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1 Abstract

Long read sequencing is changing the landscape of genomic research, especially de novo assembly.

Despite the high error rate inherent to long read technologies, increased read lengths dramatically

improve the continuity and accuracy of genome assemblies. However, the cost and throughput of

these technologies limits their application to complex genomes. One solution is to decrease the

cost and time to assemble novel genomes by leveraging “hybrid” assemblies that use long reads

for scaffolding and short reads for accuracy. To this end, we describe a novel application of a

multi-string Burrows-Wheeler Transform with auxiliary FM-index to correct errors in long read

sequences using a set of complementary short reads. We show that our method efficiently produces

significantly higher quality corrected sequence than existing hybrid error-correction methods. We

demonstrate the effectiveness of our method compared to state-of-the-art hybrid and long-read only

de novo assembly methods.
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2 Introduction

De novo genome assembly has benefitted dramatically from the introduction of so-called “long”

read sequencing technologies. These technologies, such as SMRT sequencing by Pacific Biosciences

and nanopore sequencing platforms by Oxford Nanopore Technologies, produce reads typically 10s

of kilobases instead of hundreds of bases. These reads can span repetitive or low-complexity regions

of the genome previous unresolvable using only “short”-read next-generation sequencing. Unfortu-

nately, the relatively high error rate of these long-read technologies introduces new informatics and

analysis challenges. Effective and efficient methods are necessary to correct these errors in order to

realize the potential of these long reads for whole genome assembly [10, 2, 16, 22].

Long read correction algorithms can be broadly classified as either self-correction or hybrid

correction algorithms. Self-correction algorithms correct long reads using only other long read se-

quences. Self-correcting algorithms, including Sprai [20], HGAP [10], and PBcR [16] align the long

reads to each other and generate a consensus sequence. In order to generate an accurate consen-

sus, these methods requires relatively high coverage of long read sequence to overcome the high

error rate. Unfortunately, the relatively high cost per accurate nucleotide for long-read sequencing

technologies often makes deep sequencing using only long reads expensive.

In contrast, hybrid correction algorithms use short-read sequencing of the same sample to

complement and correct the long reads. Short-read sequencing has fewer sequencing errors, costs

less per base sequenced, and thus the cost per accurate nucleotide is much lower. State-of-the-art

hybrid correction algorithms include LoRDEC [22], Cerulean [26], ECTools [14], DBG2OLC [9], and

hybridSPAdes [1]. These hybrid methods are often able to construct more accurate and contiguous

assemblies than exclusively long-read assembly methods at substantially less cost.

For either class of method to be useful for large, complex genomes that are biomedically or

economically important, the key challenge is performing as accurate as an assembly as possible in

as short of time and with the least computational resources. Current methods often take hundreds

to thousands of hours on high performance computing clusters with access to many nodes with

large memory configurations[4, 22]. Given that finding the appropriate parameters for an assembly

is often an iterative process, these high computational costs are a barrier.

We introduce a new hybrid method for correcting errors in long-read sequences called FM-index
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Long Read Corrector (FMLRC) that corrects long reads using a multi-string Burrows-Wheeler

Transform (BWT) variant that has been adapted to string collections [3] and FM-index of a short-

read sequencing dataset as an implicit de Bruijn graph [6] (see Figure 4). FMLRC can use a variety

of input reads and does not require preassembly of the short reads. In brief, we construct a multi-

string BWT from a set of short high-accuracy reads such as Illumina sequence. This multi-string

BWT allows for both the compression of data and combining of multiple data sets [15].

This BWT is used as an implicit de Bruijn graph to implement a seed-and-extend or seed-

and-bridge strategy analogous to that used in LoRDEC [22]. LoRDEC first generates a de Bruijn

graph composed of k-mers from the short reads [22]. Then, the graph is pruned such that any

low-frequency k-mers (specified by a user-defined threshold) are removed from the graph. Long

reads are then compared against this graph and broken into regions that are labeled as either solid

or weak. All k-mers within solid regions are contained in the pruned short-read de Bruijn graph.

All k-mers within weak regions are not in the de Bruijn graph. In general, the assumption of

LoRDEC is that weak regions are caused by errors in sequencing and should be replaced with the

closest series of solid, overlapping k-mers from the de Bruijn graph. When weak inner regions are

identified in a long read, the flanking solid k-mers are used as endpoints for finding a bridge (or

path) in the de Bruijn to connect the two solid regions. In the event of multiple supported bridges,

the one with the closest edit distance to the original sequence is chosen. The head and tail of the

graph are symmetrical special cases where there is only one flanking solid region. In either case,

LoRDEC searches for the best extension of the single solid region that most closely matches the

weak head or tail sequence.

