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Abstract

Determinants of species diversity in microbial ecosystems remain poorly understood. Bacteriophages
are believed to increase the diversity by the virtue of Kill-the-Winner infection bias preventing
the fastest growing organism from taking over the community. Phage-bacterial ecosystems are
traditionally described in terms of the static equilibrium state of Lotka-Volterra equations in which
bacterial growth is exactly balanced by losses due to phage predation. Here we consider a more
dynamic scenario in which phage infections give rise to abrupt and severe collapses of bacterial
populations whenever they become sufficiently large. As a consequence, each bacterial population
in our model follows cyclic dynamics of exponential growth interrupted by sudden declines. The total
population of all species fluctuates around the carrying capacity of the environment, making these
cycles cryptic. While a subset of the slowest growing species in our model is always driven towards
extinction, in general the overall ecosystem diversity remains high. The number of surviving species
is inversely proportional to the variation in their growth rates but increases with the frequency and
severity of phage-induced collapses. Thus counter-intuitively we predict that microbial communities

exposed to more violent perturbations should have higher diversity.

Keywords: Microbial diversity, Kill-the-Winner, cryp-
tic oscillations, phage predation, stabilizing frequency-
dependent selection, negative frequency-dependent selec-
tion.

I. INTRODUCTION

An important and largely unsolved question in micro-
bial ecology is what determines the diversity of microbial
ecosystems. Indeed, unbridled competition between mi-
crobes sharing common resources would eventually limit
species diversity not to exceed the number of different nu-
trient types [1]. Predation by bacteriophages introduces
the negative frequency-dependent selection [2-5] which
offers the possibility for a dramatically larger species di-
versity [5]. In the classical Kill-the-Winner (KtW) model
of Thingstad [5] virulent phages reduce populations of
their susceptible hosts to a low steady state level, which
is independent of hosts’ growth rate thus allowing multi-
ple species per nutrient type. The number of co-existing
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bacterial species in the resulting ecosystem is determined
exclusively by the parameters of phage predation [5], the
topology of the phage-bacterial infection network [7-9],
and the carrying capacity of the environment [4, 6, 8, 9].

Microbial population dynamics is routinely a much
more dynamic process than assumed in the traditional
steady state KtW model and its variants. For example,
in the lab experiments [10] E. coli population suffered a
dramatic collapse by a factor ~ 10 —10° caused by a T7
phage infection. Collapse-driven dynamics is common in
both natural [11] and man-made [12-15] ecosystems in
which bacteria are engaged in the continuous arms race
with phages [16-20].

To capture this here we propose and explore a dy-
namical interpretation of Kill-the Winner principle, in
which bacterial populations are characterized by periods
of competitive exponential growth punctuated by rapid
and severe collapses. Larger bacterial populations in our
model are proportionally more likely to be infected by
phages. Furthermore, in larger and thus denser popula-
tions such infections once started are likely to eliminate a
sizable fraction of susceptible hosts resulting in a severe
collapse in the populations of individual bacterial strains.
When viewed over a long period of time any given species
would repeatedly cycle between low and high population
numbers. Such cyclic dynamics of populations of indi-
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vidual species masked by an approximately constant to-
tal population saturated at the carrying capacity of the
environment is discussed in the ecological literature as
“cryptic cycles” [21-23].

Model

Consider a number of bacterial species/strains sharing
the same environment and competing for the same rate-
limiting nutrient defining its carrying capacity. Their
populations sizes at time ¢ are denoted as P;(t), where
1=1,2,..., N. Each of these individual species is exposed
to rare but severe collapse events in which its population
is suddenly and drastically reduced by a constant factor
v < 1. We assume that these collapses happen relative
rarely so that the total population of all bacterial species
has sufficient time to reach the steady state value given by
the overall carrying capacity of the environment. With-
out loss of generality carrying capacity can be set to 1,
so that in between collapses one has >, P;(t) = 1. In
our model we assume that while the total population of
all stays constant, relative population sizes of individual
species continue to change exponentially in-between col-
lapse due to differences in their fitness in the saturated
environment,.

In the spirit of Kill-the-Winner principle we assume
that the rate of collapse of the species ¢ is proportional
to its population size P;. Due to a broad distribution
of population sizes this rule strongly biases collapses to-
wards one or few largest populations. We assume that
collapse events are independent of each other, so that the
time interval between consecutive collapses is exponen-
tially distributed with mean .

