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Abstract: 8 

The consensus emerging from microbiome studies is that they are far more complex 9 

than previously thought, requiring deep sequencing. As deep sequenced datasets 10 

provide greater coverage than previous datasets, recovering a higher proportion of 11 

reads to the assembly is still a challenge.  To tackle this issue, we set of to identify if 12 

multiple iterations of assembly would allow for otherwise lost contigs to be formed 13 

and studied and if so, how successful is such an avenue at improving the current 14 

methodology. 15 

A simulated metagenomic dataset was initially used to identify if multiple iterations of 16 

assembly produce useable contigs or mis-assembled artefacts were produced. Once 17 

we had confirmed that the secondary iterations were producing both accurate contigs 18 

without a reduction in contig quality we applied this methodology in the form of 19 

Spherical to 3 metagenomic studies. 20 

The additional contigs produced by Spherical increased the number of reads aligning 21 

to an identified gene by 11-109% compared to the initial iterations assembly. As the 22 

size of the dataset increased, as did the amount of data multiple iterations were able 23 

to add.  24 

 25 

Availability 26 

Spherical is implemented in Python 2.7 and available for use under a MIT licence 27 

agreement at: https://github.com/thh32/Spherical  28 
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Introduction: 29 

 30 

Over the last 10 years researchers have utilised high-throughput sequencing to 31 

investigate the structure and function of increasing larger numbers of microbial 32 

communities from environments across the globe (Krohn-Molt et al. 2013; van der 33 

Lelie et al. 2012; Modi et al. 2013). While these studies have provided unique and 34 

novel insights into the workings of these communities, there is a growing consensus 35 

that the tools available are not capturing the full functional diversity of the data being 36 

generated (Nagarajan & Pop 2013). Increasing the proportion of genome assembled 37 

is a challenge, and resolving this issue is very needed, with the ever increasing 38 

amounts of sequencing data becoming available. Additionally, it would also enable us 39 

to retrieve further more from data already available in repositories.  40 

 41 

Mathematically, de novo assembly of a genome falls within the class of problems for 42 

which no efficient algorithm is known (NP-hard) (Myers. 1995; Medvedev et al. 2007), 43 

leading to the proposal of a variety of heuristic solutions (Charuvaka & Rangwala 44 

2011). These have ranged from simple overlap-layout-consensus approaches, where 45 

sequencing reads with overlapping regions are joined together into contigs (Myers. 46 

1995) to more complex approaches such as de Bruijn graphs (Idury et al. 1995). 47 

Genomic assemblers based on de Bruijn graphs break each read into smaller strings 48 

of K length (kmers) and connections are made between overlapping kmers (Schatz 49 

et al. 2010). Paths of least resistance through the kmer graph represent contigs 50 

(Compeau et al. 2011).  51 

 52 

Generally, these assemblers have been designed with a single-genome in mind 53 

where it could be guaranteed that all sequences generated belonged to the same 54 

species. However, as sequencing approaches for sampling the genomic information 55 

of entire microbial communities (metagenomics) began to emerge (Venter et al. 56 
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2004), it was clear that new approaches may be necessary (Lai et al. 2012). By far 57 

the biggest issue with metagenomic datasets stem from the uneven distribution of 58 

species in natural communities leading to varying depths of sequencing coverage of 59 

each (Nagarajan & Pop 2013). This leads to over-sequencing of dominant species in 60 

the community and results in heavily fragmented assemblies of the genomes of 61 

minority species, if they can be assembled at all (Bergeron et al. 2007).  62 

 63 

Promising solutions to dealing with this problem use a ‘divide and conquer’ approach 64 

to break the data into more easily manageable pieces (Bergeron et al. 2007). For 65 

example the data from environmental samples can be split into “bins” representing 66 

different taxa from the community (Mohammed et al. 2011). Sequence reads can be 67 

sorted into bins based on properties such as kmer-frequency or the percentage of 68 

Guanine and Cytosines (GC) they contain (Dro & Mchardy 2012). This has the 69 

potential to increase the assembly rate of low abundance species, however it 70 

depends heavily on accurately partitioning the data (Wang et al. 2012). Indeed, bins 71 

of metagenomic data produced in this manner may represent a single species or an 72 

entire phylum depending on the complexity of the community (Wang et al. 2012).  73 

