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Abstract

High-throughput DNA sequencing has enabled us to look beyond
consensus reference sequences to the variation observed in sequences
within organisms; their haplotypes. Recovery, or assembly of haplo-
types has proved computationally difficult and there exist many prob-
abilistic heuristics that attempt to recover the original haplotypes for
a single organism of known ploidy. However, existing approaches make
simplifications or assumptions that are easily violated when investigat-
ing sequence variation within a metagenome.

We propose the metahaplome as the set of haplotypes for any par-
ticular genomic region of interest within a metagenomic data set and
present Hansel and Gretel, a data structure and algorithm that to-
gether provide a proof of concept framework for the recovery of true
haplotypes from a metagenomic data set. The algorithm performs in-
cremental haplotype recovery, using smoothed Naive Bayes — a simple,
efficient and effective method.

Hansel and Gretel pose several advantages over existing solutions:
the framework is capable of recovering haplotypes from metagenomes,
does not require a priori knowledge about the input data, makes no
assumptions regarding the distribution of alleles at variant sites, is
robust to error, and uses all available evidence from aligned reads,
without altering or discarding observed variation. We evaluate our
approach using synthetic metahaplomes constructed from sets of real
genes and show that up to 99% of SNPs on a haplotype can be correctly
recovered from short reads that originate from a metagenomic data set.
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Introduction

Genomic research has gone beyond finding a consensus sequence to represent
a species in favour of understanding the true genetic diversity that exists
within populations (Gibbs et al., 2003)). High-throughput sequencing has
allowed us to look further than consensus variation across populations of a
species and reconstruct the genetic variants that characterizes each individ-
ual (haplotype).

Haplotype recovery approaches (also known as haplotype assembly) at-
tempt to reconstruct haplotypes given a set of DNA fragments from a pop-
ulation (Lancia et all 2001). Typically such approaches rely on the avail-
ability of reference sequences for the species under investigation. However,
microbial communities consist of a large number of organisms for which no
references exist and cannot at present be cultured in wvitro. This has led to
approaches that isolate and sequence DNA directly from the environment
(metagenomics).

Microbial communities contain many organisms that co-exist in compe-
tition for the available resources and these communities represent an un-
tapped wealth of genetic diversity. Information on this diversity is typi-
cally lost through current de novo analysis pipelines that make assumptions
about ploidy and the source of the DNA. The majority of computational
approaches assume reads originate from a single individual.

This impacts our ability to isolate the full repertoire of enzymes from
microbial communities. If solved, this would advance exploitation of indus-
trially relevant enzymes for the refinement of biofuels, production of plastics,
scrub oil from water and even identify new classes of antibiotics (Zhang and
Kim, [2010)).

We would like to determine the collection of haplotypes for any genomic
region of interest such as a particular enzyme, which we define as the meta-
haplome.

Assembly and pseudo-references

An assembly of reads from a metagenome can act as a pseudo-reference in
the absence of a fully assembled genome. However, the pseudo-reference is a
consensus of the read information and cannot represent the true haplotypes
present. Furthermore, the pseudo-reference may not exist in nature and not
constitute a viable enzyme. Once we have constructed the pseudo-reference,
we discard the only evidence of the real haplotypes, the reads themselves.
Most assemblers are designed for single species genomes, are optimised to
remove low level variation, and aim to produce a single sequence. Metagenome
assemblers improve this with techniques for management of large data and
correcting poorly assembled contiguous sequences (contigs) (Namiki et al.l
2012)). However they do not aim to solve the problem of recovering haplo-
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types. Other researchers have identified the problem that consensus assem-
bly poses for the downstream analysis of variants and are moving towards al-
ternative assembly approaches, such as graph-based assembly/Garrison et al.
(2016)).

Haplotype recovery

The problem of haplotype recovery was first described by |Lancia et al.
(2001). Lancia introduced the first terminology and notation for “com-
putational SNPology” EI (single nucleotide polymorphism) that served as a
foundation for many other approaches and algorithms that followed. Lan-
cia’s framework introduced the SNP matrix (typically denoted M): an
n X m matrix encoding the binary allele (A, B) observed at each SNP site
1..n on each fragment 1..m. That is, M][i][j] is the allele observed at the
j’th SNP of the i’th fragment (Lancia et al., [2001).
In this work Lancia introduced three optimisation problems:

o Minimum fragment removal (MFR);
e Minimum SNP removal (MSR); and
e Longest haplotype reconstruction (LHR).

All three approaches focus on removing the minimal number of rows or
columns from the SNP matrix to correct “conflicts” until there exists a pair
of haplotypes without conflicting evidence.

Lippert et al. (2002) introduced various solutions for the problems of
MFR and MSR, but their main contribution was the definition of the min-
imum error correction (MEC) approach. MEC (also known as minimum
letter flip (MILLF)) attempts to find the minimum number of elements to
“flip” in the SNP matrix M, such that a pair of haplotypes becomes fea-
sible. Implementations of MFR, MSR and MEC/MLF include Fast Hare,
HapCUT and others (Geraci, 2010; Lanciaj, 2016; Panconesi and Sozio, 2004}
Bansal and Bafnal, 2008)).

All of these approaches focus on removing (or altering) observed evidence
in the SNP matrix M until two compatible haplotypes can be defined. Each
of these approaches has been demonstrated to be NP-hard. These methods
typically fail to scale with the large sets of sequence data that have become
common place since 2008 Aguiar and Istrail (2012]).

Probabilistic approaches provide alternative methods that try to address
this issue (Lancia, 2016; Li et al., 2004). Wang et al. (2006) introduced a
polynomial time Markov chain based algorithm for the determination of
diploid haplotypes. Markov models capture probabilities of transitions from

LA phrase that did not seem to catch on in the literature
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one variant to the next, but have the memory-less property that each tran-
sition between the variant states is determined only by the state at the
previous variant. Wang et al. tested increasing the “memory” (order) of the
model to 3, however the results were not improved. This approach makes
the assumption that the haplotypes to recover are from a diploid species,
and that the genotypes of the allele pairs comprising the haplotypes are
known in advance.

Aguiar and Istrail (2012) created HapCompass, which introduces a novel
data structure: the compass graph, in which haplotype phasings correspond
to spanning trees, in order to scale to the data output from modern sequenc-
ing methods. They later expanded on HapCompass (Aguiar and Istrail,
2013)) to produce the first haplotype recovery algorithm to operate on poly-
ploid genomes. However, it requires the ploidy to be specified in advance
(diploid is assumed otherwise), which is unknown for metagenomes.