While LoRDEC has been shown to correct a large fraction of errors in long read sequences [22],

the user must select a fixed, short k-mer size and a fixed threshold for pruning. The use of an

explicit de Bruijn graph fundamentally limits the ability of LoRDEC to resolve repetitive or low-

complexity elements longer than k. In the de Bruijn graph, low complexity sequences tend to look

like “hairballs” of interconnected nodes where there are too many possible paths to explore. When

LoRDEC enters a low complexity region, it will usually fail to find a path because it reaches a self-

imposed limit on the graph exploration. Additionally, parameters are often chosen heuristically and

changing them requires re-computing the entire de Bruijn graph prior to re-running the correction.

In contrast, FMLRC finds k-mer “seeds” in the long read sequence with high support in the
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BWT, then searches for a high-weight path between seeds that most closely matches the intervening

long read sequence. Multiple correction passes using increasing anchor sizes, k, allows us to resolve

small-scale errors while avoiding inaccurate de Bruijn graph traversals caused by repetition of

shorter k-mers. Since the FM-index can search for substrings of any length, our method is not

constrained to a single fixed k-mer size, so it represents all possible de Bruijn graphs for the short-

read sequencing data. Additionally, the BWT is a lossless encoding of the short reads, allowing any

pruning threshold to be dynamically adjusted without needing to reconstruct an entire de Bruijn

graph. Our method is unique in that it applies both a short k-mer and long K-mer de Bruijn graph

to the correction process, allowing for the correction algorithm to correct through low complexity

regions up to the size of the long K-mer. An overview of our approach is shown in Figure 1.

As a hybrid method for correcting errors in long-read sequences, the key advantage of FMLRC

is its use of a BWT with FM-index allows iterative correction of errors in sequences of arbitrary

length by constructing paths through an implicit de Bruijn graph. The flexibility of k-mer nodes

in the graph allows us to resolve low-complexity and repetitive elements more efficiently and with

greater accuracy than existing hybrid error-correction methods. We illustrate this by comparing

the assembly of long reads using modern overlap-layout assemblers to FMLRC.

3 Results

3.1 Evaluating computational efficiency and accuracy

A key difference in FMLRC is that it performs two passes of correction: a relatively short k-mer

pass followed by a longer K-mer pass. In each pass, the “pruning” threshold that determines if a

k-mer is solid or weak is dynamically adjusted based on the k-mer length and the surrounding k-mer

frequencies in the read. The first pass performs the majority of error correction and is conceptually

similar to other correction methods based on de Bruijn graphs. The second pass using the longer

K-mer allows FMLRC to assemble through low-complexity or repeat regions in the reads that other

algorithms are not capable of easily assembling through. To demonstrate the effectiveness of this

approach in FMLRC, we evaluated the accuracy of our method using complementary long- and

short-read datasets for five species: E. coli K12, P. falciparum 3d7, S. cerevisiae W303, and A.

thaliana (see Section 5.9). We performed a detailed comparison between our method and LoRDEC
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Figure 1: Illustration of the seed-and-bridge correction strategy using short and long k-mers. Im-
plicit de Bruijn graphs with arbitrary k can be inferred from a multi-string BWT. The use of a short,
fixed k often does not resolve “hairball” and other structures in the graph caused by low-complexity
and repetitive genomic elements. Longer K-mers may dramatically simplify the bridging step if
sufficiently long seeds can be found. Illustrative seed-and-bridge paths are shown for short k-mer
and long K-mer graphs. Seed k-mers are shown in orange, and the correct path in black. The
two-pass (k, K) seed-and-bridge correction implemented in FMLRC allows the correction of short,
nonrepetitive segments in the first pass, then seeding larger K-mers and bridging to resolve more
complex sequences.
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to show the relative correction accuracy and computational performance. We then assessed the

effectiveness of our corrected reads for de novo assembly using a non-correcting assembler, miniasm

[18], and compared these data to several other state-of-the-art hybrid and long-read-only de novo

assembly methods.

3.2 Accuracy of corrected reads

We ran FMLRC to correct the long reads in these datasets and compared the corrected read

accuracy to that produced by LoRDEC. We assessed LoRDEC alone (LoRDEC(k)), LoRDEC

followed by FMLRC’s second pass (LoRDEC(K)+FMLRC(K)), and the full two-pass FMLRC

(FMLRC(k, K)). In all cases, either LoRDEC(k)+FMLRC(K) or FMLRC(k, K) had the highest

accuracy (Figures 2a and 2b). The second (long K) pass of FMLRC strictly improved the results of

LoRDEC(k) by increasing the number of matching bases and percent matching. Thus, this shows

that a two pass approach in general provides better correction, regardless of which algorithm was

used for the short k-mer pass. Second, it suggests that for many genomes, but not all, FMLRC

k-mer pass provides somewhat better correction.

3.3 Performance

As the size of long read datasets and genomes undergoing de novo assembly increases, the per-

formance of hybrid long read correction and assembly methods becomes increasingly important.