One update cycle in our model consist of three steps:

1) Draw a time interval A¢ until the next col-
lapse event from the exponential distribution P(At) =
exp(—At/7T)/T.

2) Calculate population sizes at the time of collapse.
In between collapse events relative population sizes are
assumed to change exponentially while the total popu-
lation stays saturated at 1 (the carrying capacity of the
environment):

_ Py(t) exp(g;At)

3) Select one species to collapse with the probability
equal to its relative population size P;(t + At) and mul-
tiply its population by ~.

In our simulations each of N species is assigned its
individual growth rate drawn from the Gaussian distri-
bution with zero mean and standard deviation o. The
value of the mean is not important since normalization
of the overall population to 1 ensures that only relative
growth rates matter. Furthermore, the exact form of
the distribution of growth rates is not particularly im-
portant. In our mathematical analysis we will use a
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more convenient exponential distribution of growth rates:
P(g;) = exp(gi/o)/o, while delegating more cumbersome
derivations for the Gaussian P(g;) to supplementary ma-
terials.

II. RESULTS
Collapses supports Diversity

Figure 1A shows a typical outcome of a simulation of
our model with v = 1072 and ¢ = 4 over around 100
population collapses after which only D = 3 out of N = 8
species survive. The relative growth rate g; of the species
is the main predictor on whether it will survive or not.
Indeed, as shown by the rainbow coloring of curves in
Fig. 1A ranging from dark red (the slowest growing) to
purple (the fastest growing) the 3 surviving species have
the largest values of g;.

A natural question to ask is what determines the num-
ber of surviving species/strains in the steady state of the
model?

In the limit of very rare collapses the fastest growing
species would diverge from the rest of the population so
much that it will be the only one to survive, as indeed
expected from the competitive exclusion principle [1].

The situation is more complex for intermediate rate
of collapses where more than one of the fastest grow-
ing species can coexist with each other but some of the
slowest growers become extinct. In the steady state each
of these surviving species repeatedly cycles between low
and high populations. Faster growing species reach large
population sizes more often which makes them to collapse
more frequently thus eliminating their growth advantage.
As we show below this balance can be sustained within
a finite range of growth rates.

For each of the species its individual growth rate g;
is reduced by the same negative number —g.. due to the
overall resource competition quantified by the denomina-
tor in Eq. 1. In the steady state the excess growth rate
of each of the surviving species (g; — gec) must be ex-
actly compensated by the logarithmic population losses
|log | due to collapses happening at the species-specific
probability c¢;:

(gi — gee)At —ci]logy| =0 . (2)

Note that as the probability of collapse (per update)
¢i = (9i — gec)At/| log y| needs to be positive and normal-
ized. Positivity of ¢; means that only the fastest growing
species with g; > g.. would survive in the long run. The
collapse rates of these D surviving species are further
constrained by normalization Zle ¢j = 1, reflecting the
requirement of one collapse per update. Using eq. 2 the
threshold g.. is then determined by:

Zgi >Yee (gZ — gcc)At
|log 7]

=1 3)
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FIG. 1. Simulations of Kill-the-Winner model. A) Time

courses of populations of N = 8 species with fixed growth rates
assigned from the Gaussian distribution with standard devia-
tion 0 = 4. Rainbow colors correspond to growth rates ranging
from the slowest (dark red) to the fastest (purple). For each of
the species, the likelihood of collapse is proportional to its pop-
ulation sizes (”Kill-the-Winner” rule) and the collapse ratio
v = 1073 is the same for all species. Only 3 fastest grow-
ing species survive in the long term B) The final diversity D
counted as number of surviving species as function of oAt -
the spread of growth rates integrated over the average time be-
tween collapses. Each black dot represents the outcome of one
simulation started with N = 500 species exposed to collapse
ratio v = 1075, The dashed line is the analytical fit similar to
Eq. 4 but here done for the Gaussian distribution of growth
rates used in the simulation (see Supplementary Materials for
details).