 74 

Digital normalization is another method that tries to deal with unevenly sampled data 75 

(Brown & Crusoe 2014). In this approach, sequence reads are discarded based on 76 

the local coverage of their kmers (Brown & Crusoe 2014). This has the effect of 77 

reducing coverage of over-represented taxa, and “normalising” the coverage to make 78 

it more even (Brown & Crusoe 2014). While this pre-processing step allows for 79 

reduction of the datasets size, it does not reduce the complexity of metagenomes to 80 

be assembled.  81 

 82 

Using a similar approach to ‘divide-and-conquer’ large genomic datasets, 83 

SLICEMBLER aims to improve deep sequenced (>800x coverage) single genome 84 
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assemblies (Mirebrahim et al. 2015). The approach taken here is to separate the 85 

input data into pre-determined "slices" based on coverage (Mirebrahim et al. 2015). 86 

Each slice is then assembled separately and frequently occurring strings (FOS) are 87 

identified between the sub-assemblies and merged, effectively scaffolding them 88 

together to produce a final assembly (Mirebrahim et al. 2015). This approach works 89 

well for deep sequenced genomic datasets where coverage is known, however in 90 

metagenomics datasets from uncharacterised microbial communities, coverage is 91 

generally unknown (Peng et al. 2012). 92 

 93 

Whilst these approaches are an improvement upon single-genome based methods, 94 

they still do not generate an assembly that utilises 100% of the reads from the data 95 

or produce complete genomes without manual curation (Hess et al. 2011). 96 

 97 

Here we propose an iterative workflow that tries to address this problem with 98 

metagenomic assemblies. Based on, and extending the ‘divide-and-conquer’ 99 

principle, the workflow (called “Spherical”) can be applied to any assembly method. 100 

Spherical is designed to work with datasets that cannot be assembled in a single 101 

step due to data volume or complexity but could equally be applied to smaller and 102 

simpler datasets.  103 

 104 

Spherical workflow: 105 

Spherical uses an iterative workflow which tries to capture the reads not utilised by 106 

an assembly, and these are reapplied to subsequent rounds of assemblies. The 107 

outline of the approach is summarised in Figure 1. 108 

 109 

 110 
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 111 

Figure 1: A flow-chart of the steps used by Spherical. The all process within the blue 112 

circle occur within Spherical whilst the input and output files are outside. The width of 113 

the arrows indicate the possible decrease in file size depending on user sub-sample 114 

selection. The ‘user defined criteria’ is defined as any user option which indicates a 115 

point at which Spherical should stop iterating. 116 

 117 

The Spherical workflow is composed of 5 steps: 118 

Step 1: Sub-sample selection 119 

The first step in Spherical is the optional initial sub-sampling of the sequencing data. 120 

This can be advantageous when the working with very large datasets. In this process 121 

a random sub-sample (defined by –R) is taken from the input sequencing data. Using 122 

a subset fraction of 1 selects the entire input dataset instead. If only one value is 123 

given to –R, then Sphercial will apply this sub-sample fraction at every iteration, 124 

however the user also has the option of providing values to be used at each iteration. 125 

 126 
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Step 2: Assembly 127 

 The sub-sample is then assembled using the assembler of choice. Currently the 128 

default assembler in Spherical is Velvet (Namiki et al. 2012).  129 

 130 

Step 3: Alignment 131 

When the assembly is completed Spherical uses Bowtie 2 (Langmead & Salzberg 132 

2012) to align all reads previously unaligned (in iteration 1 this is all the reads) to the 133 

contigs resulting from this assembly.  All reads that do not align to the assembly 134 

produced at this iteration are saved for the subsequent rounds. If a read aligns to the 135 

assembly at this point, it is considered utilised and hence excluded from the 136 

subsequent iterations.  137 

 138 

Step 4: Assessment 139 

The user can define two parameters to be used by Spherical to determine 140 

completeness. The first is based on the number of iterations currently completed (-141 

iter). When spherical has completed all iterations defined by this value, it will halt 142 

carrying out iterations, and move to step 5. The second option is based on the 143 

proportion of reads currently utilised by the total assembly (-align). This is calculated 144 

as the number of reads currently unaligned, divided by the total number of reads 145 

initially provided. When Spherical determines that the alignment rate has been 146 

reached it will halt carrying out iterations and move to step 5. The user must provide 147 

these two parameters, the current default is 5 iterations or an alignment rate of 70%. 148 