For genomes of more complex eukaryotes and mammals, the computational resources required for

effective de novo assembly are staggering and difficult to coordinate. This is driven largely by the

pairwise overlap step required by all modern long read assemblers. The time required to overlap

these long reads with one another increases quadratically relative to the number of reads. While

novel methods such as MHAP [4] and minimap [18] aim to improve this, in practice, the com-

putational time and memory required are often prohibitively expensive. Hybrid error correction

methods that correct long reads without pairwise overlapping dramatically simplify the subsequent

overlap and layout of long reads for assembly by reducing the variance that must be accounted for

in the overlapping step. In particular, long reads having undergone error correction are likely to

share much longer identical stretches that can be used to efficiently find confidently overlapping

reads. Fundamentally, the longer and more accurate these corrections are, the more quickly and
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(a) Accuracy gain (b) Percent matching sequence

Figure 2: After aligning the corrected reads, we counted the number of bases that exactly match
the reference mapping. We then normalized each value by the number of bases that matched the
reference in the raw uncorrected reads and plotted the value as a percentage gained (a). Note that
the raw reads always have a gain of 0%. In all test cases, the reads corrected by FMLRC have
more matching bases than than those from only LoRDEC, indicating that FMLRC is corrected
more bases to match the reference. We also calculated the fraction matching of each alignment by
taking the total number of matching bases and dividing by the total number of aligned bases. We
plotted the results as a percentage of aligned bases that match (b). In all test cases, FMLRC has
a higher fraction mapping than LoRDEC.
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accurately the long reads can be assembled. The majority of long read error correction methods

act similar to scaffolders in that they require the assembly of complementary short read data first,

then alignment between long reads and short-read unitigs or contigs. These approaches, while

reasonably effective, suffer from two classes of problems. First, they incur the same type of disad-

vantages a short-read only assemblies in that low-complexity and repetitive elements larger than

the size of the short reads cannot be reliably resolved. When short reads are preassembled, this

bias can “correct” long read with incorrect sequence, confounding assembly. Second, the short read

assembly and pairwise alignment/overlap of long reads with short-read contigs incur performance

penalties approaching those of full pairwise long-read overlapping.

As previosuly shown [22], use of an explicit (LoRDEC) or implicit (FMLRC) de Bruijn graph to

implement a seed-and-extend or seed-and-bridge strategy is expected to be computationally efficient

compared to other methods. To confirm this expectation, we assessed the CPU time required for

LoRDEC(k), the short read BWT construction, FMLRC(K), and FMLRC(k, K) for four different

genomes of varying complexity. The BWT construction was performed using a combination of

ropebwt2 [17] and the msbwt package1. Note that the BWT construction is a pre-process that is

computed once per short-read dataset prior to to any FMLRC execution. FMLRC(K) is a single

pass using only a long K-mer that is run on the result of LoRDEC(k). FMLRC(k, K) is the

implementation of the two-pass algorithm we describe.

For the E. coli and S. cerevisiae datasets, FMLRC(k, K) requires less CPU time than LoRDEC(k)

(Figure 3). For the P. falciparum and A. thaliana datasets, the two pass FMLRC(k, K) requires

more CPU time, but also has the largest relative gains in correction performance over LoRDEC(k)

in these two tests.

3.4 De novo Assembly

The ultimate goal of any long read correction algorithm is to provide better data for genomics and

metagenomic analysis. We assessed the ability of our method to successfully complete assembly

of simple and complex genomes and to compare its performance to other leading long-read error

correction and de novo assembly methods shown in Table 1. We performed assemblies of three

of the genomes (E. coli K12, S. cerevisiae W303, and A. thaliana) using all of these methods.

1https://github.com/holtjma/msbwt/wiki/Converting-to-msbwt’s-RLE-format
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Figure 3: CPU time. This figure shows the CPU time required by LoRDEC and FMLRC. Ropebwt2
is a BWT construction algorithm that is run once prior to any executions of FMLRC, so it is shown
stacked with both versions of FMLRC. FMLRC(K) was run on the results of LoRDEC(k).
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Method Correction Assembly Preassembly Citation

miniasm Long-read [18]

canu Long-read Long-read [4]

Sprai Long-read [20]

hybridSPAdes Hybrid [1]

DBG2OLC Hybrid X [9]

Cerulean Hybrid X [26]

ECTools Hybrid X [14]

LoRDEC Hybrid [22]

FMLRC Hybrid Our method

Table 1: Long-read and hybrid correction and assembly methods. All of the compared methods
are shown along with their mode of error correction and assembly, each either long-read only or
“hybrid” using complementary short-read data. “Preassembly” indicates whether a hybrid method
requires the short read data to be preassembled using a different method.

Our method, along with LoRDEC, ECTools, and Sprai, perform only read correction. We used

miniasm to assemble the corrected reads from these methods. The straightforward approach to

identity-based overlapping and graph layout used by miniasm allows us to assess the effect of read

correction on de novo assembly.

Canu is a modern fork of the Celera Assembler and consists of the basic PBcR correction method

using the MHAP overlapper followed by assembly with HGAP. So we assess only the canu pipeline

as a whole.