For a given set of species, this allows us to self-
consistently calculate g.. and D

For g; selected from the exponential distribution with
standard deviation o the diversity D is given by (see
Supplementary Information for derivation)

log 7|
- | oAt ’ (4)

This expression holds for average diversity provided that
it is larger than 1 as single a single fastest growing species
would always survive. Clearly D is also capped from
above by N. Similar relation holds for the Gaussian dis-
tribution of growth rates and is in agreement with our
numerical simulations of the model shown in Fig. 1b.
For the exponential distribution the growth rate
threshold above which a species survives is given by
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gec = olog(N/D) = olog(NoAt/|logv|). Note that
while threshold explicitly depends on the starting number
of species, the final diversity given by Eq. 4 is indepen-
dent of N. This particular property of the exponential
distribution would be modified for other distributions re-
sulting in a mild dependence of D on V.

A Gaussian distribution of growth rates would slightly
increase the diversity compared to the exponential dis-
tribution with the same spread, while a more fat-tailed
*(say, power law) distribution would decrease it.

Our basic model can be generalized to the case where
different species have different collapse ratios 7;. This
may for example reflect their different degrees of vulner-
ability to phages, or different ways to partition their pop-
ulation in physical space. The only consequence of this
modification is that log~y in the equations above needs
to be replaced by its average value across species (see
supplementary materials for simulation results).

In our model the collapse probability of a given species
is proportional to its population size. Thus time-
averaged relative population size of each of the species
species is equal to its overall collapse frequency (P;(t)); =
¢;. This is consistent with “Kill-the-Winner” principles
according to which species with larger populations col-
lapse more often.

Fig. 2b illustrates this cyclic dynamics in a system
containing a mixture of slow and fast growing species.
Surviving populations mostly grow, but do so at differ-
ent rates. Their coexistence is possible only because of
the negative feedback via “Kill-the-Winner” rule where
populations of an individual species get severely reduced
once it starts to dominate the overall biomass. The pop-
ulation of each of the species goes through approximately
periodic cycles of growth and collapses with the period
T, = 1/¢; = |logvil/(g: — gec)At (in units of collapse
events). Thus the slowest surviving species (marked blue
in Fig. 2b) nearly never collapse, whereas the fastest
growing species (marked red in Fig. 2b) obtain domi-
nance and expose themselves to a collapse on a much
shorter timescale. Individual collapse events of these
species are marked in Fig. 2b with red and blue arrows
correspondingly. Note that the population of the slow-
est growing species often decreases not due to a phage-
mediated collapse but simply because it gets temporarily
outgrown by other species with a faster growth rate.

For comparison in Fig 2a we show a system of the
same size (D = 10) but where all species have exactly
the same growth rate. In that case the system has a
very long memory of the initially imposed order of species
populations, because even after a long time each of the
species would collapse the same number of times. That
is, if one species have experienced one more collapse than
the others, it would be smaller by a factor v and thus be
much less exposed to subsequent collapses until it would
regrow to the size where it again may collapse with a
non-negligible probability. Indeed, populations shown in
Fig. 2a follow much more regular oscillatory dynamics
than those with unequal growth rates shown in Fig. 2b.
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FIG. 2. Cyclic dynamics in Kill the Winner model. A)

D = 10 species with identical growth rates and collapse ra-
tios v; = 107°%. The highlighted purple curve illustrates the
characteristic growth and collapse cycle for a particular pop-
ulation. Purple arrows indicate collapse events. B) Simu-
lation with D = 10 surviving species (down from N = 60)
each with growth rates selected from the Gaussian distribu-
tion with ¢ = 3, and identical collapse ratios v; = 107°. The
blue arrow and the red arrows mark times for collapse events
of these two species. Note how the fastest growing species
(red line) collapses much more often than the slowest growing
species (blue line) which only collapsed once during the time
shown. The growth rate difference between these two species
S 9maz — Gmin :244

Model with collapses to a fixed threshold

In our standard version of the KtW model the collaps-
ing population is reduced by a constant factor: P; —
P; - . An alternative possibility is that following a col-
lapse the population starts at a fixed small threshold
value ~ irrespective of its earlier population size. This
would be the case e.g. when following a collapse the local
population is completely eliminated and is reintroduced
by one individual from a neighboring region. It can also
happen when a collapse drives one species extinct only
to be quickly replaced by a single bacterium of a new
species. In thus defined fixed threshold kill-the winner
model (KtWT) the diversity remains close to what was
reported in Fig. 1b (data now shown). The dynamics is
also characterized by individual population undergoing
cycles of duration defined by their relative growth rates
much similar to what is shown in Fig. 2 for our original
model. However the long term memory of cycle order
is reduced compared to the constant factor model dis-
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cussed above, simply because every collapse completely
erases the population history of the collapsed species. In
what follows we explore the dynamical properties of the
fixed threshold model and its variants.

