
A Scalable Data Access Layer to Manage
Structured Heterogeneous Biomedical Data

Giovanni Delussu, Luca Lianas, Francesca Frexia, Gianluigi Zanetti
CRS4

Pula, CA, Italy
firstname.lastname@crs4.it

Abstract—This work presents a scalable data access layer,
called PyEHR, intended for building data management systems
for secondary use of structured heterogeneous biomedical and
clinical data. PyEHR adopts openEHR formalisms to guarantee
the decoupling of data descriptions from implementation details
and exploits structures indexing to speed up searches. The
persistence is guarantee by a driver layer with a common driver
interface. Presently, are implemented the interfaces with two
NoSQL DBMS: MongoDB and Elasticsearch. The scalability of
PyEHR has been evaluated experimentally through two types
of tests, namely constant load and constant number of records,
with queries of increasing complexity on a two synthetic datasets
of ten millions records each, containing very complex openEHR
archetype structures, distributed on up to ten working nodes.

I. INTRODUCTION

Next-generation sequencing(NGS) and other high through-
put technologies are rapidly transforming life sciences [1], [2].
Their use is now routine in biology labs and is very quickly
expanding to clinical research [3] and applications [4]. This
transformation has led to an abrupt transition towards a data-
intensive domain where sophisticated computational analysis
is essential to extract biologically relevant information from
the raw data [5], [6].Consequently, a great effort has been
made to develop scalable computational tools able to cope
with the current data load and the foreseen, much larger,
one that is expected to arise due to the increasing use of
these technologies in large-scale clinical studies [7], [8]. A
specific aspect of these computations is that it is important
to maintain full processing traces as an integral part of the
results, since the latter is at the end of complex and deep
computational pipelines whose outcome depends strongly on
chosen parameters and configurations. This is particularly true
now for the analysis of data coming from NGS and it will
become equally relevant with the expected diffusion of Com-
puter Aided Diagnosis systems [9]. Analogously, the explosive
diffusion of digital data acquisition devices for biomedical
applications, ranging from fully traced clinical procedures [10]
to IOT personal health acquisition devices [11] has dramati-
cally increased the amount of context information that can be
attached to phenotypic information. In more general terms, all
computed and phenotypic information typically map to deeply
structured records with potentially recurring substructures,
e.g., see figure 3. The development of novel algorithms, data
and meta–data handling techniques needs, therefore, to be
complemented by robust, scalable, computable, uniform and

implementation-independent descriptions of deeply structured
data [3]. Here, scalability is meant both with respect to the
sheer size of the data and to the evolution of their structure
and type. The latter issue is typical of longitudinal biomedical
studies, where multiple, heterogeneous data types may become
necessary within the time span of the project. Ideally, common
solutions based on ad-hoc database tables should be replaced
by computable formalisms for the meta-description of struc-
tured records. Such systems should easily support operations
such as aggregations on sophisticated profile descriptions
across all the available records, as well as in-depth navigation
of all data related to a specific study participant.

In this paper, we describe PyEHR, a data access layer
for the creation of data-management systems for biomedical
research specifically designed to efficiently manage queries
on large collections of very heterogeneous structured records
with recurring repeated substructures. The system is designed
to be scalable with respect to the evolution and heterogeneity
of biomedical research data structures and to data volumes
compatible with regional-scale studies. Our motivation for the
development of PyEHR comes from our direct experience in
providing computational support to a wide range of biomedical
research projects, including large-scale genome sequencing
studies [12]–[14] and safety assessments of novel gene therapy
approaches [15] as well as the running of a large scale NGS
facility [16].

We use openEHR [17], a computable formalism for the
meta-description of structured clinical records, as a systematic
approach for handling data heterogeneity and to have a clear
separation between a well defined semantic description of data
structures and the actual storage implementation. Scalability
with respect to dataset size, on the other hand, is achieved
through a multi-tier architecture with interfaces for multiple
data storage systems. With this approach, it is possible to
express queries at the semantic level and to perform structural
optimizations well before they are translated to a specific
implementation. Currently, the specific DBMS supported are
two NoSQL databases/search engines, MongoDB [18] and
ElasticSearch [19], but other backends, even relational ones,
are easily implementable.

We are interested in traversing data, in a heterogeneous but
structured data lake [20], efficiently and in a scalable manner,
trying to exploit as much as possible the structure of the
queried data. Our approach is based, in practice, on indexing

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 2, 2016. ; https://doi.org/10.1101/067371doi: bioRxiv preprint

https://doi.org/10.1101/067371
http://creativecommons.org/licenses/by-nc/4.0/

each unique class of structures to speed-up the search process
and decouple as much as possible the logical description of
the operation that should be performed from the specific data
engine that lies beneath. The specific context in which we
consider the problem is, of course, biomedical research but
the discussion is, in itself, quite general.

PyEHR has been tested on a set of synthetic data, created
to challenge it with very deep and complex structures. As a
reference, we performed the same query tests using a straight-
forward search approach implemented as an Apache Hadoop
Mapreduce application. Our results indicate that PyEHR has
a good scalability.

The remainder of the paper is organized as follows.In
section II, we provide a short discussion on the context.
Section III, offers a brief description of the openEHR standard,
its way of defining and querying data through the ADL
and AQL languages and how it can represent complex data
structures. In section IV is discussed how the indexing of
structures has been inplemented in our system and what are its
input and output. Section V is dedicated to a short presentation
of the whole system, PyEHR. In the following section VI
the scalability appraisal of PyEHR is addressed, from the
data creation to the choice of tests and ultimately to their
results. Next section VII compares and discusses the results.
Then in section VIII is described the relevant related work
found in literature. Finally section IX present our conclusions
and suggested future foreseen activities whereas section X
highlights what we reckon are the major limitations of this
work.

II. CONTEXT

Biomedical research and its clinical applications are quickly
becoming data intensive enterprises [21]. On one hand the
transition is fueled by the increased capability of generating
big digital data. This is mainly due to technology innovations,
increased adoption of electronic health records(EHR) and the
creation and capture of, novel, patient generated data like
those deriving from body sensor data, smartphone apps, social
networks’ posts, etc.. Technology innovations, in particular,
have enabled the automatic, and progressively fast and cheap,
creation of big volumes of omics data and high resolution med-
ical imaging. On the other hand there have been technological
advances in storage and computing capabilities too, that allow
to collect, save and analyze increasingly large amounts of data.

Often the biomedically relevant information is obtained as
the end result of complex and deep computational pipelines
that are in continuous evolution and whose outcomes depends
strongly on chosen parameters, configurations, software re-
lease version, etc. [22]. It’s important to point out that the
metadata defining the pipeline are as important as the results
themselves; they are critical to understand for instance the
reasons behind different outcomes or get test reproducibility.

Its importance is exemplified in figure 1 [23], which high-
lights the degree of dissimilarity between sets of genomic
variants identified from the exome sequencing of parent-
child trios [24]. All sets of variants were extracted from the

same data using the same conceptual analysis protocol with
different versions of the same software tools and/or refer-
ence genomes. The pattern shown is typical of data-intensive
analysis pipelines: the evolution of analysis algorithms and
reference datasets has a drastic impact on results. Therefore, to
effectively use the data it is necessary to be able to recalculate
results with the new best available tools and models, which in
turn implies having full provenance information.

Fig. 1. Number of common variants produces by different pipelines given
identical input [23].

The result itself of the genomic variants identification is a
deeply structured dataset see figure 2. It is important to note
how the data structure uses, e.g., to annotate variants, recurrent
substructures, highlighted in figure with a dash line.

Fig. 2. Mind map of a set of annotations produced by a variant calling
procedure.

At the same time clinical information, too, is becoming
more and more structured. Figure 3 shows an example, related
to digital pathology [25], of a complex chain of dependencies
that should be fully maintained, and accurately described, to
precisely relate the actual data, here a whole slide digital
image, to the relevant context. A parent specimen extracted
from a patient can have multiple specimens children divided
into blocks which are sliced. The resulting slides can have
one item per container, multiple items from the same block or
items from different parts in the same block.

In practice, the gathering of phenotypic information, ac-
quired raw data and analysis results, produces the accumu-
lation of vast quantities of heterogeneous structured (e.g.,
reports, analysis provenance graphs) and non-structured data

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 2, 2016. ; https://doi.org/10.1101/067371doi: bioRxiv preprint

https://doi.org/10.1101/067371
http://creativecommons.org/licenses/by-nc/4.0/

Fig. 3. Example of slides acquisition in digital pathology.

(e.g., raw data, images) [26]–[28]. Given the continuous evo-
lution of data sources, it is not technically feasible to map
the problem to a data-warehouse hence data lakes could be
used instead [22], [29]. The major advantages of data lakes
over the standard data-warehouses are their flexibility, as they
can contain any type of data like structured, unstructured or
raw, their robustness, because they only require a schema-on-
read and are easily reconfigured, and their easy and affordable
scalability [30].