Several of the methods took prohibitively long or failed to assemble the A. thaliana genome.

We analyzed completed assemblies using Quast [13] in Table 2. Percent error indicates the total

of mismatched bases, insertions/deletions, and no-calls (Ns). As described by [13], NGA50 is

analogous to N50, but breaks misassembled contigs and is taken as a percentage of the real genome

size instead of the assembly size. As shown, FMLRC has comparable performance to other methods

for E. coli K12. It also outperforms all methods tested in terms of N50 and all but Cerulean in terms

of NGA50 for S. cerevisiae W303. Although the error rate is lower for canu and hybridSPAdes,

these typically rely on exceptionally high coverage of long reads and short reads, respectively,

and degrade in performance quickly as coverage drops. These test datasets contain high (>100x)

coverage of both long and short reads. Furthermore, post-assembly polishing steps such as Quiver

[10] and Nanopolish [19] are typically effective in reducing the assembly error from less than 1% to

less than 0.01%.
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Our conclusion is that read correction by FMLRC before overlapping increases the sensitivity

and/or specificity of long-read overlapping and layout leads to a more contiguous assembly.

4 Discussion

Flexible “modular” approaches to de novo long read sequence assembly are becoming more popular

with the introduction of efficient overlap and layout methods such as DALIGNER [21], MHAP

[4], minimap [18], and miniasm [18]. Existing error correction methods including DBG2OLC [9],

Cerulean [26], hybridSPAdes [1], and ECTools [14] require preassembly of short read sequence and

perform a variant of scaffolding using long read sequences. While this approach benefits from

the high accuracy of short read sequence, it retains the biases inherent in assembly of short read

sequences. In particular, it is often difficult or impossible to properly assemble low-complexity or

repetitive sequences using only short reads [25].

To overcome these limitations, we have introduced FMLRC, a long read correction method

that uses a multi-string BWT and FM-index as an implicit de Bruijn graph. The method uses two

passes to perform the correction: one with a relatively short k-mer and one with a longer K-mer.

In each pass, the method searches for weak, unsupported regions in the reads and uses the implicit

de Bruijn graph to identify alternate solid paths to correct the reads. The BWT with FM-index

serves as an efficient lossless compression of read datasets and allows more flexible and thorough

navigation of the short read sequence. Without modification, the MSBWT implicitly represents de

Bruijn graphs with arbitrary k, supporting the efficient multi-pass correction method in FMLRC.

We compared the results of FMLRC to the LoRDEC algorithm for performing hybrid error cor-

rection. We showed that our method reliably produces higher accuracy corrections than LoRDEC

and is computationally efficient. We further showed that using FMLRC as a preassembly error

correction step in conjunction with existing overlap-layout assembly methods produces highly con-

tiguous assemblies with competitive accuracy relative to existing hybrid and non-hybrid assembly

methods.

Future work will include a specific cost-benefit analysis of the quantity of long- and short-read

data required to effectively assemble genomes based on their size and repetitive structure. While

previous work has been done in this area, FMLRC, as a more efficient method for hybrid correction
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Dataset Method # contigs % Error N50 NGA50

E. coli K12

Genome: 5Mb
Pacbio: 450Mb
Illumina: 3.4Gb

miniasm 5 15* 3248099 -
canu 4 0.013 3254238 707334

Sprai + miniasm 1 0.088 4640641 994036
hybridSPAdes 5 0.006 4652373 3024341

DBG2OLC 2 0.016 4585967 1040766
Cerulean 16 0.950 1258592 851084

ECTools + miniasm 1 0.050 4639813 3305233
LoRDEC + miniasm 1 0.308 4695552 1085989
FMLRC + miniasm 1 0.032 4646173 742048

S. cerevisiae W303

Genome: 12Mb
Pacbio: 1.3Gb
Illumina: 18Gb

miniasm 45 15* 449094 -
canu 135 0.071 343919 322893

Sprai + miniasm 40 0.185 711322 442660
hybridSPAdes 344 0.044 337031 304769

DBG2OLC 48 0.144 663240 365467
Cerulean 78 3.687 466556 500929

ECTools + miniasm 61 0.154 313547 312888
LoRDEC + miniasm 19 1.087 684041 432342
FMLRC + miniasm 26 0.178 736866 460533

A. thaliana Ler-0

Genome: 120Mb
Pacbio: 11Gb

Illumina: 13Gb

miniasm 7560 15* 310151 -
canu - - -

Sprai + miniasm - - -
hybridSPAdes - - -

DBG2OLC - - -
Cerulean - - -

ECTools + miniasm - - -
LoRDEC + miniasm 1115 1.02112 411740 189997
FMLRC + miniasm 879 0.41978 377256 194227

Table 2: Long-read and hybrid correction assembly statistics. For A. thaliana, the methods marked
with dashes did not complete in under a week with 16 processes. *miniasm does not perform either
read correction or consensus calling, so the resulting assembly has the same error profile of the
input reads.
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of long reads, is expected to allow more effective de novo assembly with less long read data than

previously possible. In the long term, better integration of FMLRC error correction along with

other tools for overlapping, layout, and consensus of long read sequencing data will help realize the

goal of a fully modular and efficient de novo assembly process.