Evidently, the problem of haplotyping is a rich area of research, and has
received much focus since it was first introduced in 2001, but the major-
ity of modern haplotyping recovery software systems are not designed for
metagenomic applications.

Existing algorithms are designed for single-species haplotype segregation,
usually diploid species such as human. Typically they make easily violated
assumptions, for example: SNP sites are bi-allelic (Ahn and Vikalo, 2015).
However, metagenomes consist of an unknown number of organisms and
their SNP sites can feature more than two alleles.

Approaches like those first presented by Lancia (Lancia et al. [2001])
focus on the removal of errors. Such an approach would prove problematic
if applied to metagenomic data, where errors are not just assumed, but
are indistinguishable from both intra- and inter- species variation in the
metagenome. For the same reason minimum letter flip (MLF) can be seen
as unsuitable as it alters the observed information.

This type of problem is suited to Markov model based approaches.
Markov models are particularly helpful on data sets without prior infor-
mation (in their case, data errors, but in our case, contaminants: we know
nothing of the species present, nor their distributions). We have applied a
Markov model based approach to attempt to address the problem of haplo-
types from metagnomic data sets.

In this work we introduce:

1. anovel probabilistic pseudo-graph data structure, Hansel, designed to
store and provide an interface to pairwise co-occurring SNP evidence
from sequenced reads.

2. an algorithm, Gretel: designed to take advantage of the Hansel data
structure to load and traverse Hansel graphs to recover possible hap-
lotypes from a metahaplome.
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Results

The metahaplome

We define the metahaplome as the set of haplotypes for any particular ge-
nomic region of interest within a metagenomic data set.

Hansel and Gretel

We present Hansel and Gretel, a data structure and algorithm for the
recovery of haplotypes from a metahaplome. Advantages of our method
include:

e recovers haplotypes from metagenomic data
e does not need a priori knowledge of the number of haplotypes

e makes no assumptions about the distribution of alleles at any variant
site

e does not need to distinguish between sequence error and variation
e uses all available evidence provided by the raw reads

e does not require any user-defined parameters

We provide open source implementations for the data structure API
(Hansel) and the haplotype recovery algorithm (Gretel) at https://github.
com/samstudio8/gretel.

Synthetic metahaplomes

We evaluate Hansel and Gretel on simple simulated metahaplomes con-
structed as described in our Methods.

We quantify success by evaluating each recovered haplotype against each
of the generated haplotypes known to exist in the metahaplome. For each
input, its best corresponding output is defined as the haplotype found by
Gretel that shares the highest sequence identity with the generated input
(Figure ). We report the average of the best identity percentages for each
input/output haplotype pair as the quality metric for our approach on syn-
thetic metahaplomes.

Our results in Table |1 are promising. Best recovery rates (the highest
recovery rate seen across the 10 randomly generated metahaplomes for that
combination of haplotype length and number) are 100% for all but two
(99.0%, 99.6%) of all tested lengths of metahaplomes containing up to 10
input haplotypes. We are able to recover at least one (but typically more)
input haplotypes in their entirety, even for sequences consisting of 250 SNPs.
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Num/Len | 10 25 50 100 250
60.0 76.0 58.0 60.0 50.8
3 96.33 97.07 89.87 82.37 76.53

100.0 100.0 100.0 100.0 100.0
80.0 60.0 56.0 43.0 40.4
4 95.75 92.70 83.45 79.38 70.77
100.0 100.0 100.0 100.0 100.0
60.0 64.0 50.0 42.0 37.6
) 94.20 90.08 81.96 69.28 64.37
100.0 100.0 100.0 99.0 100.0
50.0 44.0 40.0 34.0 324
10 87.20 78.44 66.40 60.62 49.94
100.0 100.0 100.0 100.0 99.6
40.0 44.0 36.0 32.0 30.4
15 82.73 69.73 58.21 49.83 42.37
100.0 100.0 98.0 87.0 72.4
40.0 36.0 34.0 32.0 29.2
25 73.92 60.75 50.55 43.94 37.90
100.0 100.0 88.0 68.0 58.8
40.0 36.0 34.0 31.0 28.8
50 66.96 53.46 45.17 39.75 34.73
100.0 84.0 68.0 62.0 46.8

Table 1: Results of the synthetic metahaplome tests. The metahaplomes
contained a known number of haplotypes of fixed size. Reads were randomly
generated to span between 2-5 SNPs, with an approximate coverage of 3-5x
for each haplotype. Each cell details the lowest (top), average (bold) and
highest (bottom) best recovery rates (Figure ) as discovered by Gretel over
10 repeats.

It is not surprising to observe that recovery success rates reduce with
increased haplotype length (i.e. number of SNPs) and/or number of input
haplotypes. Despite this, we report high recovery rates for haplotypes from
metahaplomes with 100 SNPs or more, for small numbers of haplotypes.

Metahaplomes from real genes

To extend our validation to reads derived from real sequence, we exper-
imented with two metahaplomes constructed from two sets of real genes:
dihydrofolate reductase DHFR, and Aminoacyl tRNA synthase complex-
interacting multifunctional protein 1 AIMP1. DHFR and AIMP1 were se-
lected as a test to evaluate whether variation across highly conserved genes
could be recovered by our algorithm. To test the limitations of our method,
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Figure 1: An example demonstrating the calculation of the recovery rate of
haplotypes from generated synthetic metahaplomes. Rows represent known
input haplotypes, columns represent the haplotypes recovered by Gretel.
Cells report the percentage sequence identity of that input-output pair. The
average best recovery is the sum of the best identity percentage for each
input haplotype, divided by the number of inputs. Values are for illustrative
purposes only. Table [I] reports the average scores of the best recovery rate
for each generated haplotype.

we also evaluated our framework against a densely populated metahaplome
of highly variable influenza sequences.

Our Methods section provides insight into the creation of the metahap-
lomes used for evaluation. For DHFR, AIMP1 and FLU-A7, we report the
percentage of correctly recovered SNPs for each input and its corresponding
best recovered haplotype, as determined by BLAST.

DHFR

Table [2 presents the percentage of correctly recovered SNPs on the best hap-
lotype recovered for each of the input sequences. In general, the algorithm
performs well, both BC070280.1 and XR_634888.1 are recovered with few
errors. The recovered haplotype for the latter has a 98.9% recovery rate,
when recovered from reads of length 120, with 15x coverage.

