended (e.g., domesticity for animals, or taste for fruits). In support 

of these hypotheses, we found a significant association between dimension-specific 

behavioral similarity judgments and neural representations of objects using 

representational similarity analysis, and found that the expression of these representations 

was significantly correlated with context-specific activations in the frontal lobe. The 

results for animals were replicated for fruits in a separate group of participants.  

We found clusters in right dlPFC and right IFG that correlated with the expression of 

similarity along the domesticity dimension in animals, and clusters in left dlPFC and left 

IFG for taste in fruits. An extensive body of evidence in both human and non-human 

primates research has associated these regions with the engagement of cognitive control, 

attention (Duncan, 2001; Miller and Cohen, 2001), and semantic selection (Thompson-

Schill et al., 1997). In particular, dlPFC has been shown to be involved in active 

maintenance of task-specific information or abstract rules versus stimulus identity (Frith 

and Dolan, 1996; Braver et al., 1997; Cohen et al., 1997; Asaad et al., 2000; MacDonald, 

2000; Wallis et al., 2001; Sakai and Passingham, 2003). These findings are broadly 

consistent with our interpretation that areas in the frontal cortex modulate object 
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representation in a context-specific way to match task demands, and that this in turn 

influences similarity judgments. 

The connectivity analyses yielded significant results using the spatial variance but not the 

mean activity of the seed regions. Our use of spatial variance as a measure of 

representational strength was motivated by the idea that attention acts by modulating the 

expression of representations involved in task performance. This account is consistent 

with early psychological theories of attention (Treisman, 1969; Treisman and Riley, 

1969) and computational modeling of attentional tasks (Cohen et al., 1990). The latter 

aligns with neurophysiological evidence that attention acts to modulate the sensitivity, or 

gain of neural processing mechanisms (McAdams and Maunsell, 1999; Treue and 

Trujillo, 1999; Reynolds et al., 2000; Maunsell and Treue, 2006; Aboitiz and Cosmelli, 

2008); that is, excited neurons become more excited and inhibited neurons become less 

active (Eldar et al., 2013a). We predicted that this effect would be expressed, at the level 

of patterns of activity in fMRI data, as a higher contrast for attended representations: 

active voxels within the pattern would be more highly activated, and suppressed voxels 

would be less active than usual (Eldar et al., 2013b). This, in turn, would produce greater 

variance in the activity across the voxels within the pattern that we indexed as spatial 

variance. Therefore, we reasoned that spatial variance should provide a sensitive measure 

of the expression and attentional modulation of multivariate patterns of activity. We used 

this to index the expression of dimension-specific neural representations of objects 

(identified by the correspondence of their similarity structure to behavioral similarity 

ratings), and then found that this expression was correlated with activity in dlPFC and 

IFG, which are thought to be involved in task representation, attentional selection and 
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cognitive control (Frith and Dolan, 1996; Braver et al., 1997; Cohen et al., 1997; Asaad et 

al., 2000; MacDonald, 2000; Duncan, 2001; Miller and Cohen, 2001; Wallis et al., 2001; 

Sakai and Passingham, 2003). 

One important question is why we did not observe similarity effects for size using either 

animals or fruits. One possibility has to do with the relative nature of size comparisons, 

and the invariance of object representations to size. For example, the mental 

representations of the objects may have been “rescaled”	based on the particular 

comparison being made, thus dissociating cardinal representations of size from the 

individual objects (Frandsen and Holder, 1969; Bundesen and Larsen, 1975; Larsen and 

Bundesen, 1978; Yamins et al., 2014). 

In summary, we showed that the similarity of representations in the brain is modulated by 

task instructions, such that the way an object is represented reflects its features that are 

relevant to the task at hand. Furthermore, we showed that the expression of these task-

specific representations was correlated with activity in regions of frontal cortex widely 

thought to be responsible for attentional modulation and cognitive control. We did so 

using a novel index of representational expression and attention modulation — the spatial 

variance of patterns of activity identified using MVPA. These findings also provide 

validation of the usefulness of multivariate pattern and representation similarity analysis 

for identifying patterns of neural activity associated with mental representations. These 

methods together with the present findings provide a basis for future work concerning the 

dynamics of attentional modulation. 
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Figures 

Figure 1. Design, stimuli and behavioral results 

(a) Animal stimuli that vary along domesticity and size. Fruits stimuli that vary along 

taste and size. (b) Scatter plot of averaged participants’ behavioral ranking of stimuli 

across two dimensions. Individual participant’s behavioral ranking was used in 

subsequent analyses. (c) Schematic of the fMRI experimental design. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2016. ; https://doi.org/10.1101/067553doi: bioRxiv preprint 

https://doi.org/10.1101/067553
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 29 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 22, 2016. ; https://doi.org/10.1101/067553doi: bioRxiv preprint 

https://doi.org/10.1101/067553
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 30 

Figure 2. Similarity analysis 

(a) Schematic of similarity searchlight analysis. Neural representation for each animal 

was extracted in GLM analysis, and was used to construct a neural similarity matrix to 

predict similarity matrix constructed from behavioral ranking data. (b) Similarity analysis 

results. Cluster that spans MFG and dACC reliably predict dimension-specific behavioral 

judgment of similarity for animals domesticity, while as cluster in IPS reliably predict 

that for fruits taste. 
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Figure 3. Connectivity analysis 

(a-b) Schematic of connectivity analysis. (a) Areas that best predicted behavioral 

similarity were used as seed regions. Correlation between seed regions and other parts of 

the brain during trials of one dimension was compared against that of the other 

dimension. (b) Time series of spatial variance of seed region was generated by computing 

the variance across voxels at each given time point. (c) Connectivity analysis results. 