III. OPENEHR

OpenEHR is a standard evolved from the Australian Good
Electronic Health Record(GEHR), whose most peculiar fea-
ture is the two-level framework, where the information model
or reference model (RM) is kept separated from the clinical
knowledge or Archetype Model (AM), see figure 4. The
information model defines the generic types and structures for
record management. It is designed to be limited to domain-
invariant data elements and structures, such as quantity, coded
text and various generic containment structures, the classes.
The AM provides, through archetypes and templates, struc-
tures and admissible values of a series of fields with well-
defined semantic relationships. The archetypes are expressed
using constraints on instances of the underlying reference
model while the templates are models of content correspond-
ing to use-case specific data sets, constituted from archetype
elements. The separation of the two model has the advantage
of separating responsibilities in knowledge management and
sharing. Medical professionals can author archetypes and IT
programmers can develop the storage and sharing layer. The
architecture is designed to make use, optionally, of external
health terminologies, such as SNOMED CT, LOINC and
ICDx. Each archetype is a computable definition, or specifica-
tion, for a single, discrete clinical concept and is expressed in
Archetype Definition Language (ADL) [31], which is an ISO
standard, but able to be viewed and reviewed in ’clinician-
friendly’ formats, as structured definitions and mind maps.
They represent some real world concept, such as ”patient”,
”blood pressure”, or ”antenatal examination”. Archetyped data
have the same meaning no matter what context is used within
the EHR and, similarly, no matter which EHR system is
employed or what language is adopted. ADL can be used

Fig. 4. The openEHR two-level separation

to write archetypes for any domain where formal object
models exist which describe data instances. Archetypes are
language-neutral, and can be authored in and translated into
any language. ADL encloses three other syntaxes, cADL
(constraint form of ADL), dADL (data definition form of
ADL), and a version of first-order predicate logic (FOPL),
to describe constraints on data which are instances of some
information model. In figure 5 is shown an example of a
fabricated archetype. In the example the idea of a sport racket
is defined in terms of constraints on a generic model of the
concept DEVICE. All sections are written in dADL except the
”definition” that adopts the cADL. In ADL the main sections
are called concept”, ”language”, ”definition” and ”ontology”.
If the racket had been derived from another archetype then a
”specialize” section would have been added, something like
the inheritance in programming languages; a new archetype
derived from that of the parent by adding a new section
to its domain concept section. The ”definition” contains the
main formal definition of the archetype. Inside, referring to
the example, there is a class (”DEVICE”) and its attributes
(”length”,”width”, etc.), created in the object model associated
to this archetype. The attribute part has a constraint called
cardinality, applicable to any attribute, that indicates limits on
the number of members of instances of container types such as
lists and sets. In the example are allowed from zero to many
instances of parts. Another important constraint, missing in
the example, is the ”ARCHETYPE SLOT” that admits one
or a list of archetypes to be included within an archetype
definition. That means that archetypes can be nested and
combined to describe complex structures like the one we are
facing when dealing with heuristic biomedical pipelines. At
last there is the ”ontology” section, which explains what the
local nodes, elements that conventionally starts with AT, and
the local constraints, that conventionally starts with AC, mean
and how they are bound. In the latest release of ADL, 2.0, this
section has been renamed ”terminology”. It can be noted the
repeated object/attribute hierarchical structure of an archetype
that provides the basis for using paths to reference any node in
an archetype, paths that follow a syntax subset of W3C Xpath.

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 2, 2016. ; https://doi.org/10.1101/067371doi: bioRxiv preprint

https://doi.org/10.1101/067371
http://creativecommons.org/licenses/by-nc/4.0/

a r c h e t y p e (a d l v e r s i o n = 1 . 4)
d e v i c e . r a c k e t . v0

c o n c e p t
[a t 00 00] −− r a c k e t

l a n g u a g e
o r i g i n a l l a n g u a g e = <[i so 639−1:: en]>

d e f i n i t i o n
DEVICE[a t 0 0 0 0] matches {

l e n g t h matches {|0. .29|} −− l e n g t h i n i n c h e s
wid th matches {|0 . . 12 .5|} −− wid th i n i n c h e s
h i t t i n g s u r f a c e l e n g t h matches {|0 . . 15 .5|} −−h i t t i n g s u r f a c e l e n g t h i n i n c h e s
h i t t i n g s u r f a c e w i d t h matches {|0 . . 11 .5|} −−h i t t i n g s u r f a c e wid th i n i n c h e s
d a t e o f m a n u f a c t u r e matches {yyyy−??−??}−− y e a r & month ok
p a r t s c a r d i n a l i t y matches {0..∗} matches {

PART[a t0 00 1] matches {−− body
m a t e r i a l matches {[l o c a l : : a t0003 ,−− wood

at0004 ,−− m e t a l
a t00 05]}}−−c o m p o s i t e

PART[a t 0 00 2] matches {−− grommets
m a t e r i a l matches {[l o c a l : : a t0006 ,−− p l a s t i c

a t 00 04]}}}}−−m e t a l
o n t o l o g y

t e r m d e f i n i t i o n s = <
[” en ”] = <

i t e m s = <
[” a t0 00 0 ”] = <t e x t = <”r a c k e t ”>; d e s c r i p t i o n = <”s t r i n g e d r a c k e t”>>
[” a t0 00 1 ”] = <t e x t = <”body”>; d e s c r i p t i o n = <”r a c k e t body”>>
[” a t0 00 2 ”] = <t e x t = <”grommets”>; d e s c r i p t i o n = <”r a c k e t ’ s head grommets”>>
[” a t0 00 3 ”] = <t e x t = <”wood”>; d e s c r i p t i o n = <”s e a s o n e d wood”>>
[” a t0 00 4 ”] = <t e x t = <”m e t a l ”>; d e s c r i p t i o n = <”any m e t a l”>>
[” a t0 00 5 ”] = <t e x t = <”c o m p o s i t e ”>; d e s c r i p t i o n = <”c o m p o s i t e m a t e r i a l”>>
[” a t0 00 6 ”] = <t e x t = <”p l a s t i c ”>; d e s c r i p t i o n = <”p l a s t i c”>>>>>

Fig. 5. Example of an archetype expressed in ADL.

The data expressed as single archetypes or more frequently
compositions of archetypes, can be queried in AQL [32],
the archetype query language. AQL, formerly known as EHR
Query Language (EQL), is a declarative query language born
in 2005 to answer to the following four requirements for an
archetype-based query language [33]:

1) the query language should be able to express queries for
requesting any data item from an archetype-based sys-
tem, i.e. data defined in archetypes and/or the underlying
reference model;

2) the query language should be able to be used by both
domain professionals and software developers;

3) the query language should be portable, i.e. neutral to
system implementation, application environment and
programming language;

4) the syntax should be neutral with respect to the reference
model, i.e. the common data model of the information
being queried. Particular queries will of course be spe-
cific to a reference model.

The main asset of AQL is that, unlike other query languages
such as SQL or XQuery, it allows to express the queries at
the archetype level, i.e., semantic level, other than at the data
instance level. This is the key to easily share queries across
system boundaries or enterprise boundaries. Its main features
are:

• the utilization of openEHR archetype path syntax in the
query expression;

• the utilization of containment mechanisms to indicate the
data hierarchy;

• the utilization of ADL-like operator syntax, such as
matches, exists, in, negation;

• a neutral expression syntax. AQL does not have any
dependencies on the underlying RM (Reference Model)
of the archetypes. It is neutral to system implementation
and environment;

• the support of queries with logical time-based data roll-
back.

AQL has clauses similar to the well-known SQL, and in
particular they are: SELECT, FROM, WHERE, ORDER BY,
TIMEWINDOW. The SELECT clause specifies the data ele-
ments to be returned, using openEHR path syntax to indicate
expected archetypes, elements, or data values. The FROM
clause specifies the data source and the containment con-
straints introduced by the CONTAINS keyword. The WHERE
clause defines, within the chosen source, data value criteria.
The ORDER BY clause is used to select the data items that
rule the returned result set order. Finally, the TIMEWINDOW
clause restricts the query to the specified time or interval.
An example of an AQL query is given in figure 6. The
domain of sport matches ”Matches” is searched for the
ones where was used a wood racket whose length exceeds
twenty-eight inches and if they exist the query returns their
match identifier. The CONTAINS keywords allow to navigate

SELECT m/ match id / v a l u e AS m a t c h i d e n t i f i e r
FROM Matches m
CONTAINS Compos i t ion c0 [t e s t . COMPOSITION . e n c o u n t e r . v23]
CONTAINS O b s e r v a t i o n o0 [t e s t . OBSERVATION . d e v i c e s . v23]
CONTAINS Device d [d e v i c e . r a c k e t . v0]
WHERE
d / d a t a [a t0 00 0] / s i z e ≥ 28
AND
d / d a t a [a t0 00 0] / p a r t s [a t0 00 1] / m a t e r i a l matches l o c a l : : a t 0 0 0 3

Fig. 6. Example of an archetype query in AQL.

through the nested archetype. In particular in the example
the archetype racket must be inside a specified OBSERVA-
TION archetype (test.OBSERVATION.devices.v23) which in
turn must be inside a specified COMPOSITION archetype
(test.COMPOSITION.encounter.v23). Between the two there
may be any number of archetypes or no archetypes at all.