Clearly, Gretel has particular difficulty recovering the AK232978.1 and
XM_0121158510.1 haplotypes, which both demonstrate lower identities with
the pseudo-reference. We observe that reads that are more divergent from
the pseudo-reference sequence are discarded by alignment operations, deny-
ing Gretel the pairwise evidence needed to recover these less similar se-
quences. Despite this, on average XM _012113510.1 is recovered at over
75% accuracy.
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Table 2: Results summarising the percentage of SNPs correctly recovered
by Gretel for each DHFR metahaplome constructed with synthetic reads of
a given size and coverage (see columns). Each cell is the percentage of cor-
rectly recovered SNPs on the best recovered haplotype for the metahaplome
column and input gene row.

Read Length 60 60 75 75 90 90 120 120
~ Per-hap. Cover (5) || 15x 7.5x 156x 7.5x 15x 7.5x 15x 7.5x
Number of SNPs 9 67 8 78 95 78 95 92
Gene ID % N N %N %N N N %
BC070280.1 94 79 92 91 96 92 96 96
XR_634888.1 97 8 92 94 96 92 99 97
KJ913115.1 84 55 69 88 92 64 87 90
AK232978.1 7140 77 69 8 65 87 89
XM_012113510.1 62 70 7 76 81 85 82 7
AIMP1

Table 3: Results summarising the percentage of SNPs correctly recovered
by Gretel for each AIMP1 metahaplome constructed with synthetic reads
of a given size and coverage (see columns). Each cell is the percentage of
correctly recovered SNPs on the best recovered haplotype for the metahap-
lome column and input gene row. Rows are ordered by decreasing identity
to the pseudo-reference.

Read Length 60 60 75 75 90 90 120 120
~ Per-hap. Cover (5) || 15x 7.5x 156x 7.5x 156x 7.5x 15x T7.5x
Number of SNPs 68 62 74 72 71 76
Gene ID % % %N N %
NM_004757.3 - - 97 - 96 96 96 99
XM_003829985.2 - - 96 - 97 97 96 96
XM-001170763.4 - - 96 - 97 97 97 99
XM_013365392.1 - - 94 - 93 88 97 89
XM_006778898.2 - - 60 - 49 51 68 70

Table [3| presents the percentage of SNPs that are correctly recovered for
the best haplotype recovered for each of the AIMP1 genes that are repre-
sented by synthetic reads in the metahaplome. Recoveries were not possible
for either of the 60bp read metahaplomes, nor the 75bp 7.5x coverage meta-
haplome as there existed a pair of SNPs too far apart to be spanned by at
least one read in the data set. Of the results where analysis was possible,
recovery rates are very high. Three of the five input genes have average re-
covery rates of over 96%; that is, at least 96% of the (on average) 70 variants
are recovered correctly and match the expected input haplotype. We again
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have trouble recovering the sequence exhibiting the highest deviation from
the reference XM_006778898.2, scoring an average recovery of just under
60%.

FLU-AT7 (metahaplome of 71 haplotypes)

We test the limitations of our approach with a metahaplome of 71 highly
variable Influenza A Segment 7 haplotypes. For brevity we summarise in
Table {4] the recoveries obtained across all 71 haplotypes and describe the
percentage of SNPs recovered for the worst, average and best recovered
haplotypes. Particularly impressive is the best haplotype recovered from
the 120bp 7.5x data set, where 99% of the 264 SNPs agreed with those on
its corresponding input gene. On average, the haplotype with the lowest se-
quence identity to the pseudo-reference has an worst recovery rate of 52.5%,
which is far better than expected by chance alone.

It should be noted that for each of these metahaplomes, between 25% and
50% of the generated synthetic reads were discarded. It is highly likely with
finer tuning, a different alignment algorithm, or an alternative approach
to alignment, we could drastically improve the already reasonable scores
presented here.

Read Length 60 60 75 75 90 90 120 120
~ Per-hap. Cover (71) || 15x 7.5x 1bx 7.5x 156x 7.5x 1bx 7.5x
#SNPs 241 227 256 236 263 242 289 264
% % %N %N %N N N %
Best 94 8 96 94 96 95 95 99
Average 69 66 71 68 72 68 75 72
Worst 50 45 54 50 53 48 63 56

Table 4: Results summarising the percentage of SNPs correctly recovered
by Gretel for the FLU-A7 metahaplome (71 highly variable Influenza A
Segment 7 haplotypes) constructed using synthetic reads of different sizes
and coverages (see columns). Cells show the percentages of correctly recov-
ered SNPs for the best recovered haplotype, average haplotype and worst
recovered haplotype.

Discussion

We have provided a description of a previously undefined problem and made
advances in the recovery of haplotypes from a metagenome. We offer the
term metahaplome to represent the set of haplotypes for any particular
region of interest within a metagenomic data set.

We introduced Hansel, a novel data structure which encodes the varia-
tion seen across a metahaplome. Hansel permits traversal of that variation
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like a graph, yet allowing for probabilistically weighted edges to consider
the state of the haplotype recovered so far. We also introduced Gretel, an
algorithm capable of traversing the metahaplome represented by Hansel for
the recovery of genuine haplotypes from a metahaplome constructed from
the raw reads of a metagenomic data set. For the first time, it is possible to
computationally extract variants of commercially relevant genes.

Together Hansel and Gretel form a new framework for the recovery of
haplotypes in metagenomes, allowing data sets where short read length has
previously restricted effective analysis.

Performance and tractability

Without an annotated metagenome, it is clearly difficult to quantify the
effectiveness of our approach. The testing presented here has been performed
with data simulated from real genes in order to explore the limitations of
the algorithm.

As described in our methods, initial testing was completed with ran-
domly generated haplotypes to measure performance with regard to both
haplotype length and number of haplotypes. We demonstrate very high
recovery rates, even in the presence of many SNPs.

We evaluated the approach with synthetic reads generated from meta-
haplomes consisting of mixtures of real genes (DHFR and AIMP1) and
demonstrated it is possible to recover haplotypes from short read data ac-
curately. Successful recoveries can be made with our framework even in
the presence of many haplotypes. We demonstrate high recovery rates in
the FLU-A7 metahaplome, containing short reads generated from 71 highly
variable influenza sequences.

