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ABSTRACT

Summary: PathScore quantifies the level of enrichment of somatic
mutations within curated pathways, applying a novel approach
that identifies pathways enriched across patients. The application
provides several user-friendly, interactive graphic interfaces for data
exploration, including tools for comparing pathway effect sizes,
significance, gene-set overlap and enrichment differences between
projects.

Availability and Implementation: Web application available at
pathscore.publichealth.yale.edu. Site implemented in Python and
MySQL, with all major browsers supported. Source code available
at github.com/sggaffney/pathscore with a GPLv3 license.

Contact: stephen.gaffney@yale.edu

Supplementary Information: Additional documentation can be
found at http://pathscore.publichealth.yale.edu/faqg.

1 INTRODUCTION

We present an algorithm and web application, PathScore, for the
identification of known pathways that are enriched for mutations
within a multi-patient somatic gene variant dataset. The algorithm
belongs to a class of pathway analysis techniques known as over-
representation analysis (ORA) tools (Khatri er al., 2012). Like
other ORA tools, this new algorithm uses a hypergeometric test to
estimate pathway alteration probability, but distinguishes itself in
three ways. First, it segregates data by patient, calculating patient-
specific pathway alteration probabilities that account for varied total
mutation counts per patient. Second, it accounts for gene transcript
length, incorporating the increased chance of mutation in longer
genes. Third, it uses empirically-derived background mutation rates
to account for varied mutation probability across the genome, which
to our knowledge is a unique feature among pathway analysis tools.

Our web app implementation of the algorithm uses the collection
of ‘canonical pathways’ from the Molecular Signatures Database
(MSigDB, Liberzon et al., 2011), which includes pathways from
the KEGG, Biocarta, Reactome and Nature-NCI databases, among
others. Unlike tools such as MEMo (Ciriello et al., 2012) and
HotNet2 (Leiserson et al., 2014), that detect significantly altered
subnetworks, PathScore calculates an enrichment score for every
pathway, and all activity in a pathway contributes to the score.
In contrast to tools that, for tractability, require stringent gene
filtering (MEMo’s filters include a threshold for a minimum patient
frequency), PathScore has no filtering requirement. Even a gene that
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is mutated only once in a dataset will increase the enrichment score
if mutated in a patient with no other pathway alterations.

Applications of PathScore to lung adenocarcinoma and lung
squamous cell carcinoma data from The Cancer Genome Atlas
(Kandoth, 2014) demonstrate its potential to uncover patterns in
low frequency events (Fig. 1). Numerous pathways known to be
frequently affected in these cancers are identified by PathScore.
Additional pathways identified include the nicotinic acetylcholine
receptor (nAChR) and GABA receptor pathways (21% and 33%
patient coverage, respectively). Hotnet2 results include their genes,
but scattered in separate low coverage subnetworks (max 10% and
17% coverage). Both pathways are missed by MEMo due to the
low frequencies of their genes. These two related gene families are
thought to play a role in lung cancer and have been suggested as
potential therapeutic targets (Schuller, 2009). Our demonstration of
pathway enrichment supports this hypothesis.

2 APPROACH
2.1 The PathScore algorithm

The PathScore algorithm takes as input a set of patient-gene pairs, that
should represent all observed non-silent and potentially function-altering
mutations. Any listed genes that are not present in the pathways database
are discarded.

The algorithm interprets mutations as samples from sites in the genome
without explicitly modeling differences in nucleotide sequence context or the
functional impact of each mutation. It uses the hypergeometric distribution to
calculate the probability that from M samples, corresponding to a patient’s
M mutations, at least one occurs at a site belonging to a particular pathway.
We define the number of sites occupied by a set of genes I as:

ITT =122 gerrgAqll M

where pg is a gene-specific background mutation rate (BMR), in mutations
per megabase, and Ay is canonical transcript base-length. Scaling by BMR
captures the large variation in mutation rate across the genome. As these
rates are concordant across tissue types, we use by default an average rate
across 91 cancer cell lines (Lawrence et al., 2013, Table S5), but allow
users to substitute custom BMR values (e.g. tissue-specific rates; Polak
et al., 2015). For scenarios in which BMR-scaling is inappropriate (e.g.
pathway analysis of chromatin marks), pg can be set to 1. For scenarios in
which mutation probability doesn’t scale with base-length (e.g. large-scale
chromosomal events), genes can be assigned equal mutation probability by
setting Ag to 1.