5 Methods

The FM-index Long Read Corrector (FMLRC) is a hybrid correction method that uses the BWT

[7] and FM-index [11] of a short-read sequencing dataset to correct a long-read sequencing dataset.

These data structures have been previously used for short-read self-correction in FMRC [12], but

the greedy method of correction used by FMRC is ill-suited for long-read correction.

The major difference between FMLRC and other hybrid correction algorithms is the use of a

BWT and FM-index of the short-read sequencing dataset as a de Bruijn graph [6]. The BWT and

FM-index have several advantages over a typical de Bruijn graph. First, the BWT is a lossless

encoding of the original reads, meaning that no reads (or k-mers) are “pruned” as they commonly

are in a de Bruijn graph. Secondly, the FM-index enables arbitrary k-mer frequency lookups in

O(k) steps. Thirdly, the FM-index is not fixed a single value of k, allowing methods to dynamically

choose a k-mer value at run-time. The combination of these three properties means the BWT and

FM-index implicitly represent all de Bruijn graphs for the short-read sequencing dataset.

Given that the BWT and FM-index implicitly represent all de Bruijn graphs, FMLRC uses

the graph to perform long-read correction. Each long read is individually broken into solid and

weak regions. Solid regions are composed of k-mers supported by the implicit de Bruijn graph at

a threshold and weak regions are not supported at that threshold. Given two solid regions with a

single weak region in between, the algorithm searches for solid bridges in the de Bruijn graph that

connect the solid regions and span the weak regions. If no bridges are found, no change is made

to the long read. If one or more bridges are found, they are aligned to the original weak region,

and the one with the smallest edit distance is chosen to replace it. Weak regions at the beginning

or end of the long read are treated similarly, but with a seed-and-extend assembly as opposed to a

seed-and-bridge method.

The key difference in FMLRC is that it performs two passes of correction: a relatively short
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k-mer pass followed by a longer K-mer pass. In each pass, the “pruning” threshold that determines

if a k-mer is solid or weak is dynamically adjusted based on the k-mer length and the surrounding

k-mer frequencies in the read. The first pass performs the majority of error correction and is

conceptually similar to other correction methods based on de Bruijn graphs. The second pass using

the longer K-mer allows FMLRC to assemble through low-complexity or repeat regions in the reads

that other algorithms are not capable of easily assembling through.

5.1 Correction of Long Read Sequences using BWTs

Our method assumes that a BWT and FM-index of the short reads has been constructed. The

BWT construction described here was performed using a combination of ropebwt2 [17] and the

msbwt package2. As a BWT and FM-index is not restricted to any particular k-mer length, it acts

as an implicit un-pruned de Bruijn graph for both k and K such that the frequency of any k-mer

or K-mer in the dataset can be looked up in respectively O(k) or O(K) steps.

For our method, the two passes are programmatically identical with the value of k or K passed

in as a parameter. For brevity, we describe the FMLRC correction using parameter k noting that

replacing k with K describes the second pass of our method. Additionally, all thresholds and

parameters are described as functions of k and the implicit k-mer de Bruijn graph.

5.2 The BWT and Implicit De Bruijn Graph

The BWT and FM-index implicitly represent all de Bruijn graphs for the short-read dataset. When

a node in any of the graphs needs to be accessed, FMLRC uses the FM-index to perform a k-mer

search in O(k) steps. This informs FMLRC of the k-mer frequency in the dataset. FMLRC

then compares the k-mer frequency to a pruning threshold and classifies it as weak if it is below

the threshold and strong if it is above the threshold. In this regard, the BWT and FM-index

are advantageous data structures because values such as k-mer size and the pruning threshold

distinguishing solid and weak can be dynamically adjusted before or during the correction process

without needing to explicitly recompute the full de Bruijn graph.

FMLRC includes two FM-index implementations. The default FM-index implementation uses

bit arrays and rank operations to enable fast k-mer lookups at the cost of a larger memory footprint.

2https://github.com/holtjma/msbwt/wiki/Converting-to-msbwt’s-RLE-format
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(a) 3-mer graph. (b) 5-mer graph.