IV. DATA STRUCTURES INDEXING

OpenEHR provides a valid way of retain data semantics,
context and provenance but something has to be done in order
to search this data efficiently and in a scalable way. Given
the complex structure of the data, deep, nested and rich of
repetition blocks, we thought to implement in our system an
indexing of, unique, structures to greatly ease the task of the
db engine during queries.

For example figure 7 shows an archetype that represent a
certain class of structures. In the structure each node, denoted
by given shape and capital letter, is again an archetype.
Different shapes/letters mean different archetypes while the
text ”0..*” implies that is possible to have from none to
any number of the following archetypes. In figure 8 are
displayed some of the structures instances of the archetype
of figure 7. The number inside the shaped node, next to
the capital letter, indicates a given instantiation. We have
instances with no octagone nodes and instances with one
or two archetypes of that type. This is very difficult to be
mapped in a traditional relational dbms as its scheme changes
hence any implementation would be temporary and fragile.
Whatever type of dbms is used indexing the structures saves

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 2, 2016. ; https://doi.org/10.1101/067371doi: bioRxiv preprint

https://doi.org/10.1101/067371
http://creativecommons.org/licenses/by-nc/4.0/

time while traversing the data tree looking for query matches.
In practice, in order to get our structures index, each data

{0..*}

{0..*} {0..*}

A

C

E D

B

Fig. 7. Example of an archetype, composed of other archetypes, shown as a
tree structure.

A1 A2

A3 A4

C1

C1

D1E1

E1D1

C1

D2D3

B1 B2

B3B2

Fig. 8. Some possible instances of the archetype of figure 7.

structure is pruned of non–structural details, analyzed for the
mutual positions of archetypes, and transformed to a canonical
description. The latter are given an identifier and stored in
a specialized database. This is one of the responsibilities of
the Index Service. Archetypes that occupy different places
in a list of items, that is permutations, are assigned the
same structure id, avoiding an overload of structures that
represent in fact the same arrangement. In figure 9 is shown
an example of a structure that contains six archetypes differ-
ently nested inside the containing archetype openEHR-EHR-
COMPOSITION.encounter.v1.lbl-00001. The ”class” property
defines the archetype name whereas the ”path from parent”
property indicates a path relative to the closest containing
archetype. It can be noted that in the example all archetypes,
except the root archetype, have the same ”path from parent”
property and the reason is that they refer to the same type
of archetype, a openEHR-EHR-COMPOSITION.encounter,
whose path to the contained archetype is always the same.
During the query process the Index Service is asked to perform
another task. Let’s suppose to have an AQL query like the
one shown in figure 10 and to apply that to the previously
defined structure of figure 9. The Index Service look for all the
structures that match the containment constraints and returns a
list of their ids together with the absolute path or paths to get
to the innermost archetype of the CONTAINS clause. Putting
it to use in the example, the structure of figure 9 matches the

Fig. 9. Tree view of a data structure. (See section X for credit)

SELECT e / e h r i d / v a l u e AS p a t i e n t i d e n t i f i e r ” ,
FROM Ehr e ” ,
CONTAINS Compos i t ion c0 [openEHR−EHR−COMPOSITION . e n c o u n t e r . v1 . l b l −00001]” ,
CONTAINS O b s e r v a t i o n o [openEHR−EHR−OBSERVATION . b l o o d p r e s s u r e . v1] ”
WHERE

o / d a t a [a t0 00 1] / e v e n t s [a t 0 0 0 6] / d a t a [a t 00 03] / i t e m s [a t 00 04] / v a l u e / magn i tude = 100

Fig. 10. AQL query for the data structure in figure 9

containment constraint so are returned the unique id of the
structure and the path, only one here, obtained concatenating
all the archetypes’ relative paths from the root to the last
contained archetypes. The Query Management System thus
has all the information to search for the data that comply to
the WHERE clause examining only a subset of all the stored
records, i.e. the ones whose structure satisfies the containment
clauses, and knowing in advance where to look for, return
more quickly the data chosen in the SELECT clause.

We found that our structures indexing has a low impact on
insertion while provides a big boost in querying performances.

V. IMPLEMENTATION

PyEHR, in a nutshell, is an open source data access layer
designed to help building applications for secondary use of
clinical and biomedical data. Nevertheless it can also be used
as it is. The software has been written mostly in Python, with
services exported through a REST architecture. The target, as
we already mentioned, is to be able to treat complex heteroge-
neous structured data. The system implements the openEHR
standard, storing archetypes representations and accepting
queries in AQL. This gives flexibility both in accepting and
searching complex data structures whereas indexing speeds up
the process of querying big amount of data. PyEHR make use
of an external database, named Ehr Database, to permanently

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 2, 2016. ; https://doi.org/10.1101/067371doi: bioRxiv preprint

https://doi.org/10.1101/067371
http://creativecommons.org/licenses/by-nc/4.0/

store the clinical and biomedical data. The driver interface has
been conceived to easily allow the deployment of any database,
an idea already adopted in [34]. In fact a new database driver
needs only an entry in the driver’s factory class (see listing in
figure 11) and the implementation of a short list of routines
according to a common driver application program interface
(API). Currently we are supporting two NoSQL database

c l a s s D r i v e r s F a c t o r y (o b j e c t) :

d e f i n i t (s e l f , d r i v e r , hos t , d a t a b a s e , r e p o s i t o r y =None ,
p o r t =None , u s e r =None , passwd=None , l o g g e r =None) :

s e l f . d r i v e r = d r i v e r
s e l f . h o s t = h o s t
s e l f . d a t a b a s e = d a t a b a s e
s e l f . r e p o s i t o r y = r e p o s i t o r y
s e l f . p o r t = p o r t
s e l f . u s e r = u s e r
s e l f . passwd = passwd
s e l f . i n d e x s e r v i c e = i n d e x s e r v i c e
s e l f . l o g g e r = l o g g e r o r g e t l o g g e r (’ d r i v e r s−f a c t o r y ’)

d e f g e t d r i v e r (s e l f) :
i f s e l f . d r i v e r == ’ mongodb ’ :

from mongo i m p o r t MongoDriver
r e t u r n MongoDriver (s e l f . hos t , s e l f . d a t a b a s e , s e l f . r e p o s i t o r y ,

s e l f . p o r t , s e l f . u se r , s e l f . passwd ,
s e l f . i n d e x s e r v i c e , s e l f . l o g g e r)

e l i f s e l f . d r i v e r == ’ e l a s t i c s e a r c h ’ :
from e l a s t i c s e a r c h i m p o r t E l a s t i c S e a r c h D r i v e r
r e t u r n E l a s t i c S e a r c h D r i v e r ([{” h o s t ” : s e l f . hos t , ” p o r t ” : s e l f . p o r t }] ,

s e l f . d a t a b a s e , s e l f . r e p o s i t o r y ,
u s e r = s e l f . u se r , passwd= s e l f . passwd ,
i n d e x s e r v i c e = s e l f . i n d e x s e r v i c e ,
l o g g e r = s e l f . l o g g e r)

e l s e :
r a i s e UnknownDriverEr ror (’ Unknown d r i v e r : %s ’ % s e l f . d r i v e r)

Fig. 11. Drivers Factory Class

management systems: MongoDB [18] and ElasticSearch [19].
Both systems, having been designed to handle hierarchical sets
of key-value items, are easily adaptable to the document-like
structures of openEHR data. In figure 12 are shown the main
tasks accomplished by the driver API. For clarity are omitted
all the functions related to versioning control. Each driver has

DRIVER INTERFACE
initialize helping structures

encode records

Connect Disconnnect

decode records

build query

execute query

delete record
add record

delete recordsadd records

update field get record by id

Fig. 12. Main driver API tasks.

the following responsibilities:
• manage connections and disconnections to the Ehr

Database;
• provide full CRUD (Create, Read, Update, Delete) sup-

port;
• handle queries (rebuilding them in the driver natural

query language and executing them);

• encode/decode data to/from the wrapper objects defined
in the services layer, automatically converting any special
characters;

• create data structures such as SQL tables or folders;
• split or join records as required by the underlying storage

system.

