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Abstract 8 

The hippocampus plays a key role in pattern separation, the process of transforming similar 9 

incoming information to highly dissimilar, non-overlapping representations. Sparse firing 10 

granule cells (GCs) in the dentate gyrus (DG) have been proposed to undertake this 11 

computation, but little is known about which of their properties influence pattern separation. 12 

Dendritic atrophy has been reported in diseases associated with pattern separation deficits, 13 

suggesting a possible role for dendrites in this phenomenon. To investigate whether and 14 

how the dendrites of GCs contribute to pattern separation, we build a simplified, biologically 15 

relevant, computational model of the DG. Our model suggests that the presence of GC 16 

dendrites is associated with high pattern separation efficiency while their atrophy leads to 17 

increased excitability and performance impairments. These impairments can be rescued by 18 

restoring GC sparsity to control levels through various manipulations. We predict that 19 

dendrites contribute to pattern separation as a mechanism for controlling sparsity.  20 
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Introduction 21 

The hippocampus is known to be involved in memory formation, storage and consolidation 22 

(Squire et al., 2004), but its specific functionalities remain a mystery. One such functionality 23 

is the ability to rapidly store non-overlapping representations of similar inputs and thereafter, 24 

retrieve them given a partial or noisy stimulus. Theoretical models refer to those processes 25 

as pattern separation and pattern completion, respectively (Marr, 1971; Treves and Rolls, 26 

1994; Yassa and Stark, 2011; Santoro, 2013). The Dentate Gyrus (DG), in particular, has 27 

been proposed to implement pattern separation by sparsifying and orthogonalizing its input, 28 

coming mainly from the Entorhinal Cortex (EC), and thereafter, projecting this information to 29 

the CA3 area via the mossy fibers (Treves and Rolls, 1994). DG has been hypothesized to 30 

separate two distinct but overlapping patterns through the activation of different Granule 31 

Cells (GCs), through the expression of different firing rates in identical neuronal populations 32 

(Deng et al., 2010) or a combination of the two. While several studies have investigated 33 

pattern separation both in rodents (Leutgeb et al., 2004, 2005, 2007) and humans (Kirwan 34 

and Stark, 2007; Bakker et al., 2008; Lacy et al., 2011; Motley and Kirwan, 2012), the role of 35 

dendrites in this phenomenon remains unknown.  36 

The DG is the first subregion of the hippocampus that receives incoming information from 37 

other brain areas. DG principal neurons, the Granule Cells (GCs), receive input from 38 

excitatory afferents coming from EC layer II cells and project to the CA3 subregion. In 39 

addition, they receive input from other DG excitatory cells, the Mossy Cells (MCs), and 40 

various interneurons (Sik et al., 1997) with Basket Cells (BCs) and Hilar Perforant Path 41 

associated (HIPP) cells being the most important. MCs form an inhibitory circuit as their 42 

axons contact the BCs. The net effect of MC excitation to both GCs and BCs is considered 43 

to be inhibitory (Jinde et al., 2012).  44 

Experimental studies have shown that only a small population of GCs, ~5%, are active in a 45 

single context (Marrone et al., 2011; Satvat et al., 2011; Danielson et al., 2016), a 46 
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phenomenon termed sparse coding (Olshausen and Field, 2004). It has been proposed that 47 

sparse coding in GCs enhances pattern separation by recruiting different subgroups of GCs 48 

to encode similar incoming stimuli (Treves et al., 2008; Petrantonakis and Poirazi, 2014, 49 

2015). Computational models (Santhakumar et al., 2005; Yim et al., 2015) and experimental 50 

studies (Nitz and McNaughton, 2004; Jinde et al., 2012) have proposed that inhibition 51 

controls GC activity which, in turn, mediates pattern separation (Myers and Scharfman, 52 

2009, 2011; Ikrar et al., 2013; Faghihi and Moustafa, 2015). 53 

The ability to perform pattern separation is critical for normal brain functioning and its 54 

impairment is associated with cognitive decline. Diseases such as schizophrenia (Das et al., 55 

2014) and Alzheimer’s Disease (AD) (Ally et al., 2013), where cognitive decline is evident, 56 

are both characterized by pattern separation deficiencies. Interestingly, these conditions are 57 

also characterized by alterations in the anatomical properties of GC dendrites, such as a 58 

decrease in the total dendritic length (Einstein et al., 1994) and spine loss (Jain et al., 2012). 59 

Dendritic growth on the other hand has been associated with pattern separation 60 

enhancements. Specifically, voluntary running was recently shown to enhance pattern 61 

separation and this enhancement was attributed to an increase in the neurogenesis rate that 62 

was accompanied by increased GC dendrite outgrowth in active compared to sedentary 63 

animals (Bolz et al., 2015). These findings suggest that the dendrites of GCs are likely to 64 

play a key role in pattern separation mediated by the DG. 65 

To investigate this possibility, we implemented a morphologically simple, yet biologically 66 

relevant, scaled-down spiking neural network model of the DG. The model consists of four 67 

types of cells (MCs, BCs, HIPP and GCs) modeled as simplified integrate-and-fire neurons. 68 

The GC model alone was extended to incorporate dendrites. The electrophysiological 69 

properties of all cell types were calibrated according to a range of experimental data. An 70 

advantage of using such a simplified approach lies in the small number of parameters that 71 

make it possible to characterize their role in the behavior of the model. Despite its simplicity, 72 

the model exhibits realistic pattern separation under several conditions and explains how 73 
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inhibition to GCs provided directly from BCs and indirectly via the inhibitory circuitry through 74 

MCs impact this task, as suggested by a number of recent studies (Myers and Scharfman, 75 

2011; Jinde et al., 2012), thus, supporting its biological relevance. We use the model to 76 

investigate whether and how GC dendrites may contribute to pattern separation.  77 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 2, 2016. ; https://doi.org/10.1101/067389doi: bioRxiv preprint 

https://doi.org/10.1101/067389
http://creativecommons.org/licenses/by-nc/4.0/


  

6 

 

Results 78 

The Dentate Gyrus model 79 

The DG network model consists of four different neuronal types, namely GCs, BCs, MCs, 80 

and HIPP cells. MCs, BCs and HIPP cells are modeled as adaptive exponential I&F (aEIF) 81 

point neurons (Brette and Gerstner, 2005). GCs consist of a leaky integrate-and-fire somatic 82 

compartment connected to a variable number of active dendritic compartments (3, 6 or 12) 83 

whose morphology relies loosely on anatomical data (see Materials and Methods). I&F 84 

models were selected primarily because of their correspondence with experimental 85 

parameters (e.g. the Cm, Rm, Rin) that facilitated constraining with experimental data. Since 86 

dentate GCs are known to have 10-15 dendrites (Claiborne et al., 1990), we consider the 87 

GC model with 12 dendrites as the control. A schematic illustration of the DG network is 88 

shown in Figure 1A. 89 

All computational neuron models were validated against experimental data with respect to 90 

their activity and basic electrophysiological properties (Lübke et al., 1998; Bartos et al., 91 

2001; Krueppel et al., 2011). The spiking profiles of the four neuronal model types are 92 

depicted in Figure 2 while the respective I-V and I-F curves compared against experimental 93 

data are shown in Figure 2-figure supplement 1 and Figure 2-figure supplement 2. The 94 

control (12-dendrite) GC model was validated against the experimental data of (Krueppel et 95 

al., 2011) with respect to its dendritic input-output function, which was found to be slightly 96 

above linearity (see Figure 2-figure supplement 3(A)). Table 1 lists the model and 97 

experimental values of basic intrinsic properties for each of these cell types. Overall, the 98 

electrophysiological properties of the computational models of neurons included in the DG 99 

network are in fair alignment with experimental findings. It should be noted that spiking 100 

profiles are not taken into account when estimating pattern separation in the DG network 101 

model. A GC model neuron was considered active even if it produced a single spike. Thus, 102 

we chose to fit average values rather than temporal profiles of the model neurons. 103 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 2, 2016. ; https://doi.org/10.1101/067389doi: bioRxiv preprint 

https://doi.org/10.1101/067389
http://creativecommons.org/licenses/by-nc/4.0/


  

7 

 

Pattern separation in the DG model 104 

Following validation of the individual neuron models, we tested the DG network’s ability to 105 

implement pattern separation when presented with pairs of inputs characterized by various 106 

degrees of similarity (modeled as overlap in the two activated EC populations). An example 107 

of two such input patterns and their corresponding output is schematically illustrated in 108 

Figure 1B. The network model is deemed capable of separating similar input patterns if the 109 

value of a distance metric 𝑓 is substantially larger in the DG output (GC activity) compared to 110 

its input (EC cell activity). Pattern separation is primarily estimated by looking at the 111 

differences in the populations of neurons that encode each input (‘population distance’, 𝑓1). 112 

To account for the possibility of rate-based pattern separation (Deng et al., 2010), we also 113 

simulate the network under conditions where the two input pairs are identical in terms of EC 114 

‘population distance’ (i.e., 𝑓1(𝑖𝑛𝑝𝑢𝑡) = 0) but differ in their mean firing rates (graphically 115 

depicted in Figure 1C). Pattern separation in this case is measured by looking at differences 116 

in the average firing rate of the neurons encoding both inputs (‘rate distance’, 𝑓2). The ‘rate 117 

distance’ is estimated both at the input (EC cells) and the output (GCs) levels (see Materials 118 

and Methods). Pattern separation is successfully performed if the ‘rate distance’ of the 119 

output (𝑓2(𝑜𝑢𝑡𝑝𝑢𝑡)) is larger than that of the input (𝑓2(𝑖𝑛𝑝𝑢𝑡)). The network’s ability to perform 120 

pattern separation across all (200) input pairs measured with both metrics is shown in Table 121 

2. These results demonstrate that two inputs that are quite similar in their topology (i.e., 122 

originate largely (𝑓1) or entirely from the same neurons, perhaps with different firing rates 123 

(𝑓2)), induce substantially different activation patterns of the GCs that they impinge on 124 

(outputs) in the DG network. 125 

Understanding the role of Inhibition in Pattern separation 126 

After establishing the network’s ability to perform pattern separation, we tested its validity 127 

against experimental data with respect to the role of inhibition in this phenomenon. The 128 

network model reproduced the recent findings of Engin et al., whereby inhibition exerted by 129 
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BCs was critical for the sparse firing of GCs (Engin et al., 2015). Specifically, removal of all 130 

