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Abstract

Epistasis, commonly defined as the interaction between multiple genes, is an important genetic component
underlying phenotypic variation. Many statistical methods have been developed to model and identify
epistatic interactions between genetic variants. However, because of the large combinatorial search space
of interactions, most epistasis mapping methods face enormous computational challenges and often suffer
from low statistical power. Here, we present a novel, alternative strategy for mapping epistasis: instead
of directly identifying individual pairwise or higher-order interactions, we focus on mapping variants that
have non-zero marginal epistatic effects — the combined pairwise interaction effects between the given
variant and all other variants. By testing marginal epistatic effects, we can identify candidate variants
that are involved in epistasis without the need to identify the exact partners with which the variants
interact, thus potentially alleviating much of the statistical and computational burden associated with
standard epistatic mapping procedures. Our method is based on the variance component model, and
relies on a recently developed variance component estimation method for efficient parameter inference
and p-value computation. We refer to our method as the “Marginal EPIstasis Test”, or MEPIT. With
simulations, we show how MEPIT can be used to robustly estimate marginal epistatic effects, produce
calibrated test statistics under the null, and facilitate the detection of pairwise epistatic interactions.
We further illustrate the benefits of MEPIT on several real datasets, including seven common diseases
from the Wellcome Trust Case Control Consortium, as well as body composition traits from a swine
genome-wide association study.

Introduction

Genome-wide association studies (GWASs) have identified thousands of genetic loci associated with many
complex traits and common diseases, providing insights into the genetic basis of phenotypic variation [1].
Most of these existing GWASs look at one variant at a time and focus on identifying marginal genetic
associations that exhibit either additive or dominant effects. However, it has long been hypothesized that
effects beyond additivity could contribute to a large proportion of phenotypic variation. In particular,
epistasis — the interaction between genetic loci — is thought to play a key role in defining the genetic
architecture underlying complex traits [2] and constituting the genetic basis of evolution [3, 4]. Indeed,
despite early controversies [5], studies have detected pervasive epistasis in many model organisms [6–11].
GWASs in humans have also identified several candidates of epistatic interactions that contribute to
quantitative traits and diseases [12–15]. Consequently, modeling epistasis has been shown to increase
phenotype prediction accuracy and facilitate genomic selection in animal breeding programs [16, 17].
Recently, epistasis has also been proposed as one of the main factors explaining missing heritability
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— the proportion of heritability not explained by the top associated variants from GWASs [1, 18]. In
particular, studies have hypothesized that epistasis could confound heritability estimation in pedigree
studies and cause inflation of heritability estimates, creating the so-called “phantom heritability” [19,20].

Because of the importance of epistasis, many statistical methods have been developed to identify
epistasis in GWAS [21, 22]. Different statistical methods differ in their ways of selecting a testing unit
(i.e. variants or genes [23]), their searching strategy (e.g. exhaustive search [24–26] or probabilistic
search [27] or prioritization based on a candidate set [28]), and the calculation of test statistics (e.g.
various frequentist tests [29] or Bayesian approaches [30, 31]). However, almost all of these statistical
methods focus on explicitly searching for pairwise or higher-order interactions for identifying epistatic
effects. Because of the extremely large search space (e.g.

(
p
2

)
pairwise combinations for p variants),

these methods often suffer from heavy computational burden and low statistical power. Despite various
efficient computational implementations [26,32,33] and recently developed efficient search algorithms [27],
exploring a large combinatory search space remains a daunting task for large GWASs. Statistically,
because of a lack of a priori knowledge of epistatic loci, exploring all combinations of genetic variants
could result in low statistical power, but restricting to a subset of prioritized combinations based on prior
knowledge or marginal effects could also miss important genetic interactions.

Here, we present an alternative strategy for mapping epistasis. Instead of directly identifying individ-
ual pairwise or higher-order interactions, we focus on identifying variants that have a non-zero interaction
effect with any other variants. To do so, we develop a novel statistical method, which we refer to as the
the “Marginal EPIstasis Test” (MEPIT), to test each variant in turn on its marginal epistatic effect — the
combined pairwise interaction effects between a given variant and all other variants. By testing marginal
epistatic effects, we can identify candidate markers that are involved in epistasis without the need to
identify the exact partners with which the variants interact, thus potentially alleviating much of the
statistical and computational burden associated with standard epistatic mapping methods. Our method
is based on variance component models, and importantly, by taking advantage of a recently developed
variance component estimation method [34] for efficient parameter inference and p-value computation,
is scalable to moderately sized genome-wide association studies. We illustrate how MEPIT can serve
as a useful alternative to standard methods in mapping epistasis with both simulations and real data
applications.

Materials and Methods

MEPIT Model

We describe the Marginal EPIstasis Test in detail here. Our goal is to identify variants that interact
with other variants, and to avoid explicitly searching for pairwise interactions. Therefore, unlike standard
epistatic tests, MEPIT works by examining one variant at a time. For the kth variant, we consider the
following linear model,

y = µ+ xkβk +
∑
l 6=k

xlβl +
∑
l 6=k

(xk ◦ xl)αl + ε, ε ∼ MVN(0, τ2I), (1)

where y is an n-vector of phenotypes for n individuals; µ is an intercept term; xk is an n-dimensional
genotype vector for the kth variant that is the focus of the model; βk is the corresponding additive effect
size; xl is an n-dimensional genotype vector for the lth variant, and l represents any of the p variants other
than the kth; βl is the corresponding additive effect size; xk ◦ xl denotes an element-wise multiplication
between genotype vectors, thus representing the interaction term between the kth and lth variants; αl

is the corresponding interaction effect size; ε is an n-vector of residual errors; τ2 is the residual error
variance; I is the identity matrix; and MVN denotes a multivariate normal distribution. In addition, we
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assume that the genotype vector for each variant has been centered and standardized to have mean 0
and standard deviation 1.