Sometimes the driver interface must implement solutions to
overcome database management system limitations or unde-
sired features. For instance Elasticsearch does not allow that
under the same ”index”-”type” combination exist documents
with the same name but different class, e.g., foo defined as
an integer variable in a document and as a dictionary in
another. In order to overcome what was, for our purposes, a
limitation we had to change the type name, creating a unique
one by associating a generic name to the structure id, but
this in turn has required the creation of a lookup table for
quickly retrieving the ”index”-”type” couple information for
a given document id, an event very frequent especially while
managing documents’ versioning. The service layer has its
own representation of data objects so the driver, in order to
manage them acts, also, as a translating interface that converts
to and from the well-known standard json. This allows the data
objects to be handled by the REST API and the db engine
though their data representation may differ. An example are
clinical records that are represented internally as documents,
whose structure closely match the original, written in ADL and
are converted, when needed, to json representation and given
in this format to the database driver or the REST API. PyEHR
overall architecture is summarized in figure 13. There are
three modules (Data Management System, Query Management
System, Index Service) that interacts with each other and two
databases (Ehr Database, Structures Database). The Structures
Database, mentioned in section IV, stores unique data struc-
tures. The Ehr Database, meant to be interchangeable, stores
the biomedical data along with other metadata, including an
id representing their structure that links data and structures
databases. The Index Service, described in section IV, has been

DATABASE

STRUCTURES

 SYSTEM

QUERY MANAGEMENT

 SYSTEM

DATABASE

OPERATIONS

CRUD

CRUD

OPERATIONS

RESULTS

QUERY

RESULTS

QUERY

EHR

DATA MANAGEMENT

INDEX

SERVICE

CLAUSE

RESOLUTION
MATCHING

CONTAINMENT

ARCHETYPES
AND PATHS

STRUCTURE
ID

INCOMING
RECORD

CRUD
OPERATIONS

SEARCH

RESULTS

Fig. 13. PyEHR architecture: main modules, databases and their interactions

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 2, 2016. ; https://doi.org/10.1101/067371doi: bioRxiv preprint

https://doi.org/10.1101/067371
http://creativecommons.org/licenses/by-nc/4.0/

implemented using BaseX [35] as database for managing and
querying index structures.

The Data Management System handles data storage and
retrieval from and to the chosen Ehr Database. The module
is split in two layers: a service-oriented API for managing
the data and a driver interface that supports multiple data
back-ends (Fig. 14). The biomedical data, though composed
according to a standard, i.e., openEHR, can be expressed in
the chosen database in different formats such as for instance
Entity-Attribute-Value [36], a good choice for table-based stor-
age systems, XML [37] or document-oriented databases [38].
In PyEHR the choice of the format is delayed and given to
the developer, that writes the specific driver interface, which
allows him to select the format that best suits the chosen
database. Every time a record is inserted the Data Management
System forwards it to the Index Service. There its structure get
normalized, sorted and compared to the existing ones in the
Structures Database and inserted if new. Then the existing or
new id of the structure is returned to the Data Management
System that stores it along with the encoded record into the
Ehr Database.

SERVICES
LAYER

DRIVERS
LAYER

HTTP SERVICES

(REST API)

(PYTHON API)

DATA MANAGEMENT

JSON
ENCODING

CRUDQUERY

INTERFACE

GENERIC

INTERFACE

ELASTICSEARCH MONGODB

INTERFACE INTERFACE

..........

OBJECTS

WRAPPER

DRIVERS

FACTORY CRUD

Fig. 14. Architecture of the Data Management System.

The Query Management System directs and interacts with
different players to get the query results. In figure 15 is shown
the path followed by a query and controlled by the Query
Manager. The query journey starts at nine o’ clock and follow
a clockwise path. The first step involves the input acquisition.
The AQL input query is typed by the user in a REST client
or submitted, leveraging the python API, through command
line interface or a program. The Service Layer of the Data
Management System get the query and feed it to the Query
Manager Service Core (QMSC) that instantiates a Parser and
pass the input query to be processed. The Parser converts
the AQL query string into a Query Object Model (QOM)
instance that grants access to the query’s data and structure
via API calls. The location part of the QOM, that has the
CONTAINS clauses, see section VI-B, is then given to the

Index Service. A list of matching structures and according
paths is returned to the QMSC that sends them together with
the QOM to the Driver Layer of the Data Management System.
The Driver Layer translates the QOM into the specific query
language required by the storage system, executes the query
and returns the results as an AQL Results Set, a simple format
that represents query results as sets of columns and rows. The
results are returned to the user through the Service Layer of
the Data Management System.

PYTHON API

REST CLIENT

QUERY MANAGEMENT SYSTEM

CORE

DATA MANAGEMENT SYSTEM

SERVICES LAYER

PARSER

QOM

AQL QUERY

INDEX SERVICE

MATCHING

ARCHETYPES

AND PATHS

START

QUERY

PATH

DIRECTION

AQL QUERY

AQL

RESULTS

SET

AQL QUERY

SET

AQL

RESULTS

QOM

+

MATCHING

ARCHETYPES

AND PATHS

DATA MANAGEMENT SYSTEM

DRIVERS LAYER

RESOLUTION

CLAUSE
CONTAINMENT

Fig. 15. pyEHR query flow

VI. SCALABILITY ASSESSMENT

A. Artificial Data Creation

The data creation intended to, above all, generate data that
are similar to real ones but possibly more challenging, in
order to do a stress test of the system. We want, in other
words, to put ourselves in the worst realistic scenario. For
the ”constant number of records” test, as said previously, we
forged ten millions of EHRs, five millions of which are noise,
not responding to any of our queries, and five millions can
be seen as five one-million datasets that respond each to their
own queries. The reason for the five datasets is to have, along
with the single responding dataset needed, four additional
responding datasets to check the sensitivity to the random
position of the matching records; they answer to the same
type of query that yields in all the identical amount of records,
which, due to the randomness of the generation, may appear
in different places of the structures. For the ”constant load”
test we chose what we thought was the simplest approach,
that is to generate the ten million dataset step by step. We
created a ten percent of good data along with ninety percent
of noise and replicate the process ten times to have all the
needed datasets with the same fraction of records responding
to the queries.

Each EHR is written in openEHR formalism, i.e., ADL, and
is composed of different archetypes nested to form a tree type
structure.

We created complex and varied EHR structures to simulate,
through aggregations of archetypes, the output of biomedical
pipelines, like for instance that shown for digital pathology
in figure 3. The structures have, in json, the appearance of
figure 16. Then each structure, drawn randomly from a list
of created structures, is instantiated with different values in

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 2, 2016. ; https://doi.org/10.1101/067371doi: bioRxiv preprint

https://doi.org/10.1101/067371
http://creativecommons.org/licenses/by-nc/4.0/

order to obtain the desired number of matches to the queries.
We built, and instantiated, around 2600 unique structures and

Fig. 16. JSON view of a generic EHR structure.

in figure 17 we show some of them. The circles represent the
archetypes and it’s apparent that we can have very deep nested
structures. In figure 18 are depicted respectively, from left to

Fig. 17. Graph representation of some EHR structures generated.

right, the maximum relative depth distributions for all the json
elements and for the archetypes in our ten millions EHRs along
with a normal distribution with the same statistical properties.
All the json elements means including both the archetypes
and the archetypes’ contained elements so the resulting depth
largely increase. From the statistical point of view, we have a
mean ”maximum depth” of about 6.7 for the right graph with
a standard deviation of 1.7, and a mean of about 66 and a
standard deviation of 15.7 for the left one, that is to say that
each archetype has roughly a mean maximum depth of 10. The
complexity can be high as there are structures that can reach
over 110 nested elements and contain up to 12 archetypes in a
single branch direction. The maximum depth in the archetype
distribution is very similar to a normal distribution.

The maximum width is represented in figure 19. The width
is the number of elements measured at each level of the tree
structure. The modal value for its maximum is 8 but the width
can jump to more than 150.

Fig. 18. Structures relative depth distribution on the created EHRs.

Fig. 19. Structures max width distribution on the created EHRs.

B. Queries Creation

We created five types of AQL queries, to which we assign
a number and a brief name for future references, and they are,
in ascending complexity: ”1-match single”, ”2-match multi”,
”3-hit single where”, ”4-hit multi and where”, ”5-hit multi or
where”. The first query has a single element in both SELECT
and FROM clauses. The second one has two elements to
be returned in SELECT clause and a single FROM clause.
The third type has a single element in SELECT, FROM and
WHERE clauses. The fourth query differs from the third for
the existence of a second WHERE clause joined with an AND
condition to the first one. The last type has, with respect to
the fourth one, the two WHERE clauses in OR. Any FROM
clause comes with one or more CONTAINS keyword, meant
to add complication to the query and bound to the nested
nature of the data structures. As a matter of fact each query is
performed on 4 different levels of containment. For instance
a level 2 ”type 3” query is shown in figure 20. The level
can be deducted by the number of CONTAINS keywords. In
the example an EHR to match the given query must have

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 2, 2016. ; https://doi.org/10.1101/067371doi: bioRxiv preprint

https://doi.org/10.1101/067371
http://creativecommons.org/licenses/by-nc/4.0/

SELECT e / e h r i d / v a l u e AS p a t i e n t i d e n t i f i e r
FROM Ehr e

CONTAINS Compos i t ion c0 [openEHR−EHR−COMPOSITION . e n c o u n t e r . v1 . l b l −00001] ,
CONTAINS O b s e r v a t i o n o [openEHR−EHR−OBSERVATION . b l o o d p r e s s u r e . v1]

WHERE o / d a t a [a t0 0 01] / e v e n t s [a t 0 006] / d a t a [a t 0 00 3] / i t e m s [a t 0 0 0 4] / v a l u e / magn i tude ≥
140

Fig. 20. Example of a created level 2 query of ”type 3”.

anywhere inside its structure the blood pressure observation
archetype openEHR-EHR-OBSERVATION.blood pressure.v1
within a composition archetype called openEHR-EHR-
COMPOSITION.encounter.v1.lbl-00001. As already said in
section III, between the two archetypes there may be any
number of archetypes, included none. Depending on the num-
ber of results we decided to let each query yields a simple
count of the matching EHRs or both a count and the matching
records. The threshold for fetching the results has been set to
10k records, hence under that value the records are counted
and returned. The first two types of queries have a number of
results that goes from 175k records, at level 5, to 1M records,
at level 2, and therefore only a count is performed on them.
The last three types range from 1.75k, at level 5, to 10k, at
level 2, so both count and fetch are executed. It has to be
underlined that the records that match a query at a given level,
automatically match the query at any of the upper levels.