“Kill-the-King” Model

To better understand the cyclic dynamics in the KtWT
model we first consider its extreme and deterministic ver-
sion in which the next collapse always happens at the
largest population. We will refer to this version as Kill-
the-King (KtK) model. Furthermore, we assume that
the growth rates g; of all species are equal to each other.
Thereby the asymptotic dynamics becomes periodic with
period N when time is measured by collapse events.

To concentrate on slow trends in population size dy-
namics we only measure them between intervals where
each population collapsed exactly once, which in KtK
secure that the order of populations is exactly preserved.
We relabel species in the order of decreasing population
sizes and calculate the ratios d; = P;11/P; < 1 between
successive population sizes [1]. As shown in the sup-
plementary materials, in KtK model these ratios evolve
according to the following discrete equation describing
changes acquired after a full round of NV collapses so that
each member of the population collapsed exactly once:

=0;(t) - (6ig1(t) — d;(t)) - (5

The steady state of the equation is reached when all
ratios are equal to each other, i.e. ;41 —d7 = 0. In
this case the logarithms of population sizes are equidis-
tantly distributed in the interval of length |log~| so that
8i(00) = 6* = YN Figure 3 shows a simulation of KtK
model with N = 10 and v = 1075 One can see how it
asymptotically approaches this steady state.

The asymptotic dynamics of KtK is described by the
discrete Eq. 5 which for large N can be approximated
by a continuous PDE (see SI for more details) in which
the continuous coordinate z replaces the species rank i:

5i(t + N) — 05(t)

15):) o5 & 9%
o S amtrae ©)

Here 6(x) has periodic boundary conditions over a-
interval [0, N]. As its discrete counterpart this equation
describes the state of our system every N’th time-step.
This equation is closely related to the Burgers equation
[24, 25], although it differs in terms of the diffusion coef-
ficient that instead of being constant as in Refs. [24, 25]
is proportional to 6(t).

Having finished with Kill-the-King model we return to
Kill-the-Winner fixed Threshold (KtWT) model. In the
KtWT model population collapses do not always happen
in the order dictated by their relative sizes. This results
in a somewhat chaotic dynamics illustrated in Fig. 4A.
When a smaller population collapses out of turn it causes
only a very small rescaling of other population sizes. The
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FIG. 3. Transient dynamics in Kill-the-King model with
N = 10 species that grow equally fast and collapse to a fized
population v = 107%. For clarity we show the state of the
model only every 10 collapses, that is to say, after each species
collapsed ezactly once so that the population order is main-
tained. The steady state of KtK model where all ratios §;
between rank-ordered populations are equal to each other and
to 'yl/N is approzimately reached already after 300 collapses.
The relazation to this steady state is described by the discrete
anisotropic Burgers equation 5 or its continuous counterpart
Eq. 6.

(very likely) subsequent collapse of the largest population
leads to a situation where these two just collapsed pop-
ulations become nearly equal in size (§ ~ 1). This dra-
matically increases the likelihood for further re-orderings
between these two species, resulting in an extended pe-
riod where these two species fight for dominance. This
intermittent dynamics switching the order of populations
is clearly visible in Fig. 4B with D = 3. The nearly ver-
tical lines clustered around collapse events 5100, 5200,
and 5400 correspond to frequent shifts in the population
order of three species within the cycle.

An intermittent region ultimately ends with a par-
ticular order winning over. After this all populations
slowly relax back to the steady state with equal ratios §*
(curved lines ending in horizontal plateaus in Fig. 4B).
The exact form of the relaxation to the steady state is
derived in supplementary materials. While §(¢) > §*
the relaxation is proportional to 1/(t/N). The expected
number of collapse events for i0(t) to go from ~ 1 to
~ §* is ~ N/6* or about 300 for the parameters used in
Fig. 4. When 6(t) ~ ¢* the relaxation crosses over to

§(t) — 0* ~ exp(—d*t).