Figure 4: Two de Bruijn graphs for strings “CAGACTGCAG” and “CAGTCTGAAG” are shown.
A 3-mer graph is shown in (a), where every 3-mer from the two strings is a node. An edge indicates
that the 2-mer suffix of the source 3-mer is the same as the 2-mer prefix of the destination 3-mer.
In this graph, the two distinct strings are not obvious because the k-mer is relatively small. There
are many cycles within the graph, and the start and end k-mers for each string are obfuscated
because of the structure. Algorithms that traverse this graph would need to explore every path in
hopes of finding a bridge connecting two specific k-mers. This can lead to long computations or
failure to find bridges if a branching limit is imposed on the traversal method. The corresponding
5-mer de Bruijn graph is show in (b). Every 5-mer from the two strings is a node in the graph.
An edge indicates that the 4-mer suffix of the source 5-mer is the same as the 4-mer prefix of the
destination 5-mer. In contrast to the 3-mer graph, the two distinct paths in this 5-mer graph are
obvious because there are no shared 5-mers between the two strings. Algorithms that traverse this
graph would find connecting K-mers to be a comparatively simple operation because there is no
branching or cycles in the graph.
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The second FM-index implementation is a traditional sampled FM-index that allows users to set

the sampling rate, leading to longer computations with a smaller memory footprint. The two FM-

index implementations produce identical corrected read results, and we present only the results

from the default implementation in our performance results.

5.3 Identification of Weak Regions

Given a long read and a BWT of the short reads, the first step is to identify weak regions of the

long read. To do this, our method uses a hybrid threshold that is a function of k-mer length and

k-mer frequency in surrounding solid k-mers. First, the method retrieves k-mer counts for every

k-mer in the long read. For most long reads, the majority of k-mer counts are at or near zero due

to the high error rate from the sequencing technology. Second, every k-mer with a count that is

less than a user-defined, absolute minimum threshold, T , is removed from the list of counts. Next,

the median, m, of the remaining counts (that are all ≥ T ) is calculated. A second user-defined

value, F , is the fraction of the median m that is required for a path to be consider solid. Finally,

the solid threshold t for a particular read is calculated as t = max(T, F ∗m). In other words, the

method calculates a dynamic threshold based on k-mer counts from that particular read. However,

if that dynamic threshold is below an absolute, user-defined minimum, the absolute minimum is

used as the threshold instead. For low-coverage short-read datasets, it is often the case that t = T

because F ∗m < T . For high-coverage short-read datasets, this dynamic threshold alleviates the

need to select a fixed threshold beforehand, and it instead uses counts from the implicit de Bruijn

graph to derive an expected count for k-mers in the read. Given the read-specific threshold t, weak

regions are identified as contiguous weak k-mers (the frequency of each k-mer is < t). Similarly,

solid regions are contiguous solid k-mers (the frequency of each k-mer is ≥ t).

5.4 Correction of Weak Regions

Weak regions can be flanked by zero, one, or two solid regions. If a weak region has no flanking

solid regions, the entire read is one large weak region with no solid k-mers to initialize a traversal

of the de Bruijn graph. As a result, these reads are simply written to the output with no changes

because there are no solid seeds.

If a weak region has one flanking solid region, then it is either the head or tail weak region
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for the read. In either case, the solid k-mer closest to the weak region is used as the initializer

k-mer for traversing the de Bruijn graph using a seed-and-extend approach. The de Bruijn graph

is explored from this start k-mer using a depth-first traversal and an expected path length based

on the distance to the end of the read. Additionally, our method enforces a limit on the amount of

branching that is allowed to reduce computation time. This branch limit is usually only reached

if the algorithm is traversing a complex section of the de Bruijn graph where many interconnected

nodes lead to an exponential number of graph traversals. If no paths are found or the branch limit

is reached, then no change is made to the read. If one or more paths are found, then they are each

aligned to the original weak head/tail region and the one with the smallest edit distance replaces

the original.

Finally, the most common case is a weak region flanked by two solid regions. In this case,

we use a seed-and-bridge approach by selecting an initial starting k-mer is selected from the first

solid region and a target k-mer is selected from the second. The de Bruijn graph is explored in

a depth-first traversal from the starting k-mer. Thus, the algorithm attempts to find a path in

the de Bruijn graph that bridges the two solid regions and spans the weak region. Each bridge

is extended so long as it is shorter than an expected length that is estimated from the distance

between the two solid k-mers in the long read. Whenever a bridge is found that ends with the

target k-mer, it is added to a list of discovered bridges. Similar to the head and tail traversal, the

bridge traversals also have a branch limit to reduce the amount of computation. If no bridges are

found or the branch limit is reached, then no change is made to the read. If one or more bridges

are found, then they are each aligned to the original weak region and the one with the smallest edit

distance is used to replace the original.

5.5 Differences in the Short and Long Passes

FMLRC is a two pass algorithm using first a short k-mer followed by a second longer K-mer. In

general, the short k-mer pass does the majority of the correction for the method. While the k-mers

are described as “short”, they are still long enough to uniquely identify most sections of the genome.