C. Comparison Reference

A comparison reference is dictated by the need to under-
stand if the measured performances magnitude order is promis-
ing. Among the full spectrum of the solutions to our problem
we can imagine two diametrically opposite approaches. The
first one is a relational database management system RDBMS
to store all of our data. The problem is the retention of their
relationships. That calls for a very complex arrangement of
tables, supposing it achievable, an ad hoc solution with a
delicate balance that any modification, addition or removal
of data or relationships may easily break. That would involve
a complex schema hard to maintain and update. The second
approach is classifiable somewhat as a brute force technique.
It implies the use of a big data oriented, and therefore easily
scalable, software for searching on all the data. We chose the
latter approach, that is the safest and simplest one, to have a
meaningful comparison and put our results in perspective. As
a software we adopted Apache Hadoop Mapreduce [39], one
of the most well-known ”big data” frameworks for writing
scalable applications, already adopted in medical ”big data”
processing [40]–[43]. The data, put in the hadoop file system,
hdfs, are crunched through a recursive search algorithm to
find the ones that match the given query. We restricted the
comparison to the most simple queries, the ”1-match single”
queries, with all their different levels of containment.

D. Data Insertion

The data insertion for the two NoSQL databases, and in
particular for Elasticsearch, has proved to be a process very
sensitive to parameters tuning. Given that the aim of our
work was about the querying performances we did not spend

too much time on it but in production it is an area that
definitely deserves special attention. The time scale for the
insertion of the ten million records, from scratch, are on the
order of a couple of days for MongoDB, about four days
for Elasticsearch and just the time to write to the disk in
hdfs for Apache Hadoop, that is, for the cluster we used, see
section VI-F, on the order of about 30 minutes.

E. Results: Constant Number of Records

The ”constant number of records” test, CNR for brevity in
the ensuing paragraphs, is, as the name tells, a test where
the number of records keeps unchanged while varying the
number of working nodes. It has been conducted on Amazon
Web Services(AWS). The AWS chosen instances, labeled
”r3.2xlarge”, can be placed, for characteristics, in the middle
of the family of the so-called ”Memory Optimized Instances”.
Each node has 8 virtual High Frequency Intel Xeon E5-2670
v2 Ivy Bridge 2.5GHz Processors, 61 GiB of RAM and the
storage ensured by one SSD disk of 160 GB.

Twelve machines have been used in the test. Ten machines
are the working horses of the software and two are the minds
devoted to the control of the operations. In particular within
the Apache Hadoop framework one machine is the namenode,
responsible for the management of the distributed storage
HDFS and the other runs YARN, the Resource Manager that
receives and runs application in the cluster depending on the
available resources, and the JobHistoryServer, a server that
manages past completed/killed jobs. The other ten machines
are both datanode and nodemanager, so they store the data
and perform the queries. It has to be underlined that ten nodes
have always been committed to the storage in Apache Hadoop
Mapreduce, for replication necessity, even when we used fewer
nodes for the calculations. In PyEHR calculations the two
control nodes are used for the main program, i.e., pyehr, and
for the database master. The other ten are used as slaves by the
database manager system to store, query and retrieve the data.
In contrast with Apache Hadoop Mapreduce, the number of
nodes that actually store the data can assume any value from
one to ten as we add nodes.

We’d like to point out that before choosing the final hard-
ware instance many tests have been carried out within the
Apache Hadoop Mapreduce framework. In particular we tried
to evaluate the impact of disk, cpu , bandwidth and memory
on the performances for the chosen problem to give Apache
Hadoop Mapreduce fair hardware conditions to operate. We
made tests changing the number of disks (from one to twelve),
the type of disks (SSD vs HDD), the bandwidth (1Gbps,
10Gbps), the amount of memory (from 16 up to 121 GB) and
the number of processors (from 8 to 20). The net result was
that the problem, for Apache Hadoop Mapreduce, is mainly
cpu bounded, given the right amount of ram, so we opted for
a final AWS instance that was a good compromise between
these requirements and the desire to consider only commodity
hardware.

Two notes before moving on to the results. The first one is
that in all pictures that will follow we represented as a point

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 2, 2016. ; https://doi.org/10.1101/067371doi: bioRxiv preprint

https://doi.org/10.1101/067371
http://creativecommons.org/licenses/by-nc/4.0/

the mean value of the calculations and as a bar their standard
deviation. The number of repetitions for each computation
has been set to 10, however, except for the spread curves,
all five datasets have been used to enrich the statistics upping
the repetitions considered to 50, that is, in other words, 50
values per point/calculation. The second, and final, note is
to underline that we are showing, mostly, the count results
because the fetch, though needed, it’s only a trivial data upload
operation. Moreover the count is more challenging because
Apache Hadoop Mapreduce performed it very efficiently in
its reducer phase.

1) Apache Hadoop Mapreduce: In figure 21 is shown the
behaviour of Apache Hadoop Mapreduce for a ”type 1” count
query. The results for the four different levels are contained
within few seconds in a graph that reach the extreme of 1000
seconds for the single node cluster to drop to about 100
seconds for the ten nodes cluster.

Fig. 21. Apache Hadoop Mapreduce. CNR. Time vs number of nodes for a
”type 1” count query at different levels.

The spread of the results, due to considering separately the
five datasets, at level 5 is displayed in figure 22. The curves
are very close with the farthest data, at worst, four seconds
apart.

2) PyEHR with MongoDB: Figure 23 exhibits the be-
haviour of PyEHR with the MongoDB driver for a ”type 1”
count query at the four different levels. The low level queries
take much time because they involve a greater number of
records.

In figure 24 the different types of count queries are plotted
at level 5. The query of ”type 5” with two WHERE clauses in
OR is the most time consuming while the query of ”type 4”
with two WHERE in AND and the ”type 3” with one WHERE
are very close to each other. The queries without WHERE are
clearly faster than the rest.

Figure 25 indicates how, in a query of ”type 3”, the elapsed
time is divided between the index, count and fetch phases. The

Fig. 22. Apache Hadoop Mapreduce. CNR. Data spread for a ”type 1” count
query at level 5.

Fig. 23. PyEHR with MongoDB. CNR. Time vs number of nodes for a ”type
1” count query at different levels.

indexing consumes a very little, close to constant, amount of
time. Time in the counting and fetching curves improves as
we add nodes, rapidly up to five nodes than the curves get
almost steady.

The spread of data among the datasets, deducible from
figure 26, is rather restrained.

3) PyEHR with Elasticsearch: The behavior of PyEHR
with the Elasticsearch driver for a ”type 1” count query at
different levels is displayed in figure 27. The scale of the chart
is very small with respect to the other driver and even more
compared to the Apache Hadoop Mapreduce graph. However,
as in the MongoDB case, time lowers as we go up with the

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 2, 2016. ; https://doi.org/10.1101/067371doi: bioRxiv preprint

https://doi.org/10.1101/067371
http://creativecommons.org/licenses/by-nc/4.0/

Fig. 24. PyEHR with MongoDB. CNR. Time vs number of nodes for different
type of count queries at level 5.

Fig. 25. PyEHR with MongoDB. CNR. Time quota of index, count and fetch
operations in a ”type 3” query at level 5.

levels. For any given level, the results seem to improve up to
a certain point, that depends on the level, and then the curve
flattens.

In figure 28 are plotted the curves for the five types of count
queries at level 5. The scale is smaller than the previous ones
so the variations must be evaluated in that perspective. We
can see two cluster of curves, one for ”type 1” and ”type 2”
queries ad the other for the remaining ones. Time quota for
indexing, counting and fetching are shown in figure 29. As
expected the fetching takes much more time than the other
two operations. In this case indexing can’t be neglected, due
to the low overall figures.

Fig. 26. PyEHR with MongoDB. CNR. Data spread for a ”type 2” count
query at level 5.

Fig. 27. PyEHR with Elasticsearch. CNR. Time vs number of nodes for a
”type 1” count query at different levels.

The distribution of points for a ”type 2” count query at
level 5 is displayed in figure 30. The curves are closely
gathered, with a maximum separation between the farthest
datasets around 9 thousands of seconds.