The formula for gene set size (Eq. 1) can be used to calculate both the
target size of a pathway and the background size () for the set of all genes in
the pathways database. For each pathway, PathScore calculates likelihood as
the product of patient-specific probabilities, across all n patients. Expressed
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as a function of pathway size, IV:

{1 - (GA_ILN) / (Ai) if pathway is mutated,
/G
)

In the null model, N is given by the actual pathway size (N ). PathScore
then constructs an alternative model by treating N as a free parameter,
calculating the maximum likelihood estimate of pathway size (N*), or
‘effective pathway size’. L£(Ng) and L£(N*) are compared using the
likelihood ratio test. The test statistic is assessed by comparison to a chi-
square distribution with one degree of freedom, yielding a P value for
the pathway—a measure of statistical significance of the disparity between
actual and effective pathway sizes. The ratio of effective pathway size to
actual pathway size provides a measure of the magnitude of the effect, and
is used to rank the relative degree of overburden of pathways with mutation.
P values, Bonferroni-adjusted P values, and effect sizes are calculated for
each pathway in the database.

n
L(N) = HPi where P; =

. otherwise.
=1

2.2 The web app

The PathScore app provides both an interactive web interface and a REST
API Users can create a project by submitting a dataset of patient—gene pairs
to the ‘Upload’ page. Optional registration entitles users to increased project
storage as well as email notification when results are available. Algorithm
options are ‘BMR-scaled gene length’ (with gene-specific pg and Ag),
‘unscaled gene length’ (specifying p; = 1), and ‘gene count’ (specifying
pg = 1and Ay = 1). Analysis can be customized with two user-specified
gene lists: genes to suppress in the analysis, or genes to highlight (i.e. filter
out pathways that exclude them). Additional features of the interface include:

Pathway visualization We represent each enriched pathway with two plots.
A matrix plot (Fig. 1a) conveys patient-gene pairings and reveals patterns
of mutual exclusivity and co-occurrence. Squares in the matrix will exhibit
user annotations of gene or mutation attributes in each patient. To convey
pathway enrichment attributes, we devised an information-rich, easy to scan
‘target plot’ (Fig. 1b). The target is composed of a black circle with area
proportional to the actual pathway size centered within a red circle with
area proportional to effective pathway size. The ratio of these areas is the
effect size. The plot also indicates the number of genes in the pathway, the
mutated gene names, the fraction of the pathway altered, and the percentage
of patients with a mutation in each gene.

Status page An overview page with links to browse and download results.

Basic results page All enriched pathway results can be browsed in
descending order of effect size.

Volcano plot view Effect sizes and P values for all enriched pathways are
plotted in an interactive scatter plot (Fig. 1c). Selecting data points reveals
pathway information.

Tree view The gene sets of enriched pathways can overlap with each
other. Overlapping pathways could be biologically distinct, or they might
reflect redundancy in collated pathway databases. Using overlap percentages
between all pairs of top pathways, we create an ‘average linkage’
hierarchical cluster tree (Fig. 1d) to summarize distinct patterns in the results
and to provide an alternative means of browsing pathways. In the tree view,
hovering over leaf nodes displays enrichment information.

Project comparison Users can compare any two uploaded projects
(Fig. le). Pathways that are enriched in either project are positioned on
a log-log scatter plot according to their effect sizes in the two projects.
Quadrants around the origin (1, 1) distinguish pathways that are enriched in
both projects (upper right quadrant) or in only one of the two projects (upper
left or lower right quadrant). This plot reveals similarities and differences
between cancer types or patient subgroups.
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Fig. 1. (a) Matrix plot of patient-gene pairs for Reactome’s Presynaptic
nAChRs pathway in lung adenocarcinoma. (b) Target plot for the same
pathway, with a pathway effect size (overburden of mutations) of 2.1. There
are 12 genes in the pathway, with 11 mutated in at least one subject, as
indicated by the shading of 1/12 of the pie chart. These genes are named
in the tabs whose size and color (via heatmap) are proportional to their
respective patient mutation frequency. (c) Volcano plot of altered pathways
in lung adenocarcinoma, highlighting the well-known Nrf2-Keap1 signaling
pathway and two pathways with putative links to cancer: GABA-A receptor
activation and Presynaptic nAChRs. (d) Tree plot detail showing overlap
relationships in a subset of lung adenocarcinoma pathways. (e¢) Comparison
plot for lung adenocarcinoma (LUAD) and lung squamous cell carcinoma
(LUSC), showing pathways with Bonferroni-adjusted P < 0.1.
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