BCs resulted in an over-excitation of the GC model population (more than 50% of GCs 131 

responded strongly to any input). This over-excitation in turn impaired pattern separation, as 132 

the GC populations responding to the two inputs became nearly identical and fired at very 133 

similar, high frequencies. These findings are also in line with experimental evidence 134 

reporting increased memory interference under conditions of reduced BC activity (Engin et 135 

al., 2015).  136 

Since MCs have also been suggested to control the excitability of DG granule cells (Jinde et 137 

al., 2013), we simulated a complete MC-loss lesion (Figure 3A) as per (Ratzliff et al., 2004). 138 

This manipulation led to an increase in the proportion of active GCs for all input patterns 139 

tested (Figure 3B, 3D), and a decrease in pattern separation efficiency, measured either with 140 

the population (𝑓1, Figure 3C) (Wilcoxon test, W1=2095.5, p1≈10-9, 95% CI1 [0.05, 0.09], 141 

W2=2242.0, p2≈10-11, 95% CI2 [0.06, 0.10], W3=2363.0, p3≈10-11, 95% CI3 [0.07, 0.11], 142 

W4=2444.0, p4≈10-16, 95% CI4 [0.08, 0.12]) or rate metrics (𝑓2, Figure 3E) (Wilcoxon test, 143 

W=930.0, p=0.0276, 95% CI [0.01, 0.07]). The subscripts (form one to four) in the Wilcoxon 144 

test statistic (W), p-value, confidence interval (CI) correspond to the four experiments with 145 

different input overlaps (see Materials and Methods). The observed decrease in sparsity 146 

under the MC-loss condition was accompanied by small increases in the excitability levels of 147 

GC models. Specifically, for the population coding experiment, the mean GC firing frequency 148 

increased from 3.5 Hz to 4.82 Hz, while for the rate-based coding experiment from 3.75 Hz 149 

to 4.94 Hz for 40 Hz inputs and from 5.24 Hz to 8.07 Hz for 50 Hz inputs. These findings are 150 

in line with the experimental data of (Ratzliff et al., 2004) where MC-loss did not lead to an 151 

over-excitation of GCs.  152 

Taken together, the proposed DG network model a) exhibits single-neuron response 153 

properties that are in good agreement with experimental data, b) implements a connectivity 154 

profile that relies on experimental observations, c) exhibits robust pattern separation and d) 155 

replicates experimental data about the role of BCs and MC cells in the aforementioned task. 156 
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These features support the biological plausibility of the model which is next used to 157 

investigate how dendrites contribute to pattern separation.  158 

Dendrites and Pattern separation 159 

Dendritic pruning 160 

The main question of interest in this work is whether and how dendrites may contribute to 161 

pattern separation. To answer this question we started by examining whether the number of 162 

dendrites correlates with pattern separation performance as we prune the GC (sister) 163 

branches from 12 (control) to 6 and 3 (Figure 4A). To assess the effect of dendritic number, 164 

we kept all other parameters (maximum dendritic length, dendritic diameter in the IML, MML 165 

and OML layers, membrane capacitance, “leak” conductance, number of activated synapses 166 

and input firing rates) of the three GC models identical to those of the control. Dendritic 167 

integration properties for the pruned GC models are shown in Figure 2-figure supplement 3 168 

(B). The control DG network (12-dendrite model) was calibrated to have a mean population 169 

sparsity level of 2-5% as per (Treves et al., 2008; Danielson et al., 2016), meaning that only 170 

a small fraction of GCs were active for any given stimulus.  171 

Interestingly, pattern separation of pairs of inputs with increasing similarity (measured either 172 

by population distances, Figure 4C, or by rate distances, Figure 4E) was successfully 173 

performed in the control as well as both pruned models for all pairs of inputs tested. The 174 

efficiency of pattern separation however correlated with the number of dendrites in GCs 175 

(Figure 4C, 4E), with the 12-dendrite GC model achieving the best performance for both 176 

population (12-dendrite vs. 6-dendrite: Wilcoxon test, W1=1849.0, p1≈10-5, 95% CI1 [0.02, 177 

0.06], W2=1818.5, p2≈10-4, 95% CI2 [0.02, 0.06], W3=2060.5, p3≈10-8, 95% CI3 [0.04, 0.07], 178 

W4=1948.0, p4≈10-6 95% CI4 [0.03, 0.06] and 12-dendrite vs. 3-dendrite: Wilcoxon test, 179 

W1=2471.0, p1≈10-16, 95% CI1 [0.11, 0.15], W2=2462.0, p2≈10-16, 95% CI2 [0.11, 0.14], 180 

W3=2473.0, p3≈10-16, 95% CI3 [0.10, 0.13], W4=2451.0, p4≈10-16, 95% CI4 [0.08, 0.11]) and 181 

rate based-metrics (12-dendrite vs. 6-dendrite: Wilcoxon test, W=1764.0, p=0.0004, 95% CI 182 
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[0.03, 0.09] and 12-dendrite vs. 3-dendrite: Wilcoxon test, W=2072.0, p≈10-8, 95% CI [0.06, 183 

0.12]) (i.e., the highest 𝑓1(𝑜𝑢𝑡𝑝𝑢𝑡) and 𝑓2(𝑜𝑢𝑡𝑝𝑢𝑡), respectively). 184 

These findings are better understood by looking at the sparsity levels exhibited by the three 185 

GC network models. As shown in Figure 4B, the percentage of active GCs for the 186 

population-based experiment increased substantially when the number of dendrites was 187 

reduced. It rose from ~5%, to ~10% and ~20%, for GC model cells with 12, 6 and 3 188 

dendrites, respectively. These differences in activity distributions were statistically significant 189 

(12-dendrite vs. 6-dendrite: Kolmogorov-Smirnov test, D=1.000, p≈10-16 and 12-dendrite vs. 190 

3-dendrite: Kolmogorov-Smirnov test, D=1.000. p≈10-16). The activity levels of the three 191 

models followed a similar pattern in the case of rate-based coding (Figure 4D); Input 192 

patterns with high firing rates induced lower sparsity levels in the 12-dendrite GC model, 193 

followed by the 6-dendrite model and then the 3-dendrite model (12-dendrite vs. 6-dendrite: 194 

Kolmogorov-Smirnov test, D=1.000, p≈10-16 and 12-dendrite vs. 3-dendrite: Kolmogorov-195 

Smirnov test, D=1.000. p≈10-16). These data reveal that high levels of sparsity (namely low 196 

levels of GC activity) and pattern separation efficiency in the network model are a direct 197 

consequence of having multiple dendrites and suggest that dendrites may contribute to 198 

pattern separation through their effects on sparsity. 199 

Dendritic growth 200 

To further test whether the presence of dendrites helps pattern separation by increasing 201 

sparsity, we also simulated the opposite process, namely the growth of dendrites. We built 202 

GC models with 3, 6 and 12 dendrites with shapes that roughly mimic the stages of dendritic 203 

growth (Figure 5A): starting with a GC model consisting of 3 thick dendritic compartments 204 

and adding a branch point with two thinner sister branches at each terminal dendrite we end 205 

up with a 12-dendrite model which is identical with our control one (see Materials and 206 

Methods). Dendritic integration properties for the growth GC models are shown in Figure 2-207 
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figure supplement 3 (C). Note that in this simulation, the number, length and mean diameter 208 

of dendrites differ between the three models. 209 

In line with the findings of the pruning experiment, the percentage of active GCs declined as 210 

the number of dendrites increased (Figure 5B,D). The average GC activity for the 211 

population-coding experiment started at ~70% for the network with 3 GC dendrites, dropped 212 

to ~28% for the network with 6 GC dendrites and to ~5% for the 12-dendrite (control) model 213 

(all differences were statistically significant, (12-dendrite vs. 6-dendrite: Kolmogorov-Smirnov 214 

test, D=1.000, p≈10-16 and 12-dendrite vs. 3-dendrite: Kolmogorov-Smirnov test, D=1.000. 215 

p≈10-16). Similar differences in GC sparsity were seen in the rate-based experiment (Figure 216 

5D). In both cases, the 3-dendrite model exhibited much higher activity levels than the ones 217 

seen in the pruning experiment (Figure 4B,D), primarily because of additional alterations in 218 

dendritic length and diameter. Moreover, pattern separation measured by the population 219 

metric was completely impaired in the 3-dendrite model (Figure 5C, blue line falls below the 220 

diagonal) while performance based on rate coding remained above baseline (Figure 5E, blue 221 

bar). Pattern separation was successfully performed in the 6-dendrite model albeit with lower 222 

efficiency compared to the 12-dendrite model, as evaluated both with the population (12-223 

dendrite vs. 6-dendrite: Wilcoxon test, W1=2456.0, p1≈10-16, 95% CI1 [0.12, 0.15], 224 

W2=2421.0, p2≈10-15, 95% CI2 [0.09, 0.13], W3=2466.0, p3≈10-16, 95% CI3 [0.09, 0.13], 225 

W4=2368.0, p4≈10-14, 95% CI4 [0.06, 0.09]  and 12-dendrite vs. 3-dendrite: Wilcoxon test, W1-226 

4=2500.0, p1-4≈10-16, 95% CI1 [0.44, 0.48], 95% CI2 [0.40, 0.43], 95% CI3 [0.36, 0.39], 95% 227 

CI4 [0.29, 0.32],) and rate distance metrics (12-dendrite vs. 6-dendrite: Wilcoxon test, 228 

W=1638.0, p=0.0076, 95% CI [0.01, 0.07] and 12-dendrite vs. 3-dendrite: Wilcoxon test, 229 

W=2305.0, p≈10-13, 95% CI [0.17, 0.25])  (Figure 5C,E). 230 

Taken together, the “pruning” and “growth” simulations suggest a strong link between pattern 231 

separation efficiency and GC population sparsity (Aimone et al., 2011, Deng et al., 2010) 232 

and predict that dendrites may serve as a mechanism for increasing the sparsity of the GC 233 

population which in turn enhances pattern separation. 234 
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Controlling sparsity with non-dendritic mechanisms 235 