F. Results: Constant Load

The ”constant load” test, CL for conciseness in the follow-
ing, demands a concurrent linear change in both the number
of records and the nodes, maintaining constant the load per
machine, hence the name. It has been carried out on a local
private cluster of the CRS4 research center. The private cluster
has nodes with 8 cpu Intel Xeon E5440 2.83GHz, 16GB of
RAM and one HDD of 240GB. Alike the CNR test, twelve

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 2, 2016. ; https://doi.org/10.1101/067371doi: bioRxiv preprint

https://doi.org/10.1101/067371
http://creativecommons.org/licenses/by-nc/4.0/

Fig. 28. PyEHR with Elasticsearch. CNR. Time vs number of nodes for
different type of count queries at level 5.

Fig. 29. PyEHR with Elasticsearch. CNR. Time quota of index, count and
fetch operations in a type 3 query at level 5.

machines have been used in the test, ten for storing and
doing the actual computations and two for control and queries
launching. More details on that role division have been given
previosly in VI-E. Five repetitions have been done for each
calculation. As before, we chose to put in the graphs mostly
the count results.

1) Apache Hadoop Mapreduce: Figure 31 shows the curves
for Apache Hadoop Mapreduce for a ”type 1” query at
different levels. The points are relatively close, apart from the
first two nodes where both the distances, between the levels,
and the standard deviation, for each level, are large.

Fig. 30. PyEHR with Elasticsearch. CNR. Data spread for the 5 datasets for
a ”type 2” count query at level 5.

Fig. 31. Apache Hadoop Mapreduce. CL. Time for ”type 1” count query at
different levels.

2) PyEHR with MongoDB: In figure 32 is displayed the
behaviour of PyEHR with the MongoDB driver for a ”type
1” query at the four different levels. The curves are fully
separated.

The effect of changing the type of query at level 5 is shown
in figure 33. The ”type 3”, with a single WHERE clause, and
the ”type 4”, with two WHERE clauses in AND, are very close
and so are the ”type 1”, with a single FROM match, and the
”type 2”, with multiple FROM matches. There are anomalies
at the node number 5 and 7 that perturb the last three types
of query.

Figure 34 portrays the time consumption ascribed to index,
count and fetch phases. While the first two have a steady trend

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 2, 2016. ; https://doi.org/10.1101/067371doi: bioRxiv preprint

https://doi.org/10.1101/067371
http://creativecommons.org/licenses/by-nc/4.0/

Fig. 32. PyEHR with MongoDB. CL. Time for ”type 1” count query at
different levels.

Fig. 33. PyEHR with MongoDB. CL. Time for different type of count queries
at level 5.

the third one clearly grows with the number of nodes.
3) PyEHR with Elasticsearch: The results for PyEHR with

the Elasticsearch driver for a ”type 1” count query at different
levels are presented in figure 35. The curves are neatly
separated.

In figure 36 is shown the effect on the results of changing
the type of query at level 5. The last three types of query
clearly are monotonically increasing with the number of nodes,
though the figures keep small with respect to both the other
driver and Apache Hadoop Mapreduce.

Finally figure 37 displays the time quota of index, count
and fetch operations for a ”type 3” query at level 5. While
the indexing keeps a constant trend both the counting and the

Fig. 34. PyEHR with MongoDB. CL. Time quota of count, fetch and index
operation in a ”type 3” query at level 5.

Fig. 35. PyEHR with Elasticsearch. CL. Time for type 1 count query at
different levels.

fetching time increase to some degree as we add nodes and
data.

VII. COMPARISON BETWEEN PYEHR AND APACHE
HADOOP MAPREDUCE AND RESULTS ANALYSIS

In figures 38, 39 are shown the comparisons between
PyEHR and Apache Hadoop Mapreduce, respectively for the
CNR and the CL tests. Figure 38 refers to a CNR type 1
query at level 4. What we expected here was that as long as
we add nodes the time had to improve, that is decrease, at
least to a certain point. That is the trend for all three curves.

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 2, 2016. ; https://doi.org/10.1101/067371doi: bioRxiv preprint

https://doi.org/10.1101/067371
http://creativecommons.org/licenses/by-nc/4.0/

Fig. 36. PyEHR with Elasticsearch. CL. Time for different type of count
queries at level 5.

Fig. 37. PyEHR with Elasticsearch. CL. Time quota of count, fetch and index
operation in a ”type 3” query at level 5.

By examining the figures 25 and 29 we can assert that the
cost of indexing is constant, understandable depending solely
on the number of data/structures, whereas the counting and
fetching go down as we add nodes, though not indefinitely. The
total values for PyEHR, with any driver, and Apache Hadoop
Mapreduce are of course very much separated. They differ by
two to three orders of magnitude.

The second picture, figure 39 relates to CL test, precisely
to a type 1 query at level 3. The desired behavior would
be a constant curve where the time value remains the same
while adding simultaneously both data and nodes in the same
amount endlessly. Apache Hadoop Mapreduce goes even better

Fig. 38. CNR. Results compared for a type 1 query at level 3.

improving as we add nodes until about eight nodes, then
the curve flattens. PyEHR with the two drivers on the other
hand gets slightly worse and that is accentuated in the fetch
operation, a behavior that can be inferred from the examination
of figures 34 and 37. Anyway the numbers are very small and
again two to three orders of magnitude smaller than those of
Apache Hadoop Mapreduce.

Fig. 39. CL. Results compared for a type 1 query at level 3.

We reckon that the structures indexing done in PyEHR
is primarily the reason for this huge magnitude difference
between its results and Apache Hadoop Mapreduce ones in
both tests. As we have seen in section IV, the query engine
receives from the index service a list of the structures that
match the given query, each with their path or paths. That

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 2, 2016. ; https://doi.org/10.1101/067371doi: bioRxiv preprint

https://doi.org/10.1101/067371
http://creativecommons.org/licenses/by-nc/4.0/

allows the driver to filter out the records which possess a
structure whose id is not included in the list and therefore to
speed up considerably the overall query process. In addition
Apache Hadoop Mapreduce has to run through any part of
the structures whereas in PyEHR are evaluated only the paths
given, for each structure of the list, by the index service, thus
saving additional time.

PyEHR seems to behave well with both the drivers. We see a
little room for improvement in the parallelization of the index
service, though its contribution to the query times in our tests
is mostly very small. It has to be reminded, though, that, in
nearly absence of configurations tweaking, the time to insert
the records is largely in favor of Apache Hadoop Mapreduce.

VIII. RELATED WORK

Limiting ourselves to non commercial product, there are
several pieces of software written to manage clinical data [44].
What is lacking, generally speaking, is applications aimed
specifically at managing big amount of complex structured
clinical and biomedical data. In particular are missing tools
for storing the data preserving their semantics and provenance
information and for traversing them horizontally retrieving
population information, for secondary use, while most of the
software available now performs routinely vertical retrieval of
medical records per single patient. Most of the work currently
available is based on relational database management systems
whose scalability and flexibility are severely put to test by
large collections of complex heterogeneous structured data.

Among the openEHR based EHR management projects we
would like to mention EHRflex, LiU EEE, ResearchEHR and
Ethercis.

EHRflex [45], [46] is an archetype-based clinical registry
system designed to employ clinical archetypes as guidelines
for the automatic generation of web interfaces, oriented to
a clinical use and data introduction. It resorts to eXist, an
open source native xml database, to store the data. As stated
in Miranda et al Paper [47] XML databases, at least the
ones tested in the article, without further optimizations are
not suitable as persistence mechanisms for openEHR-based
systems in production if population-wide ad hoc querying is
needed, being orders of magnitude slower than the relational
databases considered.

LiU EEE, described in the paper by Sundvall et al. [48],
is an EHR environment designed for educational and research
purposes. The product is expressly made to help newcomers
and developers experiment with and learn about the openEHR
model, from ADL archetype handling to AQL queries. The
system, not intended for large-scale analysis, relies on the xml
DBMS eXist.

Ethercis or Ethereal Clinical Information System is a system
that allows simple interactions with clients using RESTful API
and persists data in a separate DB engine, supporting both
relational and NoSQL DBMS. Currently it’s implemented the
interface for PostgreSQL 9.4. Queries are written in SQL and
mixed with json functions and operators.

Other openEHR solutions include yourEHRM [49] by Atos
Research that uses MongoDB as internal DBMS and a piece
of software cited in paper by Austin et al. [50] that adopts
PostgreSQL and it’s the core inside both an academic product
named Cortext and a commercial one called HeliconHeart.

Finally it’s worth to be cited the work by Miranda Freire et
al [51] where three NoSQL XML databases, BaseX, eXistdb
and Berkeley DB XML, and one document oriented NoSQL
database, Couchbase, are compared with a relational database,
MySQL for health care datasets up to 4.2 million records.
Couchbase outperforms, for the bigger dataset, the others on
a single node. The distributed configuration is discussed only
for Couchbase.