If a section can be uniquely identified using short k-mers, then correction is often a relatively easy

process and a longer K-mer is not required. This is why many other k-mer based methods are able

to correct the majority of errors in long reads.
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The short k-mer pass is conceptually similar to other previously described methods that use a de

Bruijn graph for correction such as LoRDEC [22]. However, these previous methods are restricted

to a fixed k-mer size, fixed pruning threshold, and a fixed branching limit; all of which are typically

user-defined parameters that are commonly chosen heuristically. Despite these limitations, it is

worth noting that these other correction methods can be used in place of the first k-mer pass of

FMLRC. Thus, the full pipeline could be described as a short k-mer correction method followed by

our long K-mer correction pass. In our results, we test FMLRC as both a two-pass method and

as a one-pass long K-mer method following a different short k-mer correction method (LoRDEC

[22]).

To the best of our knowledge, the long K-mer pass is unique to FMLRC. To provide some

intuition behind why it improves the results, we focus on the differences in de Bruijn graphs

representing the same data but with two different k-mer lengths. In general, two distinct paths

will be merged in a k-mer de Bruijn graph if they share a pattern that is at least k long. This

is because the nodes along that shared region will be identical. At the ends of the shared region,

there will be two paths emerging representing the differences at the edge of the shared regions. For

example, Figure 4a shows an example de Bruijn graph using short 3-mers to represent two strings.

When the same sequences are viewed through a longer K-mer de Bruijn graph, the number of

merged, ambiguous paths strictly decreases because an increasing amount of similarity is required

for the paths to become merged in the graph. To demonstrate this idea, Figure 4b shows the 5-mer

de Bruijn graph for the same two strings from Figure 4a. Note that while traversal of the graph for 3-

mers was relatively difficult due to branching and cycles, the 5-mer graph is easily traversed because

it is two disjoint linear paths. In practice, the short k-mer is still long enough to uniquely identify

most areas of the genome. However, genomic characteristics such as low-complexity sequence, gene

families, or repeat regions are difficult to traverse using short k-mers. Thus, our method uses the

larger K-mer to bridge weak regions composed of repeated or low-complexity sequences that are

too difficult to traverse using a small k-mer.

Because our method uses two passes with different sizes of k and K, it allows for less branching

when k is small and more branching when K is large. As we just described, a small k-mer de Bruijn

graph will have more branches and may require more computation to do a full depth-first traversal
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in repeat regions. To avoid this, we place more restrictions on the short k-mer traversals such that

it primarily fixes the “easy” errors caused by sequencing. As a result, the “harder” traversals are

pushed off to the long K-mer de Bruijn graph. The longer K-mer de Bruijn graph is less likely to

have many branches and more likely to have a single pass connecting a start and target K-mer. In

order to enable this approach, our method calculates a branch limit that scales linearly with the

selected k/K value for the pass.

5.6 FMLRC Parameter Selection

FMLRC allows for four main parameters to be defined by the user: T , F , k, and K. T is the

absolute minimum frequency required for a k-mer to be considered solid in the de Bruijn graph.

F is the fraction of the median counts required for a k-mer to be considered solid in the de Bruijn

graph. In all test cases, we used T = 5 and F = .10.

The second two parameters are the choice of k and K for the short and long correction passes.

To gain some insight into what values of k and K are best, we ran multiple tests using the E. coli

K12 MG1655 dataset. We allowed k = [17, 19, 21, 23, 25] and K = [−, 49, 59, 69, 79, 89], leading to a

total of 30 test cases. The test cases with K = − indicate that no second K-mer pass was performed

(it is only using a one-pass, short k-mer for correction). For each test case, we ran FMLRC, aligned

the corrected reads to the reference genome, and then gathered statistics on the resulting alignment.

We counted the the total number of bases that matched the reference genome and the total edit

distance of the mappings. We also calculated the percentage of bases that matched the reference

genome by taking the total number of matching bases and dividing by the total number of bases

in the corrected reads. The results of this experiment are shown in Table 3.

For each statistic measured, the best result used K = 59, but three different values for k. In

all of our tests, performing a second pass with the long K-mer always improved all three statistics.

Additionally, these results show that using a K-mer that is too large can have a negative impact

on the performance of the correction. If the size of the K-mer relative to the read is too large,

then the number of nodes in the de Bruijn graph will be reduced leading to difficulties during

graph traversal. In our tests, while K = 59 is usually the best, K = 49 or K = 69 generally

have similar performances. In contrast, the difference in edit distance from 69 to 79 and from 79

to 89 is more dramatic, indicating that there may be too few 79-mers and 89-mers with enough
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Matching Bases
K

k – 49 59 69 79 89
17 357689915 364261034 365911374 366756300 366397703 364348529
19 360879691 371679728 372242631 372053470 371238554 369385323
21 364324790 373222105 373389445 373122774 372396464 370679046
23 365894380 373163803 373345702 373138050 372519218 371088777
25 366929792 373126530 373247984 373037934 372565125 371123308

Edit Distance
K

k – 49 59 69 79 89
17 16988141 7368593 6323839 5722348 5509356 6120257
19 8012854 4341121 4145344 4071010 4091550 4446711
21 6341729 3685543 3596552 3577941 3626889 3952585
23 5940344 3523463 3439920 3443619 3536317 3886421
25 5977754 3532665 3455707 3490784 3629262 4041437