If neither of these criteria have been met, spherical will pass on all unaligned reads to 149 

step 1 for another iteration. 150 

 151 

Step 5: Final output 152 

When Spherical has met the user-defined criteria for halting, Spherical will combine 153 

all the assemblies from each iteration into a single file and calculates statistics such 154 
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as N50, lengths of longest and shortest contigs the standard deviation of the lengths 155 

and the alignment rate both for each iteration and for the final assembly. 156 

 157 

In the following sections we outline the principles behind Spherical and demonstrate 158 

its use on three different metagenomic datasets of differing sizes and complexity. We 159 

show that by taking an iterative approach the resulting assemblies use a greater 160 

proportion of the original raw reads and in large datasets it allowed to retrieve more 161 

information from the less-represented organisms in the community. 162 

 163 

Results  164 

Simulated dataset analysis 165 

By using a simulated dataset (Mende et al. 2012) created from 400 species of 166 

varying abundance we investigated the accuracy of assemblies from each iteration 167 

from the Spherical workflow. We used BLASTN to identify the best matching genomic 168 

region for each contig assembled. The quality of the reconstructed region was 169 

assessed using the contig score (Mende et al. 2012) which calculates a value 170 

representing the accuracy of the reconstruction. We found that there was no 171 

observable decrease in the contig score as the number of iterations increased 172 

(Supplementary Table 3).  173 

 174 

Metagenome dataset analysis 175 

We used three published metagenomic datasets (chicken ceacum (Qu et al. 2008), 176 

human oral (Belda-Ferre et al. 2012) and groundwater from the Yucatan peninsula 177 

(Moore et al. 2009)) of varying sizes to test Spherical (Table 2). For each we carried 178 

out three assembly approaches, 1) Basic Velvet assembly, 2) Digital normalisation 179 

followed by a Velvet assembly and 3) Spherical on the raw data with 5 iterations, 180 

using Velvet as the assembler (Supplementary Table 1). We used the percentage of 181 
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the assembly to which no reads align as a measure of miss-assembly (the “false 182 

base rate”) and the percentage of reads that aligned as a measure of completeness. 183 

 184 

Assembly quality for tested datasets 185 

The Chicken Caecum microbiome was the smallest of the three datasets tested. As a 186 

result, all three assembly approaches produced very similar results (Supplementary 187 

Table 1). However the assembly from Spherical utilised 1% more of the raw reads 188 

than the other approaches. This was at the cost of slightly lowering the N50 (from 189 

109 to 104) and increased false base rate (from 0.01% to 0.04%). 190 

The human oral dataset was a larger dataset, and as a result we observed a greater 191 

variability in how the different assembly approaches performed. Spherical was able 192 

to increase both the N50 (from 190 to 234) and the alignment rate (from 13% to 193 

24.6%) compared to the next best approach (basic velvet assembly), however the 194 

false base rate also increased (from 0.02% to 0.19%). 195 

The groundwater dataset was the largest tested. The alignment rate of Spherical 196 

increased  (from 52.8% to 59.7%) and false base rate decreased (from 3.86% to 197 

2.89%), however Sphericals N50 was significantly reduced (from 330 to 211) in 198 

comparison to the normalised assembly.  199 

 200 

Effect of sub-sample size on the resulting assembly 201 

To study the effect of altering the sub-sample size we used the largest of the 202 

metagenomics datasets tested  (Groundwater) and with sub-sample fractions of 1 203 

(representing 1/1, i.e. all the raw data), 4 (representing ¼ of the raw sequencing 204 

reads) and 30 (representing 1/30 of the raw sequencing reads). As shown in 205 

Supplementary Table 1 the change in sub-sample size resulted in a small change in 206 

the quality of the resulting assembly; increasing the false base rate from 2.89% to 207 