The above simulations predict that dendrites can be sufficient for mediating sparsity, which 236 

in turn enhances pattern separation. We next ask whether they are necessary for this task, 237 

as it is possible that a GC neuron can counteract the decrease in sparsity induced by having 238 

fewer/shorter dendrites through alternative mechanisms.  239 

Input resistance does not explain differences in sparsity or pattern separation 240 

efficiency 241 

First, we assessed the effect of input resistance differences among the various GC models 242 

on sparsity and pattern separation efficiency. A possible explanation of the above findings is 243 

that a GC model with a small dendritic tree has increased input resistance (as can be seen 244 

in Supplementary file 1A) which in turn leads to higher excitability and decreased sparsity. 245 

We thus corrected the input resistance in the 6- and 3-dendrite models to match the one in 246 

the 12-dendrite model (at the soma) by modifying a) the “leak” channel conductance (gleak) 247 

or b) the size of the somatic compartments (see Supplementary file 1B for the corrected 248 

values and Figure 2-figure supplement 4 for the corrected dendritic integration profiles). 249 

Specifically, for the pruning models, gleak increased by 1.230 and 1.635 for the 6- and 3-250 

dendrite models while for the growth models, these numbers were 1.596 and 2.438, 251 

respectively. Figure 6 shows the outcome of this correction for both pruning (A-B) and 252 

growth (C-D) cases. As evident from the figure, correcting the input resistance by increasing 253 

the “leak” conductance in the pruning case, reduced but did not eliminate differences in 254 

sparsity (Figure 6A) (12-dendrite vs. 6-dendrite: Kolmogorov-Smirnov test, D=0.868, p≈10-16 255 

and 12-dendrite vs. 3-dendrite: Kolmogorov-Smirnov test, D=1.000. p≈10-16) or pattern 256 

separation efficiency (Figure 6B) (12-dendrite vs. 6-dendrite: Wilcoxon test, W1=1636.5, 257 

p1=0.0078, 95% CI1 [0.01, 0.07], W2=1606.5, p2=0.0141, 95% CI1 [0.01, 0.04], W3=1732.5, 258 

p3=0.0009, 95% CI1 [0.02, 0.05], W4=1668.5, p4=0.0040 95% CI4 [0.01, 0.04] and 12-259 

dendrite vs. 3-dendrite: Wilcoxon test, W1=2164.0, p1≈10-10, 95% CI1 [0.06, 0.09], 260 
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W2=2177.5, p2≈10-10, 95% CI2 [0.05, 0.09], W3=2284.0, p3≈10-12, 95% CI3 [0.06, 0.09], 261 

W4=2151.0, p4≈10-10 95% CI4 [0.04, 0.07]). Similar findings were seen in the growth case, 262 

both for the sparsity (Figure 6C)  (12-dendrite vs. 6-dendrite: Kolmogorov-Smirnov test, 263 

D=0.956, p≈10-16 and 12-dendrite vs. 3-dendrite: Kolmogorov-Smirnov test, D=1.000, p≈10-264 

16) and pattern separation efficiency (Figure 6D) (12-dendrite vs. 6-dendrite: Wilcoxon test, 265 

W1=2252.5, p1≈10-12, 95% CI1 [0.06, 0.10], W2=2387.0, p2≈10-15, 95% CI2 [0.09, 0.12], 266 

W3=2408.5, p3≈10-15, 95% CI3 [0.07, 0.11], W4=2258.5, p4≈10-12, 95% CI4 [0.05, 0.08] and 267 

12-dendrite vs. 3-dendrite: Wilcoxon test, W1-4=2500.0, p1-4≈10-16, 95% CI1 [0.24, 0.28], 95% 268 

CI2 [0.22, 0.26], 95% CI3 [0.20, 0.24], 95% CI4 [0.16, 0.19]). Both sparsity and pattern 269 

separation efficiency were highest in the 12-dendrite, followed by the 6-dendrite and the 3-270 

dendrite models. The same was seen when using the rate-based distance metric to evaluate 271 

sparsity and pattern separation (Figure 6-figure supplement 1). In all cases, differences were 272 

more pronounced in the growth compared to the pruning case, in line with the findings of 273 

Figures 4-5. 274 

Similar results were obtained when correcting the input resistance by increasing the 275 

dimensions of the somatic compartment (Supplementary file 1B). For the pruning models, 276 

the soma increased by a factor of 1.278 and 1.527 in the 6- and 3-dendrite models, 277 

respectively while for the growth models, these factors were 1.513 and 1.746, respectively. 278 

As shown in Figure 7 (A-B), for the pruning case, differences in sparsity (12-dendrite vs. 6-279 

dendrite: Kolmogorov-Smirnov test, D=0.820, p≈10-16 and 12-dendrite vs. 3-dendrite, 280 

Kolmogorov-Smirnov test, D=1.000, p≈10-16) and pattern separation efficiency (12-dendrite 281 

vs. 6-dendrite: Wilcoxon test, W1=1420.5, p1=0.2412, 95% CI1 [-0.01, 0.03], W2=1588.0, 282 

p2=0.0020, 95% CI2 [0.01, 0.04], W3=1713.5, p3=0.0014, 95% CI3 [0.02, 0.05], W4=1600.5, 283 

p4=0.0158, 95% CI1 [0.01, 0.04] and 12-dendrite vs. 3-dendrite: Wilcoxon test, W1=1914.0, 284 

p1≈10-6, 95% CI1 [0.03, 0.07], W2=1878.0, p2≈10-5, 95% CI2 [0.02, 0.06], W3=1979.5, p3≈10-7, 285 

95% CI3 [0.03, 0.07], W4=1891.5, p4≈10-5, 95% CI4 [0.02, 0.05]) among corrected models 286 

decreased significantly but were not eliminated. Similar findings were seen in the growth 287 
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case, both for the sparsity (12-dendrite vs. 6-dendrite: Kolmogorov-Smirnov test, D=1.000, 288 

p≈10-16 and 12-dendrite vs. 3-dendrite: Kolmogorov-Smirnov test, D=1.000, p≈10-16) and 289 

pattern separation efficiency (12-dendrite vs. 6-dendrite: Wilcoxon test, W1=1965.0, p1≈10-13, 290 

95% CI1 [0.04, 0.08], W2=1961.5, p2≈10-6, 95% CI2 [0.03, 0.07], W3=2112.5, p3≈10-9, 95% CI3 291 

[0.04, 0.08], W4=1919.5, p4≈10-6, 95% CI4 [0.02, 0.06] and 12-dendrite vs. 3-dendrite: 292 

Wilcoxon test, W1=2465.0, p1≈10-16 95% CI1 [0.12, 0.15], W2=2463.0, p2≈10-16, 95% CI2 293 

[0.10, 0.14], W3=2470.0, p3≈10-16, 95% CI3 [0.09, 0.12], W4=2388.0, p4≈10-1595% CI4 [0.07, 294 

0.10]) .Both sparsity and pattern separation efficiency remained highest in the 12-dendrite, 295 

followed by the 6-dendrite and the 3-dendrite models. Similar findings were obtained when 296 

using the rate-based distance metric to assess pattern separation (Figure 7-figure 297 

supplement 1). Note that correcting the input resistance via increasing the somatic 298 

compartment is more effective than increasing the leak conductance, as both Cm and gleak 299 

increase proportionally, keeping the membrane time constant identical across model cells. 300 

Overall, these simulations suggest that while the input resistance is a key determinant of GC 301 

neuron activity, it does not fully explain the differences in sparsity and pattern separation 302 

efficiency among models with 3, 6 or 12 GC dendrites. 303 

Sparsity is the key determinant of pattern separation efficiency 304 

The question that arises naturally from the above findings is whether further manipulations of 305 

the leak conductance and/or somatic dimensions could match sparsity across all models? 306 

Moreover, would matching sparsity result in identical pattern separation efficiency, thus 307 

making sparsity the key determinant of pattern separation (O’Reilly and McClelland, 1994; 308 

Johnston et al., 2015)? To answer these questions we explored the effects of manipulating 309 

intrinsic (gleak and somatic dimensions) as well as extrinsic (synaptic weight) mechanisms in 310 

the 3-, 6- and 12-dendrite GC models. Due to the consistent nature of the previous results, 311 

the remaining simulations were performed using the pruning experiment configuration to 312 

generate the 3- and 6-dendrite GC models and the population-based metric to assess 313 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 2, 2016. ; https://doi.org/10.1101/067389doi: bioRxiv preprint 

https://doi.org/10.1101/067389
http://creativecommons.org/licenses/by-nc/4.0/


  

15 

 

pattern separation. Their corresponding properties are shown in Supplementary file 1C and 314 

the corrected dendritic integration profiles in Figure 2-figure supplement 5.  315 

As shown in Figure 8Ai, increasing gleak by a factor of 1.58 and 2.48, in the 6- and 3-dendrite 316 

GC models respectively, eliminated the differences in sparsity distributions compared to the 317 

control (12-dendrite vs. 6-dendrite: Kolmogorov-Smirnov test, D=0.096, p=0.1995 and 12-318 

dendrite vs. 3-dendrite: Kolmogorov-Smirnov test, D=0.100, p=0.1641). The same was 319 

observed with respect to pattern separation efficiency (Figure 8Aii). All three models 320 

exhibited identical performance across all difficulty levels (12-dendrite vs. 6-dendrite: 321 

Wilcoxon test, W1=1148.5, p1=0.4863, 95% CI1 [-0.03, 0.01], W2=1263.5, p2=0.9286, 95% 322 

CI2 [-0.02, 0.02], W3=1337.5, p3=0.5486, 95% CI3 [-0.01, 0.02], W4=1192.0, p4=0.6918, 95% 323 

CI4 [-0.02, 0.02], 12-dendrite vs. 3-dendrite: Wilcoxon test, W1=1195.5, p1=0.7097, 95% CI1 324 

[-0.03, 0.01], W2=1067.5, p2=0.2096, 95% CI2 [-0.04, 0.01], W3=1326.5, p3=0.6003, 95% CI3 325 

[-0.01, 0.02], W4=1246.5, p4=0.9835, 95% CI4 [-0.02, 0.02]). Similarly, increasing the 326 

diameter and length of the somatic compartment in the 6- and 3-dendrite models by 1.480 327 

and 1.870, respectively (Figure 8Bi) resulted in similar sparsity (12-dendrite vs. 6-dendrite: 328 

Kolmogorov-Smirnov test, D=0.108, p=0.1083 and 12-dendrite vs. 3-dendrite: Kolmogorov-329 