III. DISCUSSION

Here and before [26] we investigated the impact of se-
vere and sudden population collapses on ecosystem com-
position and diversity. This approach is complementary
to a more traditional description of ecosystem dynamics
at or around the steady state solution [2, 5, 6, 28]. The
emergent cyclic dynamic in our model is entirely collapse-
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FIG. 4. “Kill-the-Winner” Threshold (KtWT) model with 3

species that grow at equal rates and ultimately collapse to a
fized population size v = 107°%. A) Dynamics of all 3 species,
emphasizing that the cyclic order occasionally changes, caused
by an “out of order” collapse of a population that is not
the largest. B) Same time series as in the above panel, but
only showing every third time-point. This panel highlights the
interplay between occasional intermittent alternations in the
cyclic order (clustered vertical lines) and longer “quiet” peri-
ods during which ratios of rank-ordered populations relax to-
wards 0% = /N

driven and thus distinct from either stable or transient
periodic oscillations present in predator-prey ecosystems
described by the Lotka-Volterra equations [22, 23, 27-29].

The key assumption used in our study is that larger
populations are more exposed to sudden collapses than
the smaller ones This is the foundation of ”Kill-the-
Winner” (KtW) principle proposed in Ref. [5]). The
resulting negative (or stabilizing) frequency-dependent
selection promotes the ecosystem diversity even in the
simplest case considered above, where species interact
with each other only via competition for a single rate-
limiting resource. This KtW bias is very important as it
shifts the collapse-driven dynamics away from “diversity
waves” we reported before [26] towards population cy-
cles investigated in this study. Indeed, as demonstrated
in [26] a version of collapse-driven dynamics in which the
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likelihood of a collapse is uncorrelated with population
size or even biased towards smaller populations (Kill-the-
Looser model) results in ebbing and flowing species di-
versity and bi-modal distribution of species abundances.
This should be contrasted with time-independent diver-
sity in KtW, KtWT, and KtK models studied here and
predictable (at least in the short-term) cycles in which
population collapses follow each other in a particular or-
der. The species abundance distribution in these mod-
els is not bi-modal but uniform on the logarithmic scale
(data not shown).

To test how sensitive are our results with respect to
introduction of other types of interactions between bac-
terial species as well as to a more branched topology of
Phage-Bacterial Infection Networks (PBIN) we simulated
a variant of our model where in addition to abundant
(KtW) species the infecting phage results in collapse of
a constant number K of other bacterial species. This
version of the model is reminiscent of the Bak-Sneppen
model of species co-evolution [30]. We tested this model
for K =1 and K = 25 (out of N = 500). In the first case
we observed no impact on diversity, while in the second
case the diversity saturated at lower values of o At. All
together we can conclude that the diversity profile shown
in Figure 1B remains qualitatively (and sometimes even
quantitatively) unaffected by additional interactions be-
tween microbial species or more interconnected PBINs.

According to our results the principal determinant of
the ecosystem diversity D is the width o of the distribu-
tion of logarithmic growth rates of individual bacterial
strains or species. This difference is amplified during
the average time At between population collapses. Thus
the overall frequency of collapses is a very important pa-
rameter with more frequent collapses counter-intuitively
resulting in more diverse ecosystems. That is because in
our scenario frequent collapses weaken the effect of com-
petitive exclusion ultimately driving the diversity down
to no more than single species per rate-limiting nutri-
ent. Larger magnitude of collapses also promotes higher
diversity but its impact increases only weakly (logarith-
mically) with the collapse ratio ~.
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It is instructive to compare the determinants of mi-
crobial diversity in the static, steady state KtW model
and in our more dynamic, collapse-driven variant. In the
static KtW model [2, 5] the steady state population size
of each of the bacteria B* = 6/0n is determined exclu-
sively by parameters of the phage to which it is suscep-
tible: its burst size (8), death (or dispersal and dilution)
rate (), and its infection rate (1) at a density equal the
bacterial carrying capacity. This steady state population
of a phage-controlled bacterium is usually much lower
than the carrying capacity of the environment: B* << 1.
Thus a large number of bacteria each susceptible to its
unique phage predator can coexists with each other [5].
Higher diversity can subsequently be achieved by care-
fully adding pairs of bacteria and phages, latter possibly
supplemented by their epigenetic variants [31], each con-
suming a small fraction of the carrying capacity [5, 6].
Substantial diversity is found to be fragile to new in-
vaders, in the form of bacteria that grow faster than resi-
dent ones or phages that prey on several bacteria at once
[6].