However, our results have also demonstrated that our approach is strongly
biased by the alignment of reads against the pseudo-reference. During test-
ing of both the DHFR and AIMP1 data set, it was found that many syn-
thetic reads would not align back to the pseudo-reference. Input genes (i.e.
haplotypes) for the DHFR and AIMP1 metahaplomes were selected with de-
creasing sequence identity from the pseudo-reference (the pseudo-reference).
Unfortunately, when short reads were generated, it was found that bowtie2
discarded up to 20% of the synthetic reads, particularly those yielded from
less similar sequences.

This is of course not unexpected: it should not be a surprise that se-
quences with lower identity to the target are likely to eventually fall below
some threshold and be discarded. However, this does raise an important
caveat to our work: both assemblers and aligners will exert influence over
the tractability of how many and how accurately haplotypes in a given meta-
haplome can be recovered. Many software packages that perform these tasks
have expectations and make assumptions that are not ideal in the case of
recovering haplotypes from a metagenome. Here, the discarding of reads

10
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denies Hansel and Gretel access to critical evidence require to reconstruct
those particular haplotypes.

It should be noted that the pseudo-reference is not used by Hansel or
Gretel, it serves only as a common sequence on which to align raw reads be-
fore calling SNPs. Very high recovery rates on sequences that share identity
with the pseudo-reference are a reflection of the strength of our approach,
and not a trivial recovery.

Perhaps most significantly, the tractability of the problem is bound by
the quality of the data available. As stated by Lancia in 2001, it is en-
tirely possible that, even without error, there are scenarios where data is
insufficient to successfully recover haplotypes and the problem is rendered
impossibleLancia et al.| (2001). Indeed, as explained in our Methods section,
there are multiple potential inconsistencies that can occur in the alignment
that are not trivial to address.

It should be noted that although our framework has been designed with
the recovery of haplotypes in a metagenome at a gene level (i.e. variants
of a gene involved in a catalytic reaction of interest, such as degradation
of biomass) in mind, given sufficient coverage of SNPs, our approach could
work on regions significantly longer than that of a gene.

Regarding time and resource requirements, Hansel and Gretel is de-
signed to work on all reads from a metagenome that align to some region of
interest on the pseudo-reference. Typically these subsets are small (on the
order of 10-100K reads) and so our framework can be run on an ordinary
desktop in minutes, without significant demands on disk, memory or CPU.

Advantages of our approach

In contrast to other methods, our framework aims to make as few assump-
tions as possible. Gretel is designed for metagenomic data sets where the
number of haplotypes is unknown. Whilst HapCompass is designed to iden-
tify haplotypes for a polyploid organism, it requires advance knowledge of
the number of expected haplotypes |Aguiar| (2014) which is unknown for
metagenomic data sets.

Most SNP calling algorithms discard SNP sites that feature three or
more alleles (i.e. non bi-allelic sites) as errors, or under the assumption
that input data represents sequenced reads from a diploid speciedAhn and
Vikalo (2015). Although ParticleHap (Ahn and Vikalo, 2015) relaxes this
assumption by incorporating genotype calling, it is to reduce the risk of
erroneously called genotypes preventing reconstruction of the two haplotypes
for a diploid genome.

Many existing methods rely on discarding or altering observed SNPs
until a pair of haplotypes can be determined. Hansel and Gretel uses all
available pairwise observations and works to recover the most likely haplo-
types. Unlike other methods, we do not assume that the observed evidence

11
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must be contaminant or sequencing error that needs discarding or altering
to recover the real haplotypes. Although sequence error is an inevitabil-
ity, errors will be poorly supported by read data and are unlikely to form
components of recovered haplotypes.

Future work

Gretel is a proof of concept. Although we have demonstrated success in
our Results, there are still other sources of evidence not currently used
by our algorithm — namely paired end reads and alignment base quality
scores. Read pairs will certainly provide useful co-occurrence information
for SNPs that span some known insert, however careful consideration on
how to integrate this data is necessary. The order of the Markov chain that
constructs haplotypes will typically be small, as it represents the number of
selected variants from the current head of a path to include when considering
probabilities for which variant should come next. As reads typically span
only a few SNP sites, it is not effective (and can be detrimental) to set the
“lookback” parameter L to a value high enough to consider variants seen at
the other side of an insert.

Additionally, the second read of a pair will provide evidence for variants
that are likely appear after an insert (given the variants seen in the first read
of the pair), but no evidence for what variants should be selected during the
insert. During recovery, this potentially puts us in the position of having
evidence for what a variant a few positions ahead of our current location
should be, but no idea of how to get there. A solution may be to permit
Gretel to fill in future variants given paired end evidence (if available) as
placeholders and backpropagate towards the head of the path to predict
which variants are likely to appear given the placeholder observed in the
future. This is possible as the pairwise information stored in Hansel by
Gretel is not directional. Observations are bidirectional, and although the
structure presented by Hansel is a directed graph, the direction can be either
forwards or backwards, just not both. This would allow reconstruction of
haplotypes from either end of a gene.

Alignment scores would permit some form of weighting mechanism to be
applied to observations. Low confidence base calls can be considered as less
informative than those with high calling confidence, but experimentation on
how to reliably tune this parameter for pairwise information (how should
we weight a pair of variants where one call is good, and the other is bad)
would be needed.

Our largest obstacle is that of smoothing. In general, smoothing tries to
reduce overfitting of a model. Here, we want to avoid scenarios where SNP
sites with very low read coverage (and thus few informative observations)
are assumed to be fully representative of the true variation. Many of the
alignment artefacts described in our Methods section (Figure [2]) as posing a
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problem for reconstruction (e.g. SNP pairs with few valuable observations,
SNP sites that are not connected by reads) can begin to be better addressed
with an appropriate model for smoothing. Future work aims to build upon
the simple add-one smoothing found in our current model to incorporate
more intelligent smoothing of low frequency observations.

Hansel and Gretel only consider SNPs. It is likely that real haplotypes
will exhibit insertions and deletions (indels) against a pseudo-reference. Fur-
ther thought and experimentation is needed to devise a methodology that
permits the consideration of indels by our approach. Whilst an initial solu-
tion may be to add an additional symbol to represent an indel to the Hansel
structure, we must find a way to incorporate this evidence into a structure
that currently only considers paired SNP variation.

Gretel’s algorithm involves a greedy bias. We assume the “best” hap-
lotype is the most likely haplotype, and that it can recovered by selecting
the edge with the highest probability at each SNP. However there are likely
to exist solutions whose overall likelihood may be higher if we permitted
Gretel to look ahead along the path to inspect a small number of future
choices. It is possible that this will alter little in in practice, as each read
only spans a small number of SNPs.