3.78%, and reducing the N50 from 211 to 189 and reducing the alignment rate from 208 
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59.7% to 49.8%. However even with these changes, the taxonomic profile of the 209 

each assembly did not differ, Supplementary Figure 1. 210 

 211 

Effect of multiple iterations of assembly 212 

The additional iterations employed by Spherical lead to an increase in the number of 213 

reads that could be assigned to known genes (Figures 3,4 & 5). As shown in Figure 3 214 

and 4, for small metagenomic datasets the taxonomic profile does not change across 215 

iterations, however the iterative approach does allow for almost twice the number of 216 

reads to be assigned to a taxonomic class (Table 1). In the groundwater dataset the 217 

secondary iterations provided a different taxonomic profile compared to the initial 218 

iteration (Figure 5).  219 

 220 

Table 1: Number of reads assigned to an identified gene in each Spherical 221 

assembly. 222 

Dataset Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 

Cecum  164,266 11,317 3,398 2,309 1,427 

Oral  126,388 43,721 33,110 30,907 30,032 

Groundwater  130,451,683 27,463,983 12,121,835 8,586,974 7,783,534 

 223 

As shown in Table 1, the additional iterations allowed for identification of 11% 224 

additional reads in the chicken caecum dataset, 109% additional reads in the human 225 

oral dataset and 43% additional reads in the groundwater dataset compared to the 226 

first iterations assembly. 227 

 228 

 229 
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 230 

Figure 3: A taxonomic breakdown of each iteration of cecum dataset Spherical 231 

assembly at the class level. 232 

 233 

 234 

 235 

 236 

 237 

Figure 4: A taxonomic breakdown of each iteration of oral dataset Spherical 238 

assembly at the class level. 239 

 240 

 241 
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 242 

Figure 5: A taxonomic breakdown of each iteration of groundwater dataset Spherical 243 

(subset size = 1) assembly at the class level. 244 

 245 

 246 

 247 

 248 

 249 

 250 

 251 

 252 

 253 

 254 

 255 

 256 

 257 

 258 

 259 

 260 
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 261 

 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 

Methods 273 

Simulated dataset 274 

A simulated Illumina sequenced metagenome of 400 species, each species 275 

abundance within the dataset differed to produce a more accurate representation of a 276 

metagenomic dataset (Mende et al. 2012). The raw data was downloaded and 277 

assembled using a kmer of 31 and subset size of 1 with Spherical. Contig scores 278 

were calculated for each contig produced using the method described in Mende et al, 279 

2012.  280 

 281 

Datasets 282 

We have selected 3 metagenomic samples from different environments to allow for 283 

comparison of the methods on datasets with different sequencing depths and 284 

complexity, Table 2. 285 

 286 
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All of the datasets used were obtained from MG-RAST (Meyer et al. 2008), Table 2, 287 

and aimed to provide variation in sampling environments as to provide a robust 288 

testing sample for Spherical.  289 

 290 

 Table 2:  Information on each dataset 291 

Dataset Environment Dataset 

size (Gbp) 

MGRAST 

project ID 

Citation 

Chicken 

caecum dataset 

Chicken Caecum  0.06 101 (Qu et al. 

2008) 

Human oral 

dataset 

Human oral cavity  0.63 128 (Belda-Ferre 

et al. 2012) 

Groundwater 

dataset 

Groundwater from 

Yucatan Peninsula  

29.00 5969 (Moore et al. 

2009) 

 292 

 293 

Methods of assembly 294 

We chose digital normalisation as comparative method to Spherical due to its ability 295 

to produce a subset of the dataset with uniform coverage without removing the 296 

datasets complexity. SLICEMBLER was also considered however as covered earlier 297 

metagenomics provides an unknown coverage due to the microbial population itself 298 

being unknown and therefore cannot be supplied to SLICEMBLER.  299 

 300 

The optimum kmer size was identified before the comparison assemblies by 301 

assembly of each dataset using Velvet with a kmer of 21,31,41 and 51. The raw 302 

reads were then aligned to each assembly using Bowtie2. The assembly with the 303 

highest alignment rate was then selected and that kmer used for the three methods 304 

being compared. All the methods used Velvet as the assembler, removing the 305 
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assembler as a variable. Velvet was selected as the base assembler due to being 306 

open-source, allowing anyone access to it, as well as producing high quality 307 

metagenomic assemblies (Shi et al. 2014; Namiki et al. 2012). 308 

 309 

Khmer - Digital normalization 310 

Digital normalization is based on the use of kmers and is part of the Khmer package. 311 