Smirnov test, D=0.040, p=0.9883). Similarly, pattern separation efficiency was identical 330 

across all models and difficulty levels (Figure 8Bii), (12-dendrite vs. 6-dendrite: Wilcoxon 331 

test, W1=1092.0, p1=0.2776, 95% CI1 [-0.04, 0.01], W2=1106.5, p2=0.3242, 95% CI2 [-0.03, 332 

0.01], W3=1350.5, p3=0.4906, 95% CI3 [-0.01, 0.03], W4=1378.0, p4=0.3794, 95% CI4 [-0.01, 333 

0.03] and 12-dendrite vs. 3-dendrite: Wilcoxon test, W1=1144.0, p1=0.4670, 95% CI1 [-0.03, 334 

0.01], W2=937.5, p2=0.0315, 95% CI2 [-0.04, 0.00], W3=1281.0, p3=0.8335, 95% CI3 [-0.02, 335 

0.02], W4=1117.5, p4=0.3628, 95% CI4 [-0.03, 0.01]). It should be noted that the 336 

abovementioned sizes are not realistic for the somata of GC neurons. Nevertheless, these 337 

findings highlight the key role of sparsity in controlling pattern separation efficiency, 338 

irrespectively of the number of GC dendrites. Moreover, these simulations predict that 339 
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intrinsic mechanisms of GC neurons could potentially be used to correct for morphological 340 

alterations in order to control sparsity levels. 341 

We next investigated whether sparsity levels can also be controlled via extrinsic (network) 342 

rather than intrinsic mechanisms such as changes in the synaptic weights between EC and 343 

GC neurons, namely by decreasing the strength of the input to the DG network. Specifically, 344 

the synaptic weight of the EC  GC synapses in the 6- and 3-dendrite models was set to 345 

0.75 and 0.56, respectively (the control value in the 12-dendrite model was 1.00). Again, as 346 

shown in Figure 8Ci, differences in sparsity were eliminated among the three dendrite 347 

models (12-dendrite vs. 6-dendrite: Kolmogorov-Smirnov test, D=0.092, p = 0.2406 and 12-348 

dendrite vs. 3-dendrite: Kolmogorov-Smirnov test, D=0.092, p=0.2406). Finally, pattern 349 

separation efficiency was nearly identical cross all models and difficulty levels (Figure 8Cii), 350 

with a tiny difference in the 3-dendrite model for patterns overlapping by 90% (12-dendrite 351 

vs. 6-dendrite: Wilcoxon test, W1=1085.5, p1=0.2582, 95% CI1 [-0.04, 0.01], W2=1072.5, 352 

p2=0.2224, 95% CI2 [-0.03, 0.01], W3=1316.5, p3=0.6491, 95% CI3 [-0.02, 0.02], W4=1122.0, 353 

p4=0.379495% CI4 [-0.03, 0.01] and 12-dendrite vs. 6-dendrite: Wilcoxon test, W1=1117.5, 354 

p1=0.3628, 95% CI1 [-0.04,0.01], W2=1052.5, p2=0.1744, 95% CI2 [-0.04, 0.01], W3=966.0, 355 

p3=0.0507, 95% CI3 [-0.01, 0.01], W4=773.0, p4=0.0010, 95% CI4 [-0.05, -0.01)]). 356 

In sum, these simulations predict that sparsity is the key determinant of pattern separation 357 

efficiency. Sparsity of the GC neuronal population can be controlled via multiple 358 

mechanisms, including the growth of dendrites. Pruning of dendrites can be compensated by 359 

the growth of very large somata, a large increase in the leak channel conductance or a 360 

significant decrease in the strength of the EC input via synaptic weight changes.  361 

What have we learnt from the model? 362 

The above simulations suggest that dendrites contribute to pattern separation via enhancing 363 

sparsity, yet they are not essential for this task. Different mechanisms, both intrinsic and 364 

extrinsic, can achieve the same effects. What is not entirely clear is whether the relationship 365 
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between sparsity and pattern separation efficiency is identical for all three GC models across 366 

different sparsity levels. To test this we challenged the three models (deduced from the 367 

pruning experiment) with the task of separating pairs of inputs that overlap by 80%, while 368 

varying the synaptic weight of the EC  GC connections so as to induce different levels of 369 

sparsity. Only corrected models (namely exhibiting the same level of sparsity) were 370 

compared. As shown in Figure 9A, for any given sparsity level, pattern separation efficiency 371 

was almost identical for all three dendrite models (Wilcoxon test, p>0.05). These simulations 372 

suggest that indeed, when it comes to pattern separation, the key determinant is the level of 373 

GC population sparsity. Having multiple dendrites simply helps achieving high levels of 374 

sparsity because the probability of generating somatic spikes when inputs are distributed 375 

across many (rather than few) dendrites is significantly smaller. 376 

Figure 9B summarizes the predictions made by our DG model, whereby sparsity plays a 377 

central role in pattern separation. We already knew from previous studies that inhibition is 378 

one of the key mechanisms mediating sparsity and in turn pattern separation (Myers and 379 

Scharfman, 2009, 2011; Jinde et al., 2012). What we propose here is that the presence of 380 

dendrites comes with a bonus in the DG network: it provides another mechanism for 381 

increasing sparsity and as such has a key role in pattern separation. While dendrites appear 382 

to be sufficient, they are not necessary for achieving high sparsity levels. Both intrinsic and 383 

network mechanisms can be used to achieve the same effects. In this study we identified 384 

some of these mechanisms but it is likely that there are many others and/or their 385 

combinations can also achieve similar results.  386 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 2, 2016. ; https://doi.org/10.1101/067389doi: bioRxiv preprint 

https://doi.org/10.1101/067389
http://creativecommons.org/licenses/by-nc/4.0/


  

18 

 

Discussion 387 

Summary of the results 388 

The model  389 

The goal of this study was to reveal whether and how dendrites of principal (GC) cells can 390 

mediate pattern separation in the DG via the use of a computational approach. Towards this 391 

goal, we introduced a novel network model of the DG that includes the four major neuronal 392 

cell types found in this area, namely Granule Cells, Mossy Cells, Basket Cells, and HIPP 393 

cells. GCs were modeled as two stage integrators via the addition of dendritic branches 394 

whose properties are loosely constrained by electrophysiological and anatomical data. The 395 

rest of the neuronal types were simulated as exponential leaky integrate-and-fire neurons 396 

with adaptation. The proposed hybrid model serves as a bridge between simplified point 397 

neuron network models (Myers and Scharfman, 2009) and more detailed biophysical models 398 

(Santhakumar et al., 2005) of the DG. As such, it provides a biologically relevant and 399 

computationally efficient tool for the in depth exploration of different factors that may 400 

contribute to pattern separation, going beyond the scope of this particular study. The 401 

selective use of dendritic compartments only in GCs keeps the model complexity low while 402 

at the same time allowing the dissection of some basic GC dendritic mechanisms in pattern 403 

separation. To our knowledge this is the first DG network model of its kind. 404 

Model predictions 405 

Inhibition is known to control neuronal activity by increasing sparsity, as the number of active 406 

neurons is smaller for a given stimulus (Jung and McNaughton, 1993) therefore, enhancing 407 

pattern separation (Aimone et al., 2011). In the presented model, inhibition is provided to the 408 

network both directly via BCs (perisomatic inhibition) and HIPP cells (dendritic inhibition) and 409 

indirectly through the MC circuitry. We find that MC loss, while increasing GC cell activity in 410 
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line with the experimental data of (Ratzliff et al., 2002), does not lead to hyper-excitability yet 411 

we do predict a measurable deficit on pattern separation. 412 

To our knowledge, our model is the first to predict a role of GC dendrites in pattern 413 

separation. This role is an indirect one and results from the inherent increase in sparsity of 414 

the GC cells that is endowed by the presence of dendrites. Specifically, we show that the 415 

number of GC dendrites correlates positively with pattern separation efficiency due to the 416 

higher sparsity levels provided by having multiple dendrites. In our control model, higher 417 

sparsity arises from the requirement of having at least two dendrites simultaneously active in 418 

order to fire a GC model neuron. This emerged from the calibration of GC properties against 419 

experimental data, thus is considered biologically relevant. As a result, GCs with large 420 

numbers of dendrites have a lower probability of activation given a fixed number of afferents, 421 

therefore increased network sparsity. We also predict that under conditions of dendritic 422 

pruning and/or early in the growth stages of GCs, high sparsity can be achieved with 423 

alternative mechanisms, both intrinsic (e.g., leak conductance, somatic dimensions) and 424 

extrinsic (e.g., synaptic weights) making dendrites a sufficient but not necessary condition for 425 

high pattern separation efficiency. These results support the hypothesis that sparsity in GC 426 

activity improves pattern separation (O’Reilly and McClelland, 1994) and provide a list of 427 

alternative mechanisms for controlling sparsity in the DG. 428 

Implications for pathology 429 

As part of the hippocampus, the DG is long hypothesized to play a key role in associative 430 

memories, and especially when those are related with events (Morris, 2006). Furthermore, 431 

the hippocampal DG has been implicated as the subregion most sensitive to the effects of 432 

advancing age (Small et al., 2004). While the CA1 subregion is directly associated with 433 

Alzheimer’s Disease (AD) due to cell loss, as demonstrated in humans (West et al., 2006), 434 

DG alterations have also been reported in patients with the aforementioned disease (Scheff 435 

and Price, 2003), including changes in granule cell dendrites (Einstein et al., 1994). 436 
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Specifically, the dendrites of GCs in AD patients appear shorter, with fewer branches and 437 

fewer spines than those of matched controls. Moreover, in AD patients the dendrites of 438 

granular cells were reported to lose approximately 50% of their spines (Einstein et al., 1994). 439 

Our simulations show that the most important of the above-listed observations with respect 440 

to pattern separation performed by the DG would be the shortening of dendritic branches via 441 

the loss of branch points rather than the loss of side branches while mentioning the same 442 

dendritic length. Total dendritic length of GCs was previously linked to AD, which in turn is 443 

aligned with the evidence that patients with AD, who have extensive hippocampal and 444 

parahippocampal damage, lost their ability to encode information in distinct, orthogonal 445 

representations (Ally et al., 2013). 446 

The DG is also associated with epileptogenesis in temporal lobe epilepsy (TLE) and hence, 447 

many computational models are used to investigate the effect of GC alterations in epilepsy 448 

(Tejada and Roque, 2014; Faghihi and Moustafa, 2015). Moreover, hilar cell loss has been 449 

reported in animal models after concussive head injury and also under TLE (Mathern et al., 450 