In contrast to this the diversity in our model is de-
termined by both statistics of collapses as well as the
spread of growth rates of resident bacterial species. In
case of mild or infrequent collapses and large disparity in
bacterial growth rates competitive exclusion principle is
restored within our model as it then predict an ecosys-
tem dominated by just one fastest growing bacterium.
When collapses are frequent (short At) and severe (large
|logv|), while growth rates of individual bacterial strains
or species are close to each other (small o), Eq. 4 predicts
high diversity of co-existing bacterial species. This pre-
diction is robust with respect to exact causes of collapses,
including the relatively frequent [15] invasion of phages
that are capable of infecting several bacterial species.

Overall, the falsifiable (and counter-intuitive) predic-
tion of the collapse-driven ”Kill-the-Winner” model dif-
ferentiating it from its stationary counterpart, is that by
increasing frequency (and to a smaller extent severity) of
collapses one could support higher diversity of microor-
ganisms.
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SUPPLEMENTARY MATERIALS
Diversity for an arbitrary fitness distribution

Let’s consider the case where growth rates g; is selected
from probability distribution with standard deviation o:
P(g) = (1/0)f(g/o). Here f(z) is the PDF of the dis-
tribution with standard deviation 1. For a large initial
population N the sum Zgi>gw (gi — gec) in eq. 3 can be
approximated with the integral:

N [Tl gr (£)% -

|logv| J,.. o
NoAt [

= Y= Yee)f(y)dy =1 S1
Mog | ym( )f(y) (S1)

where ye. = gee/o is normalized minimal growth rate
needed for a long time survival of the species. The diver-
sity of surviving species is then given by

(oo}
D=N [ fway (52)
Yee
For exponential distribution , f(y) = exp(—y), one gets
Gee\
Naétexp( . ) = |log~| (S3)
_ e
D—Noexp< a) (S4)
or
|log |
D =
oot

In the case of the Gaussian distribution, f(y) =

exp(~15) o=, B

Numerical solution shown as dashed line in Fig. 1b
closely resembles simulations.

??7 cannot be solved analytically.

Diversity with variable collapse ratios

The model can be directly generalized to the case
where different species have different collapse ratios ~;.
This may for example be the case for bacteria with differ-
ent degrees of vulnerability to phages, or bacteria with
different ways to partition their population in physical
space. The modified Egs. 2 and 3 reads

(gz - gcc)
= S5
[Tog ] (%)
(gi - gcc)
1=y 9 ge) (S6)
o5, 1ozl

where the first equation again imply that only the g; >
gee Will contribute.

To solve eq. S6 the sum in eq. S6 is successively tested
for species that is rank ordered from the largest values of

8

g; = g1, until a value D = ¢ where it provide a solution
for a gee € [9p+1,9p]-

Allowing individual species to have different ~; only
moderately changes the diversity D compared to the uni-
form case of v; = v (see Fig. S1). We tested several
variants in which ~; was assigned to individual species
as described by Eq. S6 or in which ~; was randomly
varying between collapse events. Allowing ~y; to vary be-
tween species or collapse events also did not affect the
distributions of populations sizes (data not shown).

100

Diversity
=

1 .
0.1 o 1 10

FIG. S1. Final diversity D counted as number of species with
populations > 1072 as the function of spread o of initially
assigned growth rates among N = 500 species. The red curve
marked with circles corresponds to the KtW model with fized
v = 107%, while the blue curve marked with diamonds - to
fited v = 1073, Te black curve marked with squares show
stmulation results when v; varies between species (quenched
noise), while the red curve marked with triangles - when it
varies between collapse events (annealed noise). In these two
cases log,,vi was drawn from a uniform distribution between
-1 and -5 so that its geometric average of 1072 corresponds to
the blue curve.

Kill-the-King model

For convenience we choose an arbitrary time point
t = 0 and reorder the populations in the order of de-
creasing sizes so that P;(0) corresponds to the largest
population, P»(0) - to the second largest, and so on
with Py (0) being the smallest population. The new cy-
cle starts with P;(0) which collapses down to v while
the rest of the species remain unchanged with the total
population of 1 — P;(0). After the collapse all species
grow “instantly” to the carrying capacity resulting in
Py(1) = /(1 = P(0) + 7).