The “lookback” parameter L does have some influence on both the effi-
ciency and accuracy of the recovery. A meaningful choice for this parameter
is to use the mean number of SNPs covered per read.

As briefly described in our Methods, Gretel will continue to generate
possible haplotypes until the available evidence in Hansel is exhausted.
Thus our algorithm is capable of determining its own stopping criteria.
Recovered haplotypes can be ranked according to metadata provided by
Gretel such as the log likelihood of that haplotype occurring given the
variation observed across the original raw reads. We intend to explore ad-
ditional metrics that may be used to determine other methods for scoring
(and filtering) returned haplotypes.

Finally, we would like to investigate potential methodologies for aban-
doning the requirement of a common reference (that is, in our terminology,
the assembly, or pseudo-reference) and working solely with read data. A
metagenomic assembly provides both a convenient proxy for the raw reads
(that is, a gene found or predicted on the pseudo-reference can be assumed
to have some affinity with reads that align to the same location), and a
pseudo-reference to align reads against and call for SNPs. However, the
processes of assembly, alignment and SNP calling each make assumptions
and decisions that simplify or discard data, reducing the evidence available
for the accurate recovery of haplotypes. With fast and efficient sequence
search alternatives(Buchfink et al., [2015) it is easier to conduct sequence
similarity searches across very large sets of metagenomic reads. Literature
also exists for reference-free SNP callinglgbal et al.| (2012), which both offer
opportunities for introducing fewer assumptions and maintaining the in-
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tegrity of variants observed across metagenomic data before they reach a
framework such as Hansel and Gretel for the recovery of haplotypes, from
a metahaplome.

Conclusion

In this work we have introduced a definition for the metahaplome. We
provide both a definition and implementation of a novel data structure, and
a proof of concept algorithm, that together represent a framework for the
reconstruction of haplotypes from metagenomic data sets. We demonstrated
promising recovery rates and described many interesting avenues for future
work and analysis.

We aim to empirically prove that Gretel is capable of reconstructing real
haplotypes by using its output to design primers to extract a commercially
interesting enzyme and its variants from a metagenome and confirm the
results using single molecule sequencing.

For the first time, we have demonstrated computational techniques that
are capable of using metagenomic reads to reconstruct viable proteins re-
sponsible for interesting catalytic reactions in a microbial community; a task
that existing computational methods and alternative laboratory techniques
such as rational design have struggled to achieve.

Our work is an advance in computational methods for extracting exciting
exploitable enzymes from metagenomes.

Methods

The metahaplome

To enable recovery of haplotypes from a metahaplome for a metagenomic
data set, we assume the following is available:

e A set of raw reads from a metagenome

An assembly of those reads (the pseudo-reference)

A region of interest on the assembly (the target)

An alignment of the raw reads, against the pseudo-reference

A list of positions at which single nucleotide variations occur over the
aligned reads

A pseudo-reference can be generated by assembling sequenced reads known
to come from a metagenomic data set, with an assembler such as VelvetZerbino
and Birney| (2008). Selecting a suitable assembly algorithm and the dark
art of choosing parameters such as k-mer size is left as an exercise to the
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reader. A region of interest on the assembly may be identified by homol-
ogy search or gene prediction. Raw reads are filtered by whether or not
they “map back” to the target region according to an alignment tool such
as bowtie2Langmead and S. (2012)). Reads that fall outside the target of
interest (i.e. reads that do not cover any of the genomic positions covered
by the target) are discarded. Variation at single nucleotide positions across
reads along the target, can then be called with a SNP calling algorithm such
as that provided by samtoolsLi et al. (2009) or GATKDePristo et al.| (2011)).
Alternatively, one may determine any position that features at least one
(or some number of) reads that disagree with one-another or the pseudo-
reference as a SNP.

The combination of aligned reads, and the locations of single nucleotide
variation on those reads can be exploited to recover real haplotypes from the
metahaplome: the collection of haplotypes that exist for the given region of
interest on the metagenome.

Our ability to recover haplotypes from a metahaplome depends on the
quality and coverage of the available reads and their alignment. Figure
depicts several inconsistencies in aligned reads that make recovery of haplo-
types more difficult.

o =
O —
O =
) .
...... ° .. ==
5 o ]

Figure 2: Artefacts of read alignments that cause difficulties for recovery
of haplotypes from metahaplomes (a) Reads do not span a pair of SNPs,
no pairwise evidence describing how the graph can be traversed is available
(b) single SNP reads do not provide sufficient evidence about their source or
destination variants and add many potential edges to the graph (c) coverage
of reads exists between a pair of SNPs but the information available is
insufficient to determine paths through the graph (d) low coverage between
SNP sites can cause decisions to be biased

Hansel: A novel data structure

We present Hansel, a probabilistically-weighted, graph-inspired, novel data
structure. Although the structure can be traversed like a graph, its under-
lying representation is a four dimensional array whose elements represent
the number of observations of a given symbol A appearing at position 4,
co-occurring with symbol B at position j.

This representation differs from the typical SNP matrix model (Lancia;
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et al.,[2001) that forms the basis of many of the surveyed approaches. Rather
than a matrix of SNP columns and fragment rows, we discard the concept
of a fragment entirely and aggregate the evidence seen across all fragments
by position.

For each possible pairing of symbols (i.e. AA, AC, ... TG, TT), the
Hansel structure keeps a matrix, whose elements record the number of ob-
servations of those symbols co-occurring on a read. More specifically, an
element in the Hansel matrix H, H[A, B, i, j| stores the number of times
symbol A at position ¢ has been seen to co-occur with symbol B at position
j. For example, the number of times a C at SNP position 3, appears on the
same read as a T at SNP position 6.

Although this structure may appear limited, the data can be exploited
to build other structures. For example, if one considers H[A, B, 1,2] for
all possible A and B, one may list the available options for transitioning
from position 1, to position 2. Extending this to consider every element
H[A, B,i,i+ 1], for all possible combinations of symbols A and B, and all
SNP positions i, we can construct a SNP transition graph G (Figure |3)).

Intuitively, one may traverse GG by selecting edges with the highest weight
(where edge weights may be defined as the number of reads in which the
current node was observed to occur with a given next node) to recover chains
of symbols that represent an ordered sequence of SNPs that constitute a
haplotype.