IX. CONCLUSIONS AND FUTURE WORK

In this paper we have described PyEHR, a data access layer
designed to help the creation of clinical and biomedical data
management systems for secondary use. Special attention has
been put into the design of a system able to cope with large
collections of complex heterogeneous structured data, preserve
their information and perform on them efficient and scalable
queries to get actionable insight. The main features of the
system are therefore its support of openEHR standard, that
allows to handle very heterogeneous structured data maintain-
ing their provenance and semantic content and interrogate the
data at the archetype level, and the indexing of structures,
which speeds up the whole queries task. PyEHR’s scalability
has been assessed through two kinds of querying test: constant
number of records where the records are kept constant while
varying the number of nodes and the constant load that sets a
fixed number of records per node. Ten million artificial records
with complex structures have been generated for each of the
tests conducted and five type of queries have been written
and tested. The results tell that PyEHR has good scalability
properties with both drivers and when compared to a program
written for Apache Hadoop Mapreduce, a well-known big data
framework, PyEHR outperform it on both tests’ categories.

Future work will be probably focused on upgrading our
data access layer to Elasticsearch 2.0 and extending the AQL
support. Another foreseen improvement is the parallelization
of the index service.

PyEHR is freely available, distributed open source on
GitHub at https://github.com/crs4/pyEHR

X. LIMITATIONS OF THIS WORK

This study does not simulate a real production scenario
with concurrent access to the system and insertion, updates
and queries intermixed. Essentially in our tests the queries are
executed sequentially.

The data are not from real EHRs but, as told in VI-A, we
tried hard to make them challenging from the querying point
of view. The queries does not include ”ORDER BY” and
”TIMEWINDOW” clauses as they are not yet implemented.

The acid properties of the system are about the same of the
underlying database. We added the external, to the database,

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 2, 2016. ; https://doi.org/10.1101/067371doi: bioRxiv preprint

https://doi.org/10.1101/067371
http://creativecommons.org/licenses/by-nc/4.0/

versioning support for our EHRs with optional rollback of
previous versions.

The results both for the data insertion and querying are the
product of little of no configurations tweaking so they are not
supposed to be the best results achievable as there’s, for sure,
room for improvement.

To assess the scalability we used the following software:
Apache Hadoop 2.6.0, MongoDB 3.04, Elasticsearch 1.5.0,
BaseX 8.0.1.

With respect to the openEHR implementation, in order to
get a fully compliant system there should be a data and query
validation service that fetches archetypes/template from a lo-
cal/remote repository, a terminology translator and optionally
a data templates provider.

ACKNOWLEDGMENTS

One of the authors, Giovanni Delussu, has performed his
activity in the framework of the International PhD in Inno-
vation Science and Technology at the University of Cagliari,
Italy.

REFERENCES

[1] C. S. Pareek, R. Smoczynski, and A. Tretyn, “Sequencing technologies
and genome sequencing.” Journal of applied genetics, vol. 52, no. 4,
pp. 413–35, dec 2011. [Online]. Available: http://www.pubmedcentral.
nih.gov/articlerender.fcgi?artid=3189340

[2] W. W. Soon, M. Hariharan, and M. P. Snyder, “High-throughput
sequencing for biology and medicine.” Molecular systems biology,
vol. 9, p. 640, jan 2013. [Online]. Available: http://dx.doi.org/10.1038/
msb.2012.61

[3] C. Chute, M. Ullman-Cullere, and G. Wood, Genetics in Medicine:
official journal of the American College of Medical Genetics.

[4] R. Simon and S. Roychowdhury, “Implementing personalized cancer
genomics in clinical trials.” Nature reviews. Drug discovery, vol. 12,
no. 5, pp. 358–69, may 2013. [Online]. Available: http://www.ncbi.nlm.
nih.gov/pubmed/23629504

[5] V. Marx, “Biology: The big challenges of big data,” Nature, vol. 498,
no. 7453, pp. 255–260, 2013. [Online]. Available: http://www.nature.
com.gate1.inist.fr/nature/journal/v498/n7453/full/498255a.html

[6] M. Eberius and J. Lima-Guerra, High-Throughput Plant Phenotyping
– Data Acquisition, Transformation, and Analysis. New York,
NY: Springer New York, 2009, pp. 259–278. [Online]. Available:
http://dx.doi.org/10.1007/978-0-387-92738-1{\ }13

[7] J. Luo, M. Wu, D. Gopukumar, and Y. Zhao, “Big Data Application
in Biomedical Research and Health Care : A Literature Review,”
Biomedical Informatics Insights, vol. 8, pp. 1–10, 2016.

[8] C. Auffray, R. Balling, I. Barroso, L. Bencze, M. Benson, J. Bergeron,
E. Bernal-Delgado, N. Blomberg, C. Bock, A. Conesa et al., “Making
sense of big data in health research: Towards an eu action plan,” Genome
Medicine, vol. 8, no. 1, p. 1, 2016.

[9] M. Radovic, M. Milosevic, S. Ninkovic, N. Filipovic, and A. Peulic,
“Parameter optimization of a computer-aided diagnosis system for
detection of masses on digitized mammograms.” Technology and health
care : official journal of the European Society for Engineering and
Medicine, vol. 23, no. 6, pp. 757–74, 2015. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/26409521

[10] M. Plebani and G. Lippi, “Improving diagnosis and reducing
diagnostic errors: the next frontier of laboratory medicine.” Clinical
chemistry and laboratory medicine, vol. 54, no. 7, pp. 1117–
1118, 2016. [Online]. Available: http://www.degruyter.com/view/j/cclm.
ahead-of-print/cclm-2016-0217/cclm-2016-0217.xml

[11] M. Hassanalieragh, A. Page, T. Soyata, G. Sharma, M. Aktas, G. Mateos,
B. Kantarci, and S. Andreescu, “Health Monitoring and Management
Using Internet-of-Things (IoT) Sensing with Cloud-Based Processing:
Opportunities and Challenges,” Proceedings - 2015 IEEE International
Conference on Services Computing, SCC 2015, pp. 285–292, 2015.

[12] V. Orrù, M. Steri, G. Sole, C. Sidore, F. Virdis, M. Dei, S. Lai,
M. Zoledziewska, F. Busonero, A. Mulas, M. Floris, W. I. Mentzen,
S. A. M. Urru, S. Olla, M. Marongiu, M. G. Piras, M. Lobina,
A. Maschio, M. Pitzalis, M. F. Urru, M. Marcelli, R. Cusano, F. Deidda,
V. Serra, M. Oppo, R. Pilu, F. Reinier, R. Berutti, L. Pireddu, I. Zara,
E. Porcu, A. Kwong, C. Brennan, B. Tarrier, R. Lyons, H. M. Kang,
S. Uzzau, R. Atzeni, M. Valentini, D. Firinu, L. Leoni, G. Rotta,
S. Naitza, A. Angius, M. Congia, M. B. Whalen, C. M. Jones, D. Sch-
lessinger, G. R. Abecasis, E. Fiorillo, S. Sanna, and F. Cucca, “Genetic
variants regulating immune cell levels in health and disease.” Cell, vol.
155, no. 1, pp. 242–56, Sep. 2013.

[13] P. Francalacci, L. Morelli, A. Angius, R. Berutti, F. Reinier, R. Atzeni,
R. Pilu, F. Busonero, A. Maschio, I. Zara, D. Sanna, A. Useli, M. F.
Urru, M. Marcelli, R. Cusano, M. Oppo, M. Zoledziewska, M. Pitzalis,
F. Deidda, E. Porcu, F. Poddie, H. M. Kang, R. Lyons, B. Tarrier, J. B.
Gresham, B. Li, S. Tofanelli, S. Alonso, M. Dei, S. Lai, A. Mulas, M. B.
Whalen, S. Uzzau, C. Jones, D. Schlessinger, G. R. Abecasis, S. Sanna,
C. Sidore, and F. Cucca, “Low-pass DNA sequencing of 1200 Sardinians
reconstructs European Y-chromosome phylogeny.” Science (New York,
N.Y.), vol. 341, no. 6145, pp. 565–9, Aug. 2013.

[14] G. R. Abecasis, A. Auton, L. D. Brooks, M. a. DePristo, R. M. Durbin,
R. E. Handsaker, H. M. Kang, G. T. Marth, and G. a. McVean, “An
integrated map of genetic variation from 1,092 human genomes.” Nature,
vol. 491, no. 7422, pp. 56–65, Nov. 2012.

[15] A. Biffi, E. Montini, L. Lorioli, M. Cesani, F. Fumagalli, T. Plati, C. Bal-
doli, S. Martino, A. Calabria, S. Canale, F. Benedicenti, G. Vallanti,
L. Biasco, S. Leo, N. Kabbara, G. Zanetti, W. Rizzo, N. Mehta, M. Ci-
calese, M. Casiraghi, J. Boelens, U. Del Carro, D. Dow, M. Schmidt,
A. Assanelli, V. Neduva, C. Di Serio, E. Stupka, J. Gardner, C. von
Kalle, C. Bordignon, F. Ciceri, A. Rovelli, M. Roncarolo, A. Aiuti,
M. Sessa, and L. Naldini, “Lentiviral hematopoietic stem cell gene
therapy benefits metachromatic leukodystrophy,” Science, vol. 341, no.
6148, p. 1233158, august 2013.