Percent Matching
K

k – 49 59 69 79 89
17 96.2561% 98.3792% 98.5830% 98.7011% 98.7337% 98.5771%
19 98.1107% 99.0143% 99.0575% 99.0710% 99.0633% 98.9746%
21 98.5083% 99.1579% 99.1812% 99.1854% 99.1742% 99.0935%
23 98.6225% 99.1967% 99.2180% 99.2169% 99.1959% 99.1129%
25 98.6340% 99.1991% 99.2193% 99.2109% 99.1798% 99.0845%

Table 3: Choosing k and K. This table shows the result of running FMLRC using many different
values for k and K for an E. coli dataset. The test cases with K = − indicate that no second pass
of correction using the long K-mer was performed, so those test cases use a single pass short k-mer
only. After correcting the reads, we aligned the results using BLASR and gathered statistics on
the alignments. Matching bases indicates the number of matching bases across all mappings. Edit
distance indicates the total number of mismatches, insertions, and deletions across all mappings.
Percent matching is calculated as the total number of matching bases divided by the total number of
bases that aligned. For each statistic, the best result is bolded in the above table. To summarize,
a K = 59 is the column containing the test cases with the largest matching bases, lowest edit
distance, and highest percent matching. Additionally, all tested values of K for a long K-mer pass
improves the results over a single k-mer pass.

20

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 2, 2016. ; https://doi.org/10.1101/067272doi: bioRxiv preprint 

https://doi.org/10.1101/067272
http://creativecommons.org/licenses/by/4.0/


coverage to correct the reads. It is worth noting that the “best” k and K is likely data-dependent

because differences in coverage, sequencing quality, and sequencing content will impact the ability

of FMLRC to find solid k-mers and perform corrections.

5.7 Long read correction comparison

We compare FMLRC v0.1.2 to the LoRDEC v0.6 hybrid correction method [22]. This method

corrects reads using a short k-mer, pruned de Bruijn graph. For all tests, we ran LoRDEC with the

options -k 21 -s 5 indicating a k-mer of length 21 and that any k-mer with frequency less than

5 is pruned from the de Bruijn graph. We also compared to a combined approach where LoRDEC

is used for the short k-mer correction and FMLRC is used for the long K-mer correction.

For each dataset, we selected k and K based on the length and coverage of reads in the short-

read sequencing datasets. For all test cases, we used k = 21 for both LoRDEC and FMLRC. For K,

we used 59 for the three organisms with smaller genomes (< 25 million basepairs) and 69 for the A.

thaliana dataset because it has a larger genome (> 100 million basepairs). We tested LoRDEC(k),

LoRDEC(k) combined with FMLRC(K), and FMLRC(k, K) correction methods.

After running each correction method, we aligned the resulting FASTA file to the corresponding

reference genome for the organism using BLASR v2.0.0 [8]. For BLASR, the only extra parameter

we used was -hitPolicy randombest to force the alignment to keep only the best mapping for

each read. Note that BLASR will also split reads into multiple subreads if it detects multiple

subreads that best align to different genomic locations.

5.8 Performance Testing

Performance tests were run on a single machine running Ubuntu 14.04 with 32 GB memory and

an Intel Xeon E5-2620 6-core 2.00 GHz processor. The machine is connected to a 1 TB HDD

for reading and writing any necessary input or output files. For measuring performance, we used

the built-in /usr/bin/time function to extract real time, user time, memory usage, and CPU

utilization. Each method was allowed eight processes for computing the results.
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5.9 Data Description

We tested the correction algorithms on five publicly available PacBio datasets. The PacBio datasets

were downloaded for E. coli K12 MG1655, P. falciparum 3d7, S. cerevisiae W303, and A. thaliana

Ler-0[5]. For each dataset, we also downloaded a publicly available short-read sequencing dataset: a

publicly available dataset[24] for E. coli, SRR1503358 from Genbank for P. falciparum, SRR1652473

for A. thaliana, and publicly available data[23] for S. cerevisiae.

5.10 De novo assembly comparison

We ran the long-read correction and de novo assembly methods listed in Table 1 on the E. coli, S.

cerevisiae, and A. thaliana datasets listed above. All were run on Killdevil, a heterogeneous Linux-

based cluster with more than 9600 cores and 48Gb - 1Tb RAM per node at Research Computing

at UNC. All jobs had a hard limit of 16 processes and one week wall-clock run time. For larger

genomes such as A. thaliana, several methods including hybridSPAdes, canu, and ECTools failed

after exceeding these limits or exceeding 1Tb main memory.

We used Quast v4.1 [13] to assess these assemblies using default parameters.

6 Data Access

FMLRC is a publicly available C++ program3. The implementation requires that a BWT of the

short-read dataset has already been constructed and is in the run-length encoded format of the

msbwt package4.
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