Firstly Khmer breaks each read into kmers, producing a hash-table for the entire 312 

dataset present in the dataset. Once counted, it removes reads consisting of 313 

redundant kmers, reducing the dataset size whilst keeping sufficient data for an 314 

accurate assembly. With each dataset we applied the "normalize-by-median.py" 315 

script of Khmer, with a kmer of 20, 4 hash tables of size 32e9 and an ideal median of 316 

20.  317 

 318 

 319 

 320 

Spherical 321 

Spherical was run on each dataset with variable sub-set sizes, ranging from 1 to 30. 322 

This allowed us to explore the effect of the sub-sampling function of Spherical. 323 

 324 

Basic assembly method 325 

The basic assembly method involved the entire dataset being entered into Velvet 326 

with the optimum kmer and the expected coverage is automatically selected by 327 

Velvet.  328 

 329 

Assembly quality 330 

As we are unable to produce contig scores for real metagenomic assemblies we 331 

used the following statistics to provide insight in the quality of each assembly; 332 

alignment rate, N50 and false base rate. The alignment rate identifies how much of 333 
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the raw data is accounted for by the assembly. The higher the alignment rate the 334 

more representative the assembly is of the entire dataset. N50 identifies how 335 

fragmented the assembly is by identifying average contig length. False bases (bases 336 

to which no read aligns) have no basis in the dataset and therefore indicate the rate 337 

of misassembled contigs within an assembly. 338 

 339 

RAM usage 340 

Spherical has been designed to reduce RAM usage, in the hope of overcoming the 341 

issue of limited computing infrastructure. When comparing methods, maximum RAM 342 

used was taken into account. For normalisation, RAM usage was monitored during 343 

both the normalisation and assembly stages, the peak was then taken as max RAM 344 

usage. The basic assembly methods RAM usage was also monitored to be used as a 345 

base line for RAM requirement for assembly of the dataset. 346 

 347 

 348 

Taxonomic analysis 349 

Whilst statistics about the assembly allow us to identify how representative the 350 

assembly is of the raw data, taxonomic annotation allows us greater insight into the 351 

data. Each assembly was taxonomically annotated against the bacterial and archaeal 352 

UNIPROT databases using RAPsearch (Zhao et al. 2012; Consortium 2015). The 353 

output was then converted into a general feature format (GFF) file and filtered by 354 

overlap using MGKIT. HTSeq-count was then used to identify the abundance of 355 

phylums within each assembly (Anders et al. 2015). 356 

 357 

Effect of Spherical subset function  358 

To study the effect Spherical sub-sampling had on the output, dataset 3 was 359 

assembled under 3 different sub-sampling levels. Firstly, the entire file was included 360 

(sub-sampling = 1). This allowed us to study what the basic effect of multiple 361 
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iterations of assembly was on the output. Next, a quarter of all reads were used (sub-362 

sampling = 4), allowing us to study the effect whilst significantly reducing RAM usage 363 

(but still aiming to produce a quality assembly). Finally, only one thirtieth of the reads 364 

were used (set-sampling = 30), this was aimed to study the extreme effects of sub-365 

sampling a very small amount of reads and how this would effect the output 366 

assembly as well as RAM usage. 367 

 368 

Effect of multiple iterations of assembly 369 

The Spherical assembly of the Cecum, Oral and Groundwater datasets (sub-370 

sampling = 1) were studied to understand the biodiversity within each iterations of 371 

assembly. The ability of multiple iterations to uncover low abundant species was also 372 

studied by taxonomically annotating (against bacterial and archaeal UNIPROT 373 

database using RAPsearch) each iteration and evaluating their taxonomic profile.  374 

 375 

 376 

 377 
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