1995). It remains unclear however, which hilar neurons are lost in animal models of TLE. As 451 

a result, there are currently three theories for TLE: a) the “dormant basket cell” hypothesis 452 

according to which the hyper-excitability in GC population is due to the loss of MCs which 453 

normally excite BCs which in turn provide inhibition to GCs. b) The “irritable mossy cell” 454 

hypothesis according to which surviving MCs hyper-excite GCs by sending uncontrolled 455 

excitation, and c) the MC loss-induced sprouting hypothesis (mossy fiber sprouting) (Ratzliff 456 

et al., 2002). We show that under conditions of MC loss, GCs exhibit increased activity (but 457 

not hyper-excitability) which should lead to pattern separation deficits. While our results are 458 

in agreement with the findings of (Ratzliff et al., 2002), more experiments need to be 459 

performed to revolve this debatable issue. 460 
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Simplifications of the model, and future directions 461 

Several simplifications were made in modeling the individual cells and in implementing the 462 

DG network. First, we used simple point neurons in order to simulate the neuronal cells of 463 

DG. Although these models could capture the average spiking properties of a given neuron, 464 

it remains unclear how the geometrical characteristics of those neurons could affect their 465 

behavior. Another simplification concerns the effects of synaptic failure rates and receptor 466 

desensitization (Harney and Jones, 2002) in the DG, which were not included in the model.  467 

An important aspect of DG function is the long-term synaptic plasticity, by which the 468 

connections from PP to GCs are modified. Previous DG models used a form of Hebbian 469 

learning that incorporates features of long-term potentiation and depression (Rolls, 2007). 470 

However, such a function is most likely to be relevant when stimuli are presented 471 

repetitively. On the contrary, the current model is used to distinguish patterns presented in 472 

single instances and accordingly, plasticity is not considered. Future work may address such 473 

issues along with including other interneuronal populations such as the Molecular layer 474 

Perforant Path-associated (MOPP) and the Hilar Commissural-Associational pathway 475 

related (HICAP) cells, especially when more data on their intrinsic and connectivity 476 

properties become known.  477 

Moreover, GCs are among few cells that undergo neurogenesis in adulthood (Eriksson, 478 

2003; Aimone et al., 2010). In a recent study by Nakashiba et al. (2012), the role of young 479 

GCs in pattern separation was investigated and it was concluded that new neurons are 480 

required for the discrimination of similar inputs. Since the presented model is used to 481 

examine specific alterations of GCs and their effect on pattern separation, neurogenesis is 482 

not incorporated but would be considered in the future. Overall, the abovementioned 483 

simplifications are unlikely to have a major effect on the basic conclusions about the 484 

contribution of morphological alterations of GC dendrites to pattern separation.  485 
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Materials and Methods 486 

The model was developed mainly based on the structure and connectivity features described 487 

by Myers and Scharfman (2009), and incorporates the four major dentate cell types. These 488 

are the GCs, MCs, BCs and HIPP cells. As the Hilar Commissural-Associational Pathway 489 

(HICAP) cells are relatively rare and poorly understood (Sik et al., 1997), they are not 490 

included in the model. All simulations were performed using the BRIAN (BRIAN v1.4) 491 

network simulator (Goodman and Brette, 2009; Brette and Goodman, 2011) running on a 492 

High-Performance Computing Cluster (HPCC) with 312 cores under 64-bit CentOS Linux. 493 

Model neurons 494 

The four types of DG neurons were modeled as simplified phenomenological neurons of the 495 

integrate-and-fire (I&F) type (Izhikevich, 2003; Burkitt, 2006), with no internal geometry 496 

(“point neurons”). The GCs incorporated dendrites in order to study their role in pattern 497 

separation; however the MCs, BCs and HIPP cells were simulated as simple somatic 498 

compartments. 499 

Modeling BC, MC and HIPP cells 500 

Specifically, an adaptive exponential I&F model (aEIF) (Brette and Gerstner, 2005) was used 501 

to model MCs, BCs and HIPP cells. The model is mathematically described by the following 502 

differential equations (Equation 1, 2): 503 

Cm

dVm

dt
 =  −gl(El − Vm)  +  glΔTexp (

Vm − VT

ΔT
) +  ∑ Isyn  − w                                                       (1) 

τw

dw

dt
 =  α(Vm − El) –  w                                                                                                                                  (2) 

where Cm is the membrane capacitance, Vm the membrane voltage, gl the “leak” 504 

conductance, El the “leak” reversal potential (i.e., the resting potential), Isyn the synaptic 505 
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current flow onto the neuron, w the adaptation variable, ΔT the slope factor, VT the effective 506 

threshold potential, α the adaptive coupling parameter, and τw is the adaptation time 507 

constant. 508 

The exponential nonlinearity describes the spike action potential and its upswing. In the 509 

mathematical interpretation of the model a spike occurs at time tspike when the membrane 510 

voltage reaches a finite limit value, and thereafter the downswing of the action potential is 511 

described by a reset fixed value Vreset, as follows: 512 

at t = tspike (Vm ≥ Vthreshold)  513 

reset V ←  Vreset, w ←  w +  b                                                                                                                        (3) 

where Vthreshold is the voltage threshold above which the neuron fires a spike, and b is the 514 

spike triggered adaptation parameter. For all neuron types the effective threshold is equal to 515 

the voltage threshold (see Table 4 for model parameters). 516 

Modeling principal neurons, GC 517 

In order to investigate the role of GC dendrites in pattern separation, an extended point 518 

neuron was implemented. The GC model consisted of a leaky Integrate-and-Fire somatic 519 

compartment connected to a variable number of dendritic compartments whose morphology 520 

relies on anatomical data (see Table 5 for structure characteristics). Furthermore, an 521 

adaptation parameter w was used, only in the somatic compartment, to reproduce spike 522 

frequency adaptation reported in these neurons. The equation that describes the membrane, 523 

somatic and dendritic, potential of GC model cells is as follows: 524 

Cm

dVm

dt
 =  −gl(El − Vm)  +  ∑ Isyn  − w                                                                                                    (4) 
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The adaptation parameter (w) was set to zero for the dendritic compartments. There is no 525 

evidence for dendritic spikes in GCs (Krueppel et al., 2011), thus the spike mechanism was 526 

only applied in the somatic equation.  527 

The DG is divided into three distinct layers (Figure 1A), the molecular, granular, and 528 

polymorphic (hilus) (Amaral et al., 2007). The GC dendrites extend in the molecular layer 529 

(Amaral et al., 2007), which is further divided into the inner, middle, and outer molecular 530 

layers, and therefore dendritic compartments are discretized accordingly. Table 5 lists the 531 

morphological characteristics of the GC model. According to anatomical data, (Claiborne et 532 

al., 1990) GCs have 10-15 dendrites; thus, the control GC model includes 12 dendrites and 533 

its physiological responses are validated against experimental data (see Table 4 for GC 534 

model parameters).  535 

In order to investigate whether the number of GC dendrites affects pattern separation, we 536 

used two different approaches; dendritic pruning and growth. First, two more GC models 537 

were implemented which differ only in their number of dendrites (6 and 3), but the path 538 

length remained the same across these models. Secondly, two GC models were 539 

implemented which differ both in their dendritic number and their path length. The 540 

morphological differences among the three models are shown in Table 5. The membrane 541 

capacitance of the dendritic compartments was increased compared to the somatic one in 542 

order to account for spines reported in GC dendrites (Aradi and Holmes, 1999). 543 

The intrinsic model properties that were validated against experimental data are the input 544 

resistance (Rin), the sag ratio, defined as the ratio between the exponentially extrapolated 545 

voltage to the steady-state voltage, and the membrane time constant (τm). In line with 546 

experimental procedures (Lübke et al., 1998), we used 1-second somatic current injection to 547 

calculate the intrinsic properties. The input resistance is calculated by the equation Rin =548 

 ΔVm Iinjected⁄ , where ΔVm is the membrane response to current stimulation. Finally, the 549 

membrane time-constant is approximated by the formula τm = RinCm, which is a valid 550 
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approximation for passive compartments. As experimental data were obtained in the 551 

presence of synaptic activity blockers, a somatic current injection at the model cell was used 552 

to replicate those conditions. 553 

Modeling Synapses 554 

Since the DG network consists of both glutamatergic cells (GCs and MCs) and GABAergic 555 

interneurons, AMPA, NMDA and GABA synapses were included in the network model. 556 

Therefore, the total synaptic current (Equations 1 and 4) consisted of two components; the 557 

excitatory current through AMPA receptors (IAMPA) and NMDA receptors (INMDA), and the 558 

inhibitory current via GABAα receptors (IGABA). The majority of ligand-gated ion channels 559 

mediating synaptic transmission, such as AMPA and GABA receptors, display an 560 

approximately linear current-voltage relationship when they open. We modeled these 561 

channels as an ohmic conductance (gsyn) multiplied by the driving force: 562 

Isyn  =  gsyn(t)[Vm(t) − Esyn]                                                                                                                         (5) 

where Esyn is the AMPA and GABA reversal potential, respectively.  563 

The NMDA receptor-mediated conductance depends on the postsynaptic voltage due to the 564 

gate blockage by a positively charged magnesium ion (Mg2+). The fraction of NMDA 565 

channels that are not blocked by Mg2+ can be fitted by a sigmoidal function (Jahr and 566 

Stevens, 1990): 567 

s(V) =  
1

1 + η[Mg2+]o exp(−γVm)
                                                                                                                (6) 

where η is the sensitivity of Mg unblock, γ the steepness of Mg unblock, and [Mg2+]o is the 568 

outer magnesium (Mg) concentration. For NMDA receptors in MCs, BCs and HIPP cells we 569 

used η = 0.28 mM−1, [Mg2+]  =  1mM, and γ =  0.072 mV−1. Instead, for GCs we tuned 570 

these parameters in to match the latest experimental data found in literature (Krueppel et al., 571 
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2011) with the corresponding values equal to η = 0.2 mM−1, [Mg2+]  =  2mM, and γ =572 

 0.04 mV−1. Consequently, the NMDA synaptic current is calculated by the following 573 

equation: 574 

Isyn  =  gsyn(t)s(V)[Vm(t) − Esyn]                                                                                                                (7) 