However, the data cannot be fully represented with a graph such as that
seen in Figure [3| alone. This representation defines a constraint whereby
edges may only join adjacent SNPs and so cannot encode any information
as to which non-adjacent polymorphisms co-occur. Without considering
information about non-adjacent SNPs, one can traverse the graph to create
paths that don’t exist in nature (Figure [4)).

To recover real haplotypes accurately, we must consider more than just
the head of the path. The Hansel structure is designed to store pairwise
co-occurrences of all SNPs (not just those that are adjacent), as seen across
all reads. Thus we can weight edges in the graph based not just on the
number of reads containing the current node, and a possible next node, but
previously selected nodes too.

However, this does come at a cost. We describe Hansel as “graph-
inspired”, as allowing edge weights to depend on more than just the current
node (that is, allowing an edge to be weighted with information from the
Hansel structure that does not pertain to that edge specifically) leads to
several differences between the Hansel structure, and a weighted directed
acyclic graph. Whilst these differences are not necessarily disadvantageous,
they do change what we can infer about the structure.

Now, the structure of the graph is effectively unknown in advance (Figure
5). That is, not only are the weights of the edges not known ahead of
traversal, but the entire layout of nodes and edges is also unknown until
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Figure 3: Three corresponding representations, (a) aligned reads, (b) the
Hansel structure, (c) a graph that can be derived from the Hansel structure
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Figure 4: Considering only adjacent SNPs, one may create paths for which
there was no actual observed evidence. Here, the reads {0011, 0001, 0100}
do not support either of the results {0000, 0101}, but both are valid paths
through a graph that permits edges between pairs of adjacent SNPs.
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the graph is explored (although, arguably this would be true of very large
simple graphs too). Indeed, this means it is also unknown whether or not
the graph can even be successfully traversed.

Secondly, the graph is dynamically weighted. The current path repre-
sents a memory that affects the availability and weights of outgoing edges
at the current head node. Edge weights are calculated probabilistically dur-
ing traversal and depend on both the distribution of variants observed at
the position to traverse to next, but also some number of the variants that
have been encountered and selected thus far in the path. Please refer to our
supplementary materials for information on how probabilistic weightings are
calculated.

Figure 5: The physical characteristics of the graph are unknown a priori.
The metahaplome must be explored to determine its components. Only
branches that are selected are explored further.

Effectively, a “fog of war” exists over the graph that is only dissipated as
it is traversed. In exchange for these minor caveats, we have a data structure
that permits graph-like traversal that is intrinsic to our problem definition,
whilst utilising informative pairwise SNP information collected from obser-
vations on raw metagenomic reads. Hansel fuses the advantages of a graph’s
simple representation (and its inherent traversability) with the advantage of
a matrix of itemsets (that permit storage of all pertinent information).

We provide an open source implementation of Hansel in the form of
a Python package that exposes a friendly interface capable of managing
and querying pairwise observations to a graph-inspired data structure for
determining likely chains of sequences from breadcrumbs of evidence.

Gretel: An algorithm for recovering haplotypes from metagenomes

We introduce Gretel, a proof of concept algorithm designed to interface
with the Hansel data structure to recover the most likely haplotypes from
a metahaplome. To obtain likely haplotypes, Gretel traverses the proba-
bilistic graph structure provided by Hansel, selecting the most likely SNPs
at each possible node (i.e. traversing edges with the greatest probability),
given some subset of the most recently selected nodes in the path so far. At
each node, a Markov chain of some order L is employed to predict which
of the possible variants for the next SNP is most likely, given the last L
variants in the current path.
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Execution of Gretel can be broken into the following steps:

1. Parse alignments and construct “SNP strings”
2. Populate Hansel structure with pairwise observations

3. Exploit the Hansel graph API to incrementally recover a path until a
variant has been selected for each SNP position

e Query for the available transitions from the current head node to
the next SNP

e (Calculate the probabilities of each of the potential next variants
appearing in the path given the last L variants

e Append the most likely variant to the path and traverse the edge
4. Re-weight used observations in Hansel to allow for new path

5. Repeat (3-4) until the graph can no longer be traversed or an optional
additional stopping criterion has been reached

Haplotypes are reconstructed as a path through the Hansel structure,
one SNP at a time, linearly, from the beginning of the sequence. At each
SNP position, the Hansel structure is queried for the variants that were
observed on the raw reads at the next position. Hansel also calculates the
conditional probabilities of each of those variants appearing as the next SNP
in the sequence, using a Markov chain that makes its predictions given the
current state of the observations in the Hansel matrix and the last L selected
SNPs. Gretel’s approach is greedy: we only consider the probabilities of the
next variant. Our razor is to assume that the best haplotypes are those that
can be constructed by selecting the most likely edges at every opportunity.

Once a path is completed (a variant has been chosen for all SNP sites),
the observations in the Hansel matrix are re-weighted by Gretel. Whilst
our framework is probabilistic, it is not stochastic. Given the same Hansel
structure and operating parameters, Gretel will behave in a deterministic
fashion and return the same set of paths every time. However we are inter-
ested in recovering multiple, real haplotypes from a metahaplome, not just
one. Hansel exposes a function in its interface for the re-weighting of obser-
vations. Currently, Gretel reduces the weight of each pairwise observation
that forms a component of the completed path - in an attempt to erase
evidence for that haplotype existing in the metahaplome at all, allowing
evidence for other paths to now direct the probabilistic search strategy.

Finally, Gretel outputs recovered sequences as FASTA, requiring no
special parsing, or munging of results to be able to conduct further sequence
analyses.
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Figure 6: Pairwise conditionals between L last variants on the observed
path, and each of the possible next variants are calculated and the best
option (highest likelihood) is chosen
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Testing methodology

Our testing evaluates the performance of our framework against metahap-
lomes consisting of synthetic reads derived from both randomly generated
haplotypes, and also haplotypes created from real gene sequences.

There are no metagenomic data sets with rich haplotype level annota-
tions. We chose to use synthetic data sets to evaluate our framework under
known, controllable conditions, and to afford us the ability to actually quan-
tify the accuracy of recovered haplotypes from a metahaplome.

In this section, we provide an overview of the methods to generate meta-
haplomes for both random haplotypes, and haplotypes based on real genes.
We describe our approach for evaluation of our work. In our Results, we
demonstrate the effectiveness and limitations of our framework.