[16] G. Cuccuru, S. Leo, L. Lianas, M. Muggiri, A. Pinna, L. Pireddu, P. Uva,
A. Angius, G. Fotia, and G. Zanetti, “An automated infrastructure to sup-
port high-throughput bioinformatics,” in High Performance Computing
& Simulation (HPCS), 2014 International Conference on. IEEE, 2014,
pp. 600–607.

[17] T. Beale, “Archetypes: Constraint-based Domain Models for Future-
proof Information Systems,” OOPSLA 2002 workshop on behavioural
semantics, no. 21, pp. 1–69, 2001.

[18] MongoDB. [Online]. Available: https://www.mongodb.org/
[19] Elasticsearch. [Online]. Available: http://www.elasticsearch.org/
[20] I. Terrizzano, P. Schwarz, M. Roth, and J. E. Colino, “Data Wrangling:

The Challenging Journey from the Wild to the Lake,” 7th Biennial
Conference on Innovative Data Systems Research CIDR’15, 2015.

[21] M. Saqi, J. Pellet, I. Roznovat, A. Mazein, S. Ballereau, B. De
Meulder, and C. Auffray, “Systems Medicine: The Future of Medical
Genomics, Healthcare, and Wellness.” Methods in molecular biology
(Clifton, N.J.), vol. 1386, pp. 43–60, jan 2016. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/26677178

[22] B. L. Millard, M. Niepel, M. P. Menden, J. L. Muhlich, and P. K. Sorger,
“Adaptive informatics for multifactorial and high-content biological
data.” Nature methods, vol. 8, no. 6, pp. 487–493, 2011.

[23] P. Uva, personal communication.
[24] Y. Yang, D. Ph, D. M. Muzny, M. Sc, J. G. Reid, D. Ph, M. N.

Bainbridge, D. Ph, A. Willis, D. Ph, P. A. Ward, A. Braxton, J. Beuten,
D. Ph, F. Xia, D. Ph, Z. Niu, D. Ph, M. Hardison, D. Ph, R. Person,
D. Ph, M. Reza, D. Ph, M. Wang, D. Ph, Y. Ding, S. E. Plon, D. Ph, and
J. R. Lupski, “NIH Public Access,” vol. 369, no. 16, pp. 1502–1511,
2014.

[25] C. Mascia, personal communication.
[26] R. L. Schilsky and R. S. Miller, “Chapter 1 - creating a

learning health care system in oncology,” in Oncology Informatics,
B. W. Hesse, D. K. Ahern, and E. Beckjord, Eds. Boston:
Academic Press, 2016, pp. 3 – 21. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/B978012802115600001X

[27] J. Bullard, R. Murde, and Q. Yu, “Inference from Structured and
Unstructured Electronic Medical Data for Dementia Detection,” pp. 236–
244, 2015.

[28] W. Raghupathi and V. Raghupathi, “Big data analytics in healthcare:
promise and potential,” Health Information Science and Systems, vol. 2,
no. 1, p. 3, jan 2014. [Online]. Available: http://www.hissjournal.com/
content/2/1/3

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 2, 2016. ; https://doi.org/10.1101/067371doi: bioRxiv preprint

https://doi.org/10.1101/067371
http://creativecommons.org/licenses/by-nc/4.0/

[29] K. Psiuk-maksymowicz, A. Placzek, R. Jaksik, S. Student, D. Borys,
D. Mrozek, K. Fujarewicz, and A. Swierniak, “Beyond Databases,
Architectures and Structures. Advanced Technologies for Data Mining
and Knowledge Discovery,” vol. 613, pp. 449–462, 2016. [Online].
Available: http://link.springer.com/10.1007/978-3-319-34099-9

[30] T. Dull. (2015, September) Marketers Ask: Isnt
a Data Lake Just the Data Warehouse Re-
visited? [Online]. Available: https://www.linkedin.com/pulse/
marketers-ask-isnt-data-lake-just-warehouse-revisited-tamara-dull

[31] Archetype Definition Language. [Online]. Available: http://www.
openehr.org/releases/1.0.2/architecture/am/adl.pdf

[32] Archetype Query Language. [Online]. Available: http://www.openehr.
org/releases/QUERY/latest/docs/AQL/AQL.html

[33] C. Ma, H. Frankel, T. Beale, and S. Heard, “EHR query language
(EQL)–a query language for archetype-based health records.” Studies
in health technology and informatics, vol. 129, pp. 397–401, 2007.

[34] P. Atzeni, F. Bugiotti, and L. Rossi, “Uniform access to NoSQL
systems,” Information Systems, pp. 1–17, jun 2013. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0306437913000719

[35] BaseX. The XML Database. [Online]. Available: http://basex.org/
[36] V. Dinu and P. Nadkarni, “Guidelines for the effective use of entity-

attribute-value modeling for biomedical databases.” International jour-
nal of medical informatics, vol. 76, no. 11-12, pp. 769–79.

[37] K. K.-Y. Lee, W.-C. Tang, and K.-S. Choi, “Alternatives to
relational database: comparison of NoSQL and XML approaches
for clinical data storage.” Computer methods and programs in
biomedicine, vol. 110, no. 1, pp. 99–109, apr 2013. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/23177219

[38] O. Schmitt and T. A. Majchrzak, “Using Document-Based Databases for
Medical Information Systems in Unreliable Environments,” no. April,
pp. 1–10, 2012.

[39] Apache Hadoop. [Online]. Available: http://hadoop.apache.org/
[40] U. S. Mudunuri, M. Khouja, S. Repetski, G. Venkataraman, A. Che,

B. T. Luke, F. P. Girard, and R. M. Stephens, “Knowledge
and theme discovery across very large biological data sets
using distributed queries: a prototype combining unstructured and
structured data.” PloS one, vol. 8, no. 12, p. e80503, jan 2013.
[Online]. Available: http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid=3846626{\&}tool=pmcentrez{\&}rendertype=abstract

[41] H. Chen, B. Bhargava, and F. Zhongchuan, “Multilabels-Based Scalable
Access Control for Big Data Applications,” IEEE Cloud Computing,
vol. 1, no. 3, pp. 65–71, sep 2014. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7036274

[42] Q. Yao, Y. Tian, P.-F. Li, L.-L. Tian, Y.-M. Qian, and J.-S. Li,
“Design and development of a medical big data processing system
based on Hadoop.” Journal of medical systems, vol. 39, no. 3,
p. 23, mar 2015. [Online]. Available: http://link.springer.com/10.1007/
s10916-015-0220-8

[43] G. Leopold, “Health Care Emerges as Hadoop Use Case,”
October 2015. [Online]. Available: http://www.datanami.com/2015/
10/08/health-care-emerges-as-hadoop-use-case/

[44] S. Frade, S. M. Freire, and E. Sundvall, “Survey of openEHR storage
implementations,” pp. 303–307, 2013.

[45] D. Med, A. Brass, D. Moner, C. Hildebrand, and M. Robles, “Health
Data Management with an Archetype Driven EHR System in Low
Ressource Environments,” in Med-e-Tel, 2010.

[46] A. Brass, D. Moner, C. Hildebrand, and M. Robles, “Standardized and
flexible health data management with an archetype driven EHR system
(EHRflex),” Studies in Health Technology and Informatics, vol. 155, pp.
212–218, 2010.

[47] S. Miranda, E. Sundvall, D. Karlsson, and P. Lambrix, “Performance
of XML Databases for Epidemiological Queries in Archetype-Based
EHRs,” pp. 51–57, 2012.

[48] E. Sundvall, M. Nyström, D. Karlsson, M. Eneling, R. Chen, and
H. Örman, “Applying representational state transfer (REST) architecture
to archetype-based electronic health record systems.” BMC medical
informatics and decision making, vol. 13, p. 57, jan 2013.

[49] C. C. Barca, C. M. Lagunar, J. M. Rodriguez, A. M. Quintero, I. R. M.
Martins, I. Martinez, M. A. Sanguino, and T. P. Lobo, “YourEHRM:
Standard-based management of your personal healthcare information,”
2014 IEEE-EMBS International Conference on Biomedical and Health
Informatics, BHI 2014, pp. 89–92, 2014.

[50] T. Austin, S. Sun, Y. S. Lim, D. Nguyen, N. Lea, A. Tapuria, and
D. Kalra, “An Electronic Healthcare Record Server Implemented in

PostgreSQL,” Journal of Healthcare Engineering, vol. 6, no. 3, pp. 325–
344, 2015.

[51] S. M. Freire, D. Teodoro, F. Wei-Kleiner, E. Sundvall, D. Karlsson,
and P. Lambrix, “Comparing the Performance of NoSQL Approaches
for Managing Archetype-Based Electronic Health Record Data.”
PloS one, vol. 11, no. 3, p. e0150069, 2016. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/26958859

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (which wasthis version posted August 2, 2016. ; https://doi.org/10.1101/067371doi: bioRxiv preprint

https://doi.org/10.1101/067371
http://creativecommons.org/licenses/by-nc/4.0/