The ohmic conductance is simulated as a sum of two exponentials (Bartos et al., 2001), one 575 

term based on rising and the other on the decay phase of the postsynaptic potential. This 576 

function allows time constants to be set independently. We simulated such a function as a 577 

system of linear differential equations (Roth and Van Rossum, 2009): 578 

gsyn(t) =  gmaxu(t)                                                                                                                                            (8) 

du

dt
 =  −

u

τdecay
 +  h0v(1 − u),

dv

dt
 =  −

v

τrise
                                                                                             (9) 

where τrise and τdecay are the rise and decay constants respectively, h0 a scaling factor and 579 

u(t) is the function of two exponentials u(t)  =  exp(−t/τdecay)  −  exp(−t/τrise), which is 580 

divided by its maximum amplitude. The scaling factor is set to 1 ms−1 for all AMPA and 581 

GABA receptors and all neuronal types. The NMDA scaling factor is set to 0.5 ms−1 apart 582 

from the synapses form on GCs where it is set to 2 ms−1. Because axons of neurons are not 583 

included in the model, a delay is used between pre- and postsynaptic transmission. The role 584 

of the delay is to account for both the synaptic transmission and the axonal conduction 585 

delay, and its value depends on the presynaptic and postsynaptic neuronal types. The peak 586 

conductance (gmax), rise and decay time constants, and the delay of various network 587 

connections were estimated from experimental data (Kneisler and Dingledine, 1995; Geiger 588 

et al., 1997; Bartos et al., 2001; Schmidt-Hieber et al., 2007; Larimer and Strowbridge, 2008; 589 

Schmidt-Hieber and Bischofberger, 2010; Krueppel et al., 2011; Chiang et al., 2012) and are 590 

given in Table 6. Specifically, the GC peak conductance both for AMPA and NMDA, was 591 

validated against experimental data (Krueppel et al., 2011), where it is evidenced that a 592 
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single synapse provokes a 0.6 mV somatic EPSP, and also the NMDA and AMPA peak 593 

current ratio is equal to 1.08. These values were reproduced in the GC model cells. The 594 

models also incorporate background activity, in order to simulate the experimental findings of 595 

spontaneous activity in DG. Accordingly, we used Poisson independent spike trains in order 596 

to reproduce the experimental data for MCs (2-4 Hz spontaneous activity) (Henze and 597 

Buzsáki, 2007) and for BCs (1-2 Hz spontaneous activity) (Kneisler and Dingledine, 1995). 598 

GCs infrequently generate spontaneously activity, even if inhibition is blocked (Lynch et al., 599 

2000). Thus, we implemented noisy inputs in order to only evoke spontaneous EPSPs (0.05 600 

Hz spontaneous activity). 601 

The DG network model 602 

The DG network model consists of 2000 simulated GCs, a scale that represents 1/500 of the 603 

one million GCs found in rat brains (West et al., 1991). The chosen number of GCs provides 604 

enough power to explore pattern separation, while maintaining computational efficiency. The 605 

population of GCs is organized in non-overlapping clusters, with each cluster containing 20 606 

GCs, respectively. This kind of organization roughly corresponds to the lamellar organization 607 

along the septotemporal extent of DG (Sloviter and Lømo, 2012). 608 

Apart from the principal excitatory dentate cells (GCs), the model comprises two kind of 609 

inhibitory interneurons, the perisomatic (BCs), which form synapses at the soma of the GCs, 610 

and dendritic (HIPP) inhibitory cells, which contact the GCs at their distal dendritic 611 

compartments. There is one BC per cluster of GCs, which in turn corresponds to 100 612 

simulated BCs in the model. This is a form of “winner-take-all” competition (Coultrip et al., 613 

1992) in which all, but the most strongly activated GCs in a cluster, are silenced. Given 100 614 

clusters in the model, and with one winner within each cluster, approximately 5% of GCs are 615 

active for a given stimulus; this is in agreement with the theoretically and experimentally 616 

estimation of 2-5% granular activity in the substrate (Treves et al., 2008; Danielson et al., 617 

2016). Moreover, the model includes simulated hilar MCs and HIPP cells. Estimated 618 
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numbers for these neuronal types vary from 30,000 to 50,000 MCs in rats (West et al., 1991; 619 

Buckmaster and Jongen-Rêlo, 1999), which in turn corresponds to 3-5 MCs per 100 GCs. 620 

Accordingly, the model includes 80 MCs per 2,000 GCs. Experimental counts for HIPP cells 621 

vary significantly, but the latest estimates suggest about 12,000 HIPP cells in rats 622 

(Buckmaster and Jongen-Rêlo, 1999) meaning less than 2 HIPP cells per 100 GCs. To 623 

reflect this empirical data, we simulated 40 HIPP cells in the network model (Figure 1A). 624 

External input to the network model is provided by 400 afferents representing the major input 625 

that DG receives from Entorhinal Cortex (EC) Layer II cells, via the Perforant Path (PP). The 626 

ratio of GCs to PP afferents is aligned with estimations of about 200,000 EC Layer II cells in 627 

the rat (Amaral et al., 1990), suggesting a ratio of 20 EC cells per 100 GCs. Therefore, the 628 

model incorporates synaptic input that corresponds to 400 EC Layer II cells. For simplicity, 629 

the input cells are simulated as independent Poisson spike trains, with frequency of 40 Hz, 630 

which is in line with experimental data (Hafting et al., 2005). Previous experimental studies 631 

have shown that dentate GCs receive input from 10% of the 4,000 afferents that contact a 632 

given GC in the rat during a task (McNaughton et al., 1991), which in turn suggests that an 633 

approximate 10% of EC Layer II cells are active. The simulations reported here assume that 634 

10% is the active PP afferents representing a given stimulus. According to McNaughton et 635 

al., 1991, 10% of the total entorhinal input is necessary to discharge one GC. However, the 636 

EC-GC connection is sparse, with each GC receiving input from about 2% of EC Layer II 637 

neurons. Assuming only 400 input cells; one GC could have only 8 afferents from EC, which 638 

in turn would make it impossible for the GC to become active. As a compromise, we used a 639 

randomly determined 20% of EC Layer II cells as input to each GC and additionally, 20% 640 

randomly determined EC Layer II cells as input to each HIPP cell; GCs contact each MC 641 

with 20% probability; GCs and HIPP cells each feedback to contact a randomly determined 642 

20% of GCs and finally, each MC connects with every BC in the network. Connections are 643 

initialized randomly (uniform random distribution) before the start of the simulations and 644 

remain fixed across all simulations (no rewiring). The connectivity matrix was the same for all 645 
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experiments and across all using GC models, apart from the PPGC, and HIPPGC 646 

synapses due to the difference in GC number of dendrites. 647 

Pattern Separation and Data Analysis 648 

Generally, a network performs pattern separation whenever the similarity between two 649 

distinct input patterns is higher than the similarity between the corresponding output patterns 650 

(Figure 1B). In this work, the input patterns are presented as the activity along the 400 PP 651 

afferents. Each input pattern has 40 active PP afferents (10% input density), an amount of 652 

which are common between two patterns; hence the two patterns have a degree of 653 

similarity. Active cell is considered every GC that fires at least one spike during stimulus 654 

presentation (Myers and Scharfman, 2009), thus the output patterns correspond to the active 655 

GCs. In order to quantify the pattern separation efficiency we used a metric denoted by 𝑓1 656 

(‘population distance’): 657 

𝑓1(𝑖,𝑜)  =  
HDi,o

2(1 − si,o)Ni,o

                                                                                                                                  (10) 

where the 𝑖 and 𝑜 subscripts denote input and output, respectively, s denotes the sparsity 658 

(i.e., the ratio of silent neurons to all neurons), N the number of neurons, and HD is the 659 

hamming distance between two binary patterns (Hamming, 1950), defined as the number of 660 

positions at which the corresponding values are different. The factor of 2 in the denominator 661 

is used to limit our distance measure at zero. Our network is said to perform pattern 662 

separation if the input distance is smaller than the output distance, i.e., when 𝑓1(𝑖) < 𝑓1(𝑜). 663 

Thus far, the distance between two binary patterns is calculated using only the HD metric. 664 

Although we construct the input patterns to have the same sparsity (i.e., 10% are active), the 665 

corresponding output patterns do not necessarily have the same activity level. As we want to 666 

examine the differences among the active neurons of each pattern we disengage the 667 

dependence on sparsity by dividing the HD with the number of neurons that are active in a 668 

pattern. In our case, the output patterns are vectors, each with length equal to 2000 and 2-669 
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5% active neurons in 12 dendrites case, which in turn correspond to 40-100 neurons. The 670 

total number of active neurons lies in the range of 40-200. For example, if the HD between 671 

two patterns is 20, the old metric gives a distance equal to 0.01 whereas the 𝑓1 metric 672 

ranges from 0.10-0.25, depending on the percentage of active GC neurons. Thus, using the 673 

proposed 𝑓1 metric, differences only between active neurons are taken into account, making 674 

the metric more robust across different levels of sparsity. 675 

We constructed four groups of input pattern pairs, with different degrees of similarity and 676 

calculated the input and the corresponding output population distances for each group 677 

independently. Firstly, we constructed a variety of input patterns with input density 10% (i.e., 678 

40 active neurons) and consequently, four additional input patterns were built with 40 active 679 

neurons, 8, 16, 24 and 32 of which are common between patterns, respectively, which, in 680 

turn, corresponds to 𝑓1(𝑖𝑛𝑝𝑢𝑡) = 0.4, 0.3, 0.2 and 0.1. The reasoning behind this approach is to 681 

examine highly overlapping patterns (𝑓1(𝑖𝑛𝑝𝑢𝑡) = 0.1, 0.2), as well as less similar ones 682 

(𝑓1(𝑖𝑛𝑝𝑢𝑡) = 0.3, 0.4). Thus, each trial was composed of two simulations using two input 683 

patterns within each group. 684 

Whereas the 𝑓1 metric quantifies the distance between two binary vectors containing active 685 

and non-active neurons (‘population distance’), we used an additional metric, denoted by 𝑓2, 686 

which quantifies the distance in the firing rates of common neurons that encode two patterns 687 

by using their firing rates (‘rate distance’) (Figure 1C). The 𝑓2 metric is calculated by dividing, 688 

for each neuron that is active in both patterns, its mean firing rate given one stimulus (40 Hz) 689 

by its mean firing rate given a stronger stimulus (50 Hz), and averaging these ratios across 690 

the population of input and output neurons, respectively (Leutgeb et al., 2004). We subtract 691 

this ratio from one in order to convert the ‘rate similarity’ into a ‘rate distance’: 692 