Synthetic metahaplomes

With the desire to first test our approach on data that was as simple as pos-
sible, we generated small, synthetic metahaplomes which contain a known
number of randomly generated haplotypes, each of the same fixed length.
Every position on the haplotype is regarded as a site of variation. Each
of the random haplotypes in the metahaplome is permitted to select any
of the four base pairs at random, for each genomic position. An arbitrary
haplotype is drawn from the metahaplome and chosen to be the ‘pseudo-
reference’. We generate short reads from the other remaining haplotype
sequences, each read is between 3-5bp (thus, 3-5 SNPs). These reads are
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constructed by sliding a window along each haplotype, whilst also varying
the size, and overlap of those windows in an attempt to introduce some
element of realism to the data.

As we know the location and width of each such window, we can ap-
pend synthetic alignments to a SAM file without having to invoke an actual
aligner. This is particularly important, given that the randomly generated
haplotypes represent strings of SNPs and exhibit low sequence identity be-
tween one another. Combined with their very short nature, this prevents
alignment tools from assisting us with generating an alignment format for
input to our algorithm on such data. The majority of sites are tri- or tetra-
alleleic and so for the same reason, the VCF is produced by our metahaplome
generator, rather than an established diploid-assuming SNP caller. Both a
SAM alignment, and a VCF are generated by our tool, circumventing the
assumptions and biases of real aligners and SNP callers.

We detail the parameters and options of our metahaplome generator in
the supplementary materials. The code is open source and freely avail-
able via our data and testing repository, online: https://github.com/
samstudio8/gretel-test

DHFR and AIMP1

We chose an arbitrary DHFR, and AIMP1 gene from GenBank to serve as
the ‘master’ sequence (i.e. the pseudo-reference) for their respective meta-
haplomes.

A discontinuous megaBLAST was conducted for both of the DHFR and
AIMP1 masters. From each, a set of five related but arbitrary genes of
decreasing sequence identity (DHFR:~ 99.8%, 97%, 93%, 90%, 83% and
AIMP1: =~ 99.9%, 99.6%, 99.3%, 92%, 91%) were selected.

Each of the five genes were broken into reads with a uniform size and
overlap. Resulting reads were aligned back to the master with bowtie2.
Variants were called on the alignment with a script that determined all non-
uniallelic locations as SNPs. The DHFR data yielded between 65-90 SNPs
per 564bp metahaplome, the AIMP1 data yielded 60-75 SNPs per 939bp
metahaplome.

For testing, multiple DHFR and AIMP1 metahaplomes were generated.
The read size was uniform and haplotype recovery was measured for meta-
haplomes populated with reads of size 60, 75, 90 and 120. Per-haplotype cov-
erage was estimated by dividing the average coverage observed by samtools
depth, by the number of input haplotypes. Per-haplotype coverage was
adjusted by increasing or decreasing the overlap of the reads.

Quantification of recovery rate proved much more difficult for data yielded
from discontinuous searches. The current implementations of Hansel and
Gretel is gap agnostic. Reads with insertions or deletions are handled by
parsing their BAM CIGAR strings and adjusting the nucleotide that ap-
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pears at the SNP sites that follow accordingly. However, although with this
method the SNP is technically correct, information about the size and loca-
tion of the gap is lost. Thus when the recovered haplotypes are written to
FASTA, they are gapless. Testing input and output haplotypes base-for-base
is therefore not possible, any gap in the input haplotype will be ignored and
Gretel’s performance will be reported poorly, even if the SNPs themselves
are all correct (but in the wrong position).

We define the haplotype recovery rate from the DHFR and AIMP1 meta-
haplomes by BLAST. The known input genes are used as queries against a
BLAST database constructed from the newly recovered output haplotypes
from Gretel. For each input gene, the best output haplotype is defined as
the path with the best BLAST hit, determined by bit score. In our Results,
we report the proportion of SNPs that are correctly recovered on each gene’s
best output haplotype.

FLU-A7

A data set of 772 Influenza A (Segment 7) sequences were obtained from
GenBank, requesting any sequences deposited from July 1st 2016 to July
25th 2016. After removing a majority of duplicate sequences, 72 sequences,
of mean length 1009bp remained. One sequence was randomly selected
as our pseudo-assembly. The remaining 71 sequences were aligned to the
master and sharded into synthetic reads via the same method as described
in our Methods for the DHFR and AIMP1 metahaplomes. SNPs were called
in the same way, determining any site without a unanimous consensus as a
variant site. Regardless of parameters provided to the read generator, there
were typically at least 250 SNPs observed over the 982bp metahaplome. We
designate the data set FLU-A7.

Ranking haplotypes recovered from a metagenome

Of course, with knowledge of the input haplotypes that we expect to recover,
we are able to quantify our approach. For real metahaplomes, we need a
mechanism to differentiate false positives, or rank our confidence in the
returned haplotypes.

Future work will investigate this in more depth, but currently, in addition
to the sequences themselves, Gretel outputs a ‘crumbs’ file — a whimsical
name for a simple, tab delimited format — contains metadata for each of
the recovered sequences: log probability of that sequence existing given the
evidence seen overall, how much of the evidence in Hansel that particular
sequence was supported by, and how much of that evidence was re-weighted
as a result of that path being chosen.

Currently, Gretel will continuously recover paths out of the remaining
evidence until it encounters a node from which there is no evidence that can

22


https://doi.org/10.1101/067215
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/067215; this version posted August 2, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

inform the next decision.

Data Access

Our Hansel and Gretel framework is freely available, open source software
available online at https://github.com/samstudio8/hansel| and https:
//github.com/samstudio8/gretel, respectively.

The scripts used to generate metahaplomes and synthetic reads for both
the randomly generated and real-gene haplotypes, and the testing data used
to evaluate our methods is also available online via https://github.com/
samstudio8/gretel-test
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1 Supplementary Materials

1.1 Hansel as a graph

Consider an alphabet of symbols, ¥ (e.g. {A,C,G,T}) and a list of m SNP
positions 1..m. As described in our article, the Hansel structure H can be
considered as a graph G = (V, E). Here, we define V', and E:

vz< U {Ai|H[A,B,z’,z’+1]>0,AEE,BeZ}>U{@S,zE} (1)

i=1..m

E= < U {46, Bisa) | H{A,B,i,i+1]>0,A€ %, B € z}) (2)
i=1..m

V', the set of nodes (or vertices), containing an element for all pairings
of a symbol in the alphabet, and position where at least one read contains
that symbol at i, and has coverage for at least ¢ + 1.