Clusters in right IFG and right dlPFC reliably predict dimension-specific changes in 

spatial variance in the seed regions in animals domesticity. Clusters in left IFG and 

dlPFC reliably predict dimension-specific changes in spatial variance in the seed regions 

in fruits taste. 
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Table 1. Seed regions for connectivity analysis - best performing searchlights in 
similarity analysis 
Subj 
# Regions 

Brodmann 
areas x y z 

Ext
ent  

Animals group Domesticity 
1 Anterior cingulum 24/32 3 35 6 202 
2 Postcentral gyrus 2/3/4 -33 -34 70 153 
3 Inferior parietal lobule/ angular gyrus 7/40 -36 -49 46 168 
4 Thalamus 23 9 -28 14 139 
5 Putamen/ caudate 13 -21 17 6 184 
6 Middle frontal gyrus 10/46 39 44 22 152 
7 Middle frontal gyrus 9 45 35 38 88 
8 Precuneus 7 0 -67 38 286 
9 Insula/ inferior frontal gyrus 13/47 27 20 -2 172 

10 Medial frontal gyrus 10 -9 50 26 175 
11 Medial frontal gyrus/ anterior 

cingulate 9/10/32 -3 47 14 279 
12 Medial frontal gyrus 8/9 6 38 38 235 
13 Middle/ inferior frontal gyrus 10/11/47 -45 47 -10 90 
14 Postcentral gyrus/ inferior parietal 

lobule 5/3/40 -30 -43 58 183 
15 Inferior parietal lobule 40 39 -46 34 80 
16 Parahippocampal gyrus/ 

hippocampus 
20/28/34/3

6 -24 -10 -30 110 
17 Inferior temporal gyrus/ temporal 

pole 20/21/38 -45 -1 -26 175 
18 Superior parietal lobule/ precuneus 7 -18 -70 58 126 
19 Superior/ medial frontal gyrus 10/11 -15 56 -14 71 
20 Middle frontal gyrus 6/8/9 -27 14 42 118 
21 Medial frontal gyrus/ cingulate gyrus 9/32 -15 29 34 143 
22 Middle frontal gyrus 11/10 -42 53 -14 62 
23 Fusiform gyrus 37 -39 -64 -18 69 
24 Temporal pole 38 30 17 -30 115 

Fruits group Taste 
1 Posterior cingulum 7/23/31 0 -49 30 257 
2 Thalamus 23 -9 -19 2 224 
3 Inferior parietal lobule 40 -54 -55 42 117 
4 Temporal pole 38 42 14 -30 193 
5 Insula/ Putamen 13 -33 5 -6 192 
6 Superior frontal gyrus 10 -24 59 2 163 
7 Medial frontal gyrus 11 0 56 -14 146 
8 Inferior occipital gyrus 18 36 -88 -14 104 
9 Inferior temporal gyrus/ inferior 

occipital gyrus 19/37 -48 -70 -14 124 
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10 Middle frontal gyrus 46 -45 35 22 118 
11 Thalamus 23 -9 -19 2 224 
12 Lingual gyrus 19 21 -58 -6 138 
13 Temporal pole 38 -42 8 -34 135 
14 Anterior cingulum 10/32 -9 44 2 194 
15 Thalamus 23 -6 -16 -6 143 
16 Cuneus/ Precuneus 7/18/31 -12 -73 30 225 

Coordinates are in MNI space and correspond to center of the searchlight. 
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Table 2. Reliable clusters in similarity analysis 

Region 
Brodmann 

areas x y z 
Extent 

(voxels) 
Animals group - domesticity      

MFG and dACC 9/32 6.0 -44.1 26.0 249 
Fruits group - taste      

Right IPL and AG 40 57.0 -57.9 34.0 85 
Clusters reliable at P < 0.05 corrected (for animals group), P < 0.02 corrected (for 
fruits group). Cluster size thresholded at P < 0.0001. Coordinates are in MNI 
space and correspond to center of mass of the cluster. 
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Table 3. Reliable clusters in connectivity analysis 

Region 

Brodmann 

areas x y z 

Extent 

(voxels) 

Animals group - domesticity      

Right IFG and dlPFC 10/46 33.0 -47.1 2.0 140 

Fruits group - taste      

Left IFG and dlPFC 10/45/47 -45 38.1 -10 67 

Clusters reliable at P < 0.05 corrected (for animals group), P < 0.02 corrected (for 

fruits group). Cluster size thresholded at P < 0.0001. Coordinates are in MNI 

space and correspond to center of mass of the cluster. 
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