𝑓2 = 1 −
1

Nc
∑

(rB,j − min rB)

(rA,j − min rA)

Nc

j=1

                                                                                                                     (11) 
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where Nc denotes the number of common neurons that are active for bot inputs, r the firing 693 

rate of j-th neuron using input A and B, respectively. Here, B represents the low firing 694 

frequency input, while A the high frequency input. We subtract the global minimum firing rate 695 

of GCs found in all trials in order to normalize the dynamic range of firing rates. 696 

For this experiment, the population of active EC neurons in each pair of inputs was identical. 697 

The network performs pattern separation if the input ‘rate distance’ is smaller than the 698 

corresponding distance in the output, i.e., 𝑓2(𝑖𝑛𝑝𝑢𝑡) < 𝑓2(𝑜𝑢𝑡𝑝𝑢𝑡). In each trial, the two stimuli 699 

were presented to the network and their ‘rate distance’, both in input and output, was 700 

estimated. The results were then averaged across all trials (50 trials for each model). 701 

For each trial, the network was simulated for 850 milliseconds (ms). The first 300 ms were 702 

simulated in order for the network to reach its stable state, so they were excluded from the 703 

analysis. The input onset was at 300 ms and the stimulus was applied for 500 ms. The last 704 

50 ms were simulated in order for the network to reach again its steady state and they were 705 

excluded from the analysis as well. The time step for all simulations was set to 0.1 ms. 706 

The data analysis and the figures describing the results were made using custom made 707 

programs in python2.7.10™ (www.python.org) while the statistical analysis was made using 708 

the R3.3.1 programming language (https://www.r-project.org). We used the two-sided, two-709 

sample Wilcoxon signed-rank test for the pattern separation efficiency comparison and the 710 

two-sided, two-sample Kolmogorov-Smirnov test (K-S test) to compare the GC activity 711 

probability density functions (Neuhäuser, 2011). The model will be available for download at 712 

http://dendrites.gr/en/publications-8/software-23. 713 

  714 
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Figures 954 

 955 

Figure 1. A. Schematic representation of the implemented DG network model. Different shades of green 956 

illustrate the layer division. PP: Perforant Path, GC: Granule Cells, BC: Basket Cells, MC: Mossy Cells, HIPP: 957 

Hilar Perforant Path-associated cells. Perforant Path afferents curry the input to the network, and project on both 958 

the GCs and the HIPP cells. MCs and GCs are connected in a recurrent manner. MCs also excite the BCs. 959 

Inhibition of GCs is provided through BCs and HIPP cells directly and indirectly via MCs. Note that HIPP cells 960 

contact the distal dendrites rather than the soma of GCs. GCs provide the output of the DG network. B. 961 

Schematic representation of pattern separation using population-based coding. When two highly overlapping EC 962 

inputs (input 1 & 2, with identical mean firing rates) arrive in DG, the corresponding outputs are highly dissimilar. 963 

Note that the output pattern is sparse because of the low number of GCs that encode any given pattern. C. 964 

Schematic representation of pattern separation using rate-based coding. When two highly overlapping EC inputs 965 

(input 1 & 2, with different mean firing rates but identical input populations) arrive in DG, the corresponding 966 

outputs are highly dissimilar in their firing rates but also likely to differ in the populations they activate. Rate 967 

distances are estimated over the set of common neurons (red box).  968 
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 969 

Figure 2. Firing traces of the four model cells in response to current injection (1 second). Note that APs are not 970 

explicitly modeled in I&F neurons. A: The somatic membrane voltage of the granule cell (GC) model in response 971 

to +90 pA (top), and -50 pA (bottom) somatic current injections. B. Same as in A, for the mossy cell (MC) with 972 

+300 pA (top) and -300pA (bottom) current injections. C. Same as in A, for the Basket cell (BC), with +200 pA 973 

(top) and -50 pA (bottom) current injections. D. Same as in A, for the HIPP cell, with +300 pA (top) and -50 pA 974 

(bottom) current injections. Current – Voltage (I-V) curves are given in Figure 2-figure supplement 1, while 975 

Current – frequency plots are shown in Figure 2-figure supplement 2. Moreover, Figure 2-figure supplement 3 976 

shows the somatic EPSP against Arithmetic sum for GCs under control, pruning and growth conditions. In Figure 977 

2-figure supplement 4 and 5, the corresponding EPSP vs. Arithmetic sum curves for GCs after matching Rin and 978 

sparsity are given, respectively.  979 
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 980 

Figure 3. Complete mossy cell loss reduces pattern separation efficiency in the DG network. A. Schematic 981 

representation of the 12-dendrite DG network with MC loss. B. The corresponding probability density functions of 982 

GC activity in response to 40 Hz input for the control (dark green) and MC loss conditions (light green). The mean 983 
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activity is 5% and 9% for the control and MC loss networks, respectively. The respective mean firing rates of GCs 984 

are shown in Table 3. The histograms were calculated with 20 bins each. C. Input / Output population distances 985 

(𝑓1) for the control (dark green) and MC loss (light green) networks estimated using input patterns with increasing 986 

similarity. The dashed line denotes the limit above which the model performs pattern separation. MC loss 987 

reduces pattern separation efficiency for all input patterns tested. Error bars represent the standard error of the 988 

mean (Erevitt and Skrondal, 2010). D. Probability density functions of GC activity using control and MC loss 989 

models presented with two input patterns that differ only in their firing rates. Shades of green represent the high 990 

frequency input (50 Hz), while shades of brown represent the low frequency input (40Hz). Dark and light shades 991 

represent the control and MC loss condition, respectively. The respective mean firing rates of GCs are shown in 992 

Table 3. E. Input / Output rate distances (𝑓2) for the control (dark green) and MC loss (light green) networks 993 

estimated using two input patterns with different firing frequencies, 40 and 50 Hz respectively. MC loss slightly 994 

reduces the efficiency of pattern separation.   995 
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 996 

Figure 4. Effect of GC dendrite pruning on pattern separation. A. A schematic drawing of the three GC models 997 

with 12, 6 and 3 dendrites. B. Corresponding probability density functions of GC activity for the three GC models 998 

in response to a single input pattern at 40 Hz. The mean activity is inversely analogous to the number of 999 

dendrites: as the number of dendrites decreases, the GC population becomes more active, i.e., less sparse. The 1000 

respective mean firing rates of GCs are shown in Table 3. C. Input / Output population distances (𝑓1), for the 12-1001 

dendrite (green), 6-dendrite (red) and 3-dendrite (blue) GC models in response to the presentation of two 1002 

overlapping input patterns at 40 Hz. Input pairs were generated so as to have decreasing amounts of overlap, as 1003 

depicted in Figure 1B. The dashed line denotes the limit above which the model performs pattern separation. 1004 

Performance declines as the dendritic tree has fewer dendrites. Error bars represent the standard error of the 1005 

mean across trials. D. Probability density functions of GC activity for the three GC models in response to 1006 

presentation of two input patterns with different firing rates (low rate = 40 Hz, high rate = 50 Hz), as depicted in 1007 

Figure 1C. GC activity increases with the number of dendrites and the input firing rate. The respective mean firing 1008 

rates of GCs are shown in Table 3. E. Input / Output rate distances (i.e., 𝑓2) for the three models. All three models 1009 

perform pattern separation, as the rate distances in the input are significantly higher than the corresponding ones 1010 

in the output.  1011 
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 1012 

Figure 5. Effect of GC dendrite growth on pattern separation. A. A schematic drawing of the three GC models 1013 

with 3, 6 and 12 dendrites. B. Corresponding probability density functions of GC activity for the three GC models 1014 

in response to a single input pattern at 40 Hz. The mean activity is inversely analogous to the number/length of 1015 

dendrites: as dendrites grow, the GC population becomes sparser, i.e., fewer GCs are active. The respective 1016 

mean firing rates of GCs are shown in Table 3. C. Input / Output population distances (𝑓1), for the 3-dendrite 1017 

(blue), 6-dendrite (red) and 12-dendrite (green) GC models in response to the presentation of two overlapping 1018 

input patterns at 40 Hz, with different degrees of overlap, as depicted in Figure 1B. The dashed line denotes the 1019 

limit above which the model performs pattern separation. Performance improves with the growth of dendrites. D. 1020 

Probability density functions of GC activity for the three GC models in response to presentation of two input 1021 

patters with different firing rates (low rate = 40 Hz, high rate = 50 Hz), as depicted in Figure 1C. GC activity 1022 

decreases with the number of dendrites and increases with the input firing rate. The respective mean firing rates 1023 

of GCs are shown in Table 3. E. Input / Output rate distances (i.e., 𝑓2) for the three models. The number of GC 1024 

dendrites is again analogous to the pattern separation performance.  1025 
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 1026 

Figure 6. Effect of GC dendritic pruning (top panel) and growth (bottom panel) on pattern separation when the 1027 

input resistance (Rin) is the same across models. To match 𝑅𝑖𝑛, the leak conductance (gleak) was increased by a 1028 

factor of 1.695 and 1.230, in the 3- and 6-dendrite models respectively. A. Corresponding probability density 1029 

functions of GC activity for the three GC models in response to a single input pattern at 40 Hz. GC activity 1030 

distributions become more similar but remain inversely analogous to the number of dendrites: as the number of 1031 

dendrites increase, the GC population becomes sparser. The respective mean firing rates of GCs are shown in 1032 

Table 3. B. Input / Output population distances (𝑓1), for the 3-dendrite (blue), 6-dendrite (red) and 12-dendrite 1033 

(green) GC models in response to the presentation of two overlapping input patterns at 40 Hz as depicted in 1034 

Figure 1B. The dashed line denotes the limit above which the model performs pattern separation. Performance 1035 

improves with the number of dendrites. C. The same as in A. for the growth experiment. While distributions move 1036 

closer to one another, the inverse relationship between dendritic number and mean sparsity is preserved. D. 1037 