At the subsequent phage attack the second population
P5(1) collapses which after rescaling leaves the first two
populations as respectively

Pi(2) = /(1= Pi(0) +7)/(1 = P2(1) +7) and
Py(2) = /(1= P(1) +7)

The subsequent N — 2 collapses of populations 3 to N
do not change the ratio between the first two popula-
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tions, implying that the updated ratio between the sec-
ond and the first population remains P»(N)/Pi(N) =
Py(2)/P1(2) =1 P1(0) + .

As derived above then 01 (t+N) = 1—P;(t)+~. Taking
into account that 1 = Y. P; = P; + P16y + P10162 +
...P1516>...0n_1, in the limit where all §; < 1 up to
the second order in §; one gets Py ~ 1/(1 + §1 + d102) or
].—P1 ~ (51 +(51(52)/(1+(51 +(51(52) ~ (51 +(51(52)(1—(51) ~
91 + 91(62 — 61). Thus the following equation describes
change of ¢ after one full round of population collapses:
O1(t+N) = 1=Py(t) 47 == 61(t)+01(t)(d2(t) =01 (t)) up to
O(6?). Since in the course of one cycle of collapses each
population in turn becomes the largest one, the above
equation for §; applies to ¢ other than 1:

Si(t+ N) = 6;(t) = 6;(t) - (Gisa(t) — 6:(t)) . (ST)

In the long time limit the populations in the KtK model
asymptotically approach an equidistant distribution on
the logarithmic scale. Thus §;(c0) = 6* = vV, Uni-
form distribution of population sizes on the logarithmic
scale corresponds to the power law species abundance
distribution P(S) ~ S—1.

In the continuous limit in time ¢ and space x = ¢ the
Eq. S7 can be rewritten taking into account 6;(t + N) —
0i(t) = NOS(x,t)/0t, while 0;41(t)—9;(t) = dd(x,t)/Ox+
(1/2)026(z,t)/(0x)?. Note the appearance of the second
derivative over z due to the fact that d;11(t) — 4;(¢) is
centered half-way between 7 and i+ 1 and thus is shifted
up from ¢ by 1/2. Thus the gap dynamics in our model
is described by:

NI a6 & 0%
o Oz + 2 Oz (S8)
Compared to the traditional Burgers equation the diffu-
sion coefficient is not constant but proportional to §.
In KtW model the population collapses do not al-
ways happen in the order dictated by their relative sizes.
When a collapse of a smaller population happens it only
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causes a small rescaling of populations, and the subse-
quent collapse of the largest population leads to a sit-
uation where these two populations are nearly equal in
size. This dramatically increase the likelihood for further
re-orderings between these two species, resulting in an
intermittent dynamical period of fights for “dominance”
between these two species.

The most likely “mistake” changing the order of col-
lapses is when the second largest population “jumps the
gun”and collapses ahead of the largest one. Repeating
the above derivation in this case one gets P»(2)/P1(2) =
1— P5(0)+~ ~1— P5(0). In the asymptotic case where
populations are equidistantly distributed on the logarith-
mic scale one has Py (00) = y*~=D/N (1 —~A/N) /(1 —~).
In the limit where vy'/N = §* < 1 the top two pop-
ulations occupy most of the carrying capacity and are
approximately equal to 1 — §* and 6* (up to the second
order in 6*). Hence, when the second largest population
collapses ahead of the first one it leads to an instant and
dramatic increase in d; to 1 — P»(0) = 1 — 0* up from
its steady state value of §*. The Eq. S7 describes the
subsequent relaxation of d;(t) back to ¢*. Indeed, if one
disregards the first term in the r.h.s. of the equation but
81 ~ 1 one gets dd,/d(t/N) = —63. Hence initially the
gaps starts relaxing as

1

01(t) N

(59)

It takes about (1 —0*)/é* collapses for d1(t) to get down
close to §*. At this point one cannot completely disregard
02 but one can still assume that it stays close to its the
steady state value 0* = /N, In this case dd; /d(t/N) =
0% 01 — (5% or

doy - (—1/81 +1/(8, — 6%)) = —6*d(t/N)

61(t) = o

1- 111255: exp(—0*t/N)

. (S10)

[1] The ratio dn for the currently smallest population Py is
defined by its value after the next collapse when it becomes
the second smallest.
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