E, the set of edges, where an edge (A;, Bi+1) is determined to exist in E
if there exists at least one read whereby symbol A was observed at position
1 to co-occur with symbol B at SNP position ¢ + 1.

It should be noted, that although G can be constructed from H such
that it is undirected and contains cycles, both properties lead to nonsensical
haplotypes. Under such circumstances, Gretel could construct a path that
visits multiple nodes that appear at the same ¢, or a trail that visits the same
node multiple times. Such sequences would be meaningless in the context
of haplotype construction, thus the interface to Hansel acts in such a way,
that G is a directed, acyclic graph.

We can define a haplotype as an alternating sequence of nodes (v € V')
and edges (e € F). A path must always start and end at the special sentinel
symbols &g and @, respectively.

h=3g,€e0,V1,€1,V2,€2, ... Um—1, €m, Um, €mi1, DE (3)
Although, as only one directed edge between some v; and v;11 may exist,
we can define simply as a sequence of v € V:

h=@g,v1,02, ... Um_1, Um, DE (4)

1.2 Probabilistic edge weights

However, as we described in our paper if the construction of G does not
consider elements in H[A, B, i, j] where abs(i — j) > 1 it is likely one will
recover haplotypes that do not actually exist.
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Given the pairwise information available in H, for both adjacent, and
non-adjacent SNPs, across all reads, we described that edges in the graph
G derived from H can be weighted probabilistically.

We attempt to determine the next most likely symbol in a sequence, con-
sidering both the marginal distribution of symbols at the next position and
the likelihood of those symbols appearing next, given an already observed
partial sequence into account.

That is, the next symbol v;4; in a path depends not only on the current
symbol (v;) but some number of previous symbols (v;_1,v;—2...v0).

The outgoing edges from v; are probabilistically weighted by exploiting
the observations stored in the Hansel structure to create probabilities, that
then determine the likelihood of moving from some v; to each of the possible
Vi4+1-

We take a Bayesian approach to the problem of probabilistically weight-
ing edges in Hansel’s graph representation. We define the probability of
selecting v;11, conditioned on the path observed so far:

]P’(Z)H_l | vo,vl,vg,...,vi_l,vi)
x P(vo, 01y ooy U3, Vig1)
=P(vg | v1...vi41) X P(v1, ...v541)
=P(vg | v1...vi41) X P(v1 | va..vi41) X P(va, ...0i41)
=P(vg | v1...vi41) X P(v1 | v2.e0i41) X oo X P(vi—1 | i, vi41)
X P(v; | vig1) X P(vig1)

1.3 Simplification of conditional edge weights

Clearly, the number of factors in Equation 5 increases with i. For longer
paths (more single nucleotide polymorphisms detected along the target re-
gion of interest), evaluating the equation becomes more computationally
expensive, and risks potentially compounding estimation errors.

To construct a whole path p from v;...v,,, the upper bound for the num-
ber of iterations will be |X| x m with calculations becoming increasingly
complex as ¢ increases.

To reduce complexity, we make an assumption of conditional indepen-
dence between variants. Whilst this seems counter intuitive, the Naive Bayes
model can deliver robust results despite its coarse assumption.

Thus we may simplify our previous equation and consider only the pair-
wise appearances of each v; encountered thus far against v;11.
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P(vit1 | vo,v1, .oy Vi1, 04)

] P(’UZ'+1> X P(Uo | Ui+1) X P(Ul ’ ’Ul'+1) X ...
i (6)
=P(vit1) [[P(v; | vita)

J=0

However as discussed in our article, reads will not cover all SNP positions
1..m (if they did, we would not have to define this problem). Thus, we need
not consider all variants in the current path when evaluating edge weights.
Instead, we could limit the number of variants to consider, starting from the
head of the path:

L-1
P(vig1 | Viep, oy Vie2,vi—1,v;) = P(vig1) H P(vi—; | viy1) (7)

=0
We define L as the the ‘lookback’ size, the number of variants of the
current path to consider when selecting v;11. Conveniently, there is a rea-
sonable intuition available for selecting a value for L: the mean number of
SNP sites covered by the observed reads. Thus we avoid the scenario of
introducing an algorithmically influential but mysterious parameter, such

as k-mer size for metagenomic assembly.

1.4 Estimation of pairwise conditional probabilities

We must still devise a method to calculate the components of Equation
7. We present the following approximations, inspired by the Bag of Words
model, commonly implemented in text classification domains (such as a
spam filters).

P(v; = B)
Number of reads with symbol 5 at position j

Number of reads spanning position j

S HIB, v, 4y j+1] (®)
_ YEX
> > Hly, 6, g, j+1]
yEX JED

H3’(%':04 | vj =B)
Number of reads featuring « at ¢ and § at j

~ Number of reads spanning ¢ featuring symbol 5 at j (9)
— H[O[, ﬁa ia j]
> Hlv, B, 4, j]

yEX
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1.5 Smoothing

To avoid the possibility of dividing by 0 in cases of Equation 9 where a suit-
able read spanning ¢ and j = 8 does not exist, we apply Laplace smoothing
to effectively add a dummy support read. Future work will investigate al-
ternative smoothing methodology.

]f”(vi:a | v; = B)
B 1 + Number of reads featuring « at ¢ and 3 at j
 Variants at i + Number of reads spanning i featuring symbol 3 at j
1 + Hla, B, i, j]

~ Hv | Hly, 04ii+1]>0,v€X,0 € S} + 3 H[y, B4, 4]
YeEX

(10)

1.6 Re-weighting

The paths generated by Gretel are probabilistic, but not stochastic. For a
given H, Gretel will always return the same path. Since it is the elements
of H that effectively drive traversal of G, we can perform some form of
post-path generation transformation of H to prevent repetitive generation
of the same path and return the next most likely path on the next iteration
instead.

Given a path p, we inspect the marginal distribution of each variant
for all ¢ € 1..m (i.e. the probability of selecting the same variant if we
were looking at the site in isolation), and determine the smallest marginal.
Gretel iterates over each variant p[i] in the path, and uses the Hansel
interface to re-weight the element H[pl[i],p[i + 1],7,7 + 1] by subtracting
the result of multiplying the smallest marginal by the original value for the

observation:
A =min({P(p[i]) | i = 1..m}) (11)
H{pli],pli+1],4,9+ 1] = H[p[i], p[i + 1],4,i+ 1] — (A x H[p[i],p[i—i—l],i,z‘—i(—l]i
12
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