Same as in B. for the growth experiment. Pattern separation efficiency still correlates with the number of 1038 

dendrites. Figure 6-figure supplement 1 depicts the corresponding pattern separation efficiency based on ‘rate 1039 

distance’. 1040 
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 1041 

Figure 7. Effect of GC dendritic pruning (top panel) and growth (bottom panel) on pattern separation when 1042 

matching the input resistance (Rin) via increasing the somatic size. The neuronal soma of the 3- and 6-dendrite 1043 

models was increased by a factor of 1.527 and 1.278, respectively. A. Corresponding probability density 1044 

functions in response to a single input pattern at 40 Hz. While distributions move closer, the mean activity 1045 

remains inversely analogous to the number of dendrites. The respective mean firing rates of GCs are shown in 1046 

Table 3. B. Input / Output population distances (𝑓1), for the 3-dendrite (blue), 6-dendrite (red) and 12-dendrite 1047 

(green) GC models in response to the presentation of two overlapping input patterns at 40 Hz as depicted in 1048 

Figure 1B. The dashed line denotes the limit above which the model performs pattern separation. Performance 1049 

becomes similar yet statistically different among the three corrected models and remains analogous to the 1050 

number of dendrites. C. Same as in A. for the growth experiment. The inverse relationship between dendritic 1051 

number and mean sparsity is preserved. D. Same as in B. for the growth experiment. Pattern separation 1052 

efficiency remains different and analogous to the number of dendrites. Figure 7-figure supplement 1 depicts the 1053 

corresponding pattern separation efficiency based on ‘rate distance’.  1054 
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 1055 

Figure 8. Effect of matching sparsity on pattern separation efficiency. A. The “leak” conductance, gleak, of the 6- 1056 

and 3-dendrite GC models increases by a factor of 1.58 and 2.48, respectively. A.i Resulting GC activity 1057 

distributions are not statistically different. A.ii Networks with corrected GC models have identical performance. 1058 

Differences in pattern separation using the population metric are not statistically significant. B. GC activity 1059 

distributions are matched by increasing the soma diameter and length of the 6- and 3-dendrite GC models by 1060 

1.48 and 1.87, respectively. B.ii The network with corrected 3-dendrite GC models has a slightly smaller pattern 1061 

separation efficiency compared to the other two probably because its activity distribution is wider. Generally the 1062 

three models have very similar pattern separation performance. C. GC activity distributions are matched by 1063 

decreasing the EC  GC synaptic weight from 1.00, to 0.75 and 0.56 in the 6-, and 3- dendrite models, 1064 

respectively. Pattern separation efficiency is statistically the same across all corrected GC models. 1065 
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 1066 

Figure 9. A. The ratio of 𝑓1(𝑜𝑢𝑡𝑝𝑢𝑡) to 𝑓1(𝑖𝑛𝑝𝑢𝑡) for all three models as function of GC activity. Each dot represents 1067 

an average of 20 trials for a specific synaptic weight value. We used values in the range of 0.0 to 25.0. For any 1068 

given sparsity level, pattern separation efficiency is identical across all corrected GC models. B. Schematic 1069 

representation of our proposed working hypothesis based on model predictions: sparsity is the key determinant of 1070 

pattern separation. Sparsity is in turn controlled by a number of mechanisms, including inhibition, the presence of 1071 

dendrites as well as various intrinsic and extrinsic mechanisms.  1072 
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Tables 1073 

Table 1. Physiological properties of real and model neurons 1074 

Cell type Input resistance Rin (MΩ) 
Membrane time constant, 

τm (ms) 
Sag ratio Maximum firing rate (Hz) 

 Model Biological Model Biological Model Biological Model Biological 

Granule cells 360 292 ± 34 41.2 31 ± 2 0.91 0.96 ± .1 60 70 ± 10 

Mossy cells 105 199 ± 19 33.7 35 ± 5 0.98 0.81 ± .3 45 50 ± 6 

Basket cells 55 56 ± 9 9.67 10 ± 1 0.99 0.97 ± .02 247 230 ± 15 

HIPP cells 363 371 ± 47 21.4 15 ± 0 0.84 0.82 ± .04 113 101 ± 24 

Biological value 
Lubke et al., 1998, 

Krueppel et al., 2009 

Lubke et al., 1997, Ratzliff 

et al., 2004 

Lubke et al., 1998, Bartos 

et al., 2001 
Lubke et al., 1997 
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Table 2. DG network (12-dendrite model) performance on a simple pattern separation task.  1076 

Input Similarity (𝒇𝟏(𝒊𝒏𝒑𝒖𝒕)) 
Output Similarity (𝒇𝟏(𝒐𝒖𝒕𝒑𝒖𝒕)) mean ± 

sem 

0.10 0.43 ± 0.007 

0.20 0.52 ± 0.007 

0.30 0.59 ± 0.008 

0.40 0.64 ± 0.008 

Input Similarity (𝒇𝟐(𝒊𝒏𝒑𝒖𝒕)) mean ± 

sem 

Output Similarity (𝒇𝟐(𝒐𝒖𝒕𝒑𝒖𝒕)) mean ± 

sem 

0.16 ± 0.05 0.66 ± 0.01 

1077 
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Table 3. Mean firing frequencies of GCs in response to the various input patterns used in 1078 

Figures 3-8 1079 

Population-distance Experiments (Pruning, Growth, MC loss) 1080 

 Mean firing rate ± sem (Hz) 

GC models Pruning Growth MC loss 

12-dendrite 3.50±0.002 3.50±0.002 4.82±0.002 

6-dendrite 3.65±0.009 3.85±0.007 - 

3-dendrite 3.90±0.006 6.35±0.005 - 

 1081 

Population-distance Experiments (Match Rin) 1082 

 Mean firing rate ± sem (Hz) 

 Pruning Growth 

GC models gleak Soma dimensions gleak Soma dimensions 

6-dendrite 3.61±0.009 3.58±0.009 3.66±0.008 3.60±0.008 

3-dendrite 3.75±0.007 3.58±0.007 4.59±0.006 3.78±0.006 

 1083 

Population-distance Experiments (Match sparsity) 1084 

 Mean firing rate ± sem (Hz) 

GC models gleak Soma dimensions Synaptic weight 

6-dendrite 3.47±0.010 3.44±0.010 3.31±0.010 

3-dendrite 3.47±0.010 3.31±0.010 3.12±0.008 

 1085 

Rate-distance Experiments (Control, Growth, MC loss) 1086 

 Mean firing rate ± sem (Hz) 

 Control Growth MC loss 

GC 
models 

Low input 
rate (40Hz) 

High input 
rate (50Hz) 

Low input 
rate (40Hz) 

High input 
rate (50Hz) 

Low input 
rate (40Hz) 

High input 
rate (50Hz) 

12-dendrite 3.75±0.036 5.24±0.048 3.75±0.036 5.24±0.048 4.94±0.057 8.07±0.110 

6-dendrite 3.98±0.028 5.20±0.035 3.83±0.023 5.03±0.030 - - 

3-dendrite 4.13±0.019 5.48±0.023 6.43±0.015 9.07±0.017 - - 

  1087 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 2, 2016. ; https://doi.org/10.1101/067389doi: bioRxiv preprint 

https://doi.org/10.1101/067389
http://creativecommons.org/licenses/by-nc/4.0/


  

55 

 

Table 4. Model parameters for all neuronal types 1088 

aFor the GC model the “leak” conductance is given in Siemens/cm2 1089 

bFor the GC model the membrane capacitance is given in uF/cm2  1090 

Model Parameter 

Granule cells 

Mossy cells Basket cells HIPP cells 

Soma dendrites 

El (mV) Resting potential -87 -82 -64 -52 -59 

gl (nS) “Leak” conductance 0.00003
a 

0.00001
a 

4.53 18.054 1.930 

Cm (nF) Membrane capacitance 1.0
b 

2.5
b 

0.621 0.1793 0.0584 

Vreset (mV) Reset voltage -74 -49 -45 -56 

VT = Vthr (mV) Threshold voltage -56 -42 -39 -50 

ΔT (mV) Slope factor - 2 2 2 

α (nS) Adaptation coupling parameter 2.0 2 0.1 0.82 

τw (ms) Adaptation time constant 45 180 100 93 

b (nS) Spike triggered adaptation 0.0450 0.0829 0.0205 0.015 
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Table 5. Morphological structure of GC models 1091 

Structure of GC 

models 

Control Pruning Growth 

12 dendrites 6 dendrites 3 dendrites 6 dendrites 3 dendrites 

# of compartments 

total 

proximal 

medial 

distal 

 

21 

3 

6 

12 

 

15 

3 

6 

6 

 

9 

3 

3 

3 

 

9 

3 

6 

- 

 

3 

3 

- 

- 

length per 

compartment (um) 
83 83 83 83 83 

total dendritic length 

(um) 
1743 1245 747 747 249 

diameter per 

compartment (um) 

proximal 

medial 

distal 

 

1.0 

0.9 

0.8 

 

1.0 

0.9 

0.8 

 

1.0 

0.9 

0.8 

 

1.0 

0.9 

- 

 

1.0 

- 

- 
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Table 6. Synaptic parameters of the dentate network 1093 

From (column) / To (row) Granule cells Mossy cells Basket cells HIPP cells 

AMPA         

Perforant Path         

gmax (nS) 0.8066     0.240 

τrise (ms) 0.1 2.0 

τdecay (ms) 2.5 11.0 

delay (ms) 3.0 3.0 

Granule cells         

gmax (nS)   0.500 0.210   

τrise (ms) 0.5 2.5 

τdecay (ms) 6.2 3.5 

delay (ms) 1.5 0.8 

Mossy cells         

gmax (nS) 0.1066   0.350   

τrise (ms) 0.1 2.5 

τdecay (ms) 2.5 3.5 

delay (ms) 3.0 3.0 

NMDA         

Perforant Path         

gmax (nS) 0.8711     0.276 

τrise (ms) 0.33 4.8 

τdecay (ms) 50.0 110.0 

delay (ms) 3.0 3.0 

Granule Cells         

gmax (nS)   0.525 0.231   

τrise (ms)   4.0 10.0 

τdecay (ms)   100.0 130.0 

delay (ms)   1.5 0.8 

Mossy Cells         

gmax (nS) 0.1151   0.385   

τrise (ms) 0.33 10.0 

τdecay (ms) 50.0 130.0 

delay (ms) 3.0 3.0 

GABAA         

Basket cells         

gmax (nS) 14.0       

τrise (ms) 0.9 

τdecay (ms) 6.8 

delay (ms) 0.85 

HIPP cells         

gmax (nS) 0.12       

τrise (ms) 0.9 

τdecay (ms) 6.8 

delay (ms) 1.6 
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