The model in Equation (1) is an underdetermined linear system (p > n). Therefore, we have to make
additional modeling assumptions on the effect sizes βl and αl to make the model identifiable. To do
so, we follow standard approaches [45–47] and assume that each individual effect size follows a normal
distribution, or βl ∼ N(0, ω2/(p− 1)) and αl ∼ N(0, σ2/(p− 1)) for l 6= k. With the normal assumption
on effect sizes, the model in Equation (1) is equivalent to the following variance component model,

y = µ+ xkβk + mk + gk + ε, ε ∼ MVN(0, τ2I), (2)

where mk =
∑

l 6=k xlαl is the combined additive effects from all other variants, and effectively rep-

resents the epistatic effect of the kth variant under the polygenic background of all other variants;
mk ∼ MVN(0, ω2Kk) with Kk = X−kXT

−k/(p − 1) being the genetic relatedness matrix computed

using genotypes from all variants other than the kth; gk =
∑

l 6=k(xk ◦ xl)αl is the summation of all

pairwise interaction effects between the kth variant and all other variants; gk ∼ MVN(0, σ2Gk) with
Gk = DkKkDk representing a relatedness matrix computed based on pairwise interaction terms between
the kth variant and all other variants. Here, we denote Dk = diag(xk) to be an n × n diagonal matrix
with the genotype vector xk as its diagonal elements. It is important to note that both Kk and Gk

change with every new marker k that is considered.
Note that, in this work, we limit ourselves to only consider second order epistatic relationships between

SNPs. However, the generalization of MEPIT to detect higher order interactions is straightforward and
only involves the manipulation of Gk. In addition, for case control studies, we can treat the binary
case control labels as quantitative traits following the Taylor series approximation argument (e.g. [47]).
Finally, we model βk as a fixed effect here, but modeling it as a random effect is straightforward.

Point Estimates

Our goal is to identify variants that have non-zero interaction effects with any other variant. To do so, we
can examine each variant in turn (k = 1, . . . , p) and test the null hypothesis in Equation (1) that variant k
has no interaction effect with any other variant, H0 : α′l = 0 ∀ l 6= k. This same null hypothesis is specified
in the variance component model stated in Equation (2) as H0 : σ2 = 0. The variance component σ2

effectively captures the total epistatic interaction effects between the kth variant and all other variants
— we call this the marginal epistatic effect for the kth variant.

Testing the marginal epistatic effect σ2 requires jointly estimating the variance component parameters
(σ2, ω2, τ2) in Equation (2). The standard method for variance component estimation is the restricted
maximum likelihood estimation (REML) method. However, REML is computationally slow: it requires
an iterative optimization procedure where the time complexity of each iteration scales cubically with the
number of individuals [48, 49]. The slow computation speed of REML is further exacerbated by the fact
that the variance component model changes for every variant k (i.e. both Kk and Gk are variant specific)
and thus variance component parameters are required to be estimated over and over again across genome-
wide variants. Therefore, we cannot use REML for marginal epistatic mapping. Instead, we follow the
recently developed MQS method [34] for efficient variance component estimation and testing. MQS
is based on the method of moments and produces estimates that are mathematically identical to the
Haseman-Elston (HE) cross-product regression [35–41]. However, MQS is not only computationally more
efficient than HE regression, but also provides a simple, analytic estimation form that allows for exact
p-value computation, thus alleviating the need for jackknife re-sampling procedures [42] that are both
computationally expensive and rely on incorrect individual independence assumptions [43,44].

To estimate the variance components with MQS, we first multiply a projection matrix Mk on both
sides of the model in Equation (2) to remove the influence of µ and xk. Here, Mk = I−bk(bT

k bk)−1bT
k ,

where bk = [1n,xk] with 1n denoting an n-vector of ones. Thus, Mk is a variant specific projection matrix
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onto both the null space of the intercept and the corresponding genotypic vector xk. By multiplying Mk,
we obtain the following simplified modeling specification

y∗k = g∗k + m∗k + ε∗k, g∗k ∼ MVN(0, σ2G∗k), m∗k ∼ MVN(0, ω2K∗k), ε∗k ∼ MVN(0, τ2Mk). (3)

where y∗k = Mky; g∗k = Mkgk; G∗k = MkGkMk; m∗k = Mkm; K∗k = MkKMk; and ε∗k = Mkε,
respectively. Note that Equation (3) also changes with every new marker k that is considered.

To simplify notation, we use δ = (σ2, ω2, τ2) to denote the variance components. We use the notation
Σk = [Σk,1,Σk,2,Σk,3] = [G∗k,K

∗
k,Mk]. We use indices i, j, l ∈ {1, 2, 3} to represent the corresponding

variance component or covariance matrix. Given estimates Σ̂k, we can obtain the MQS estimates for
the variance components of each variant (δ̂k,1, δ̂k,2, δ̂k,3) = (σ̂2

k, ω̂
2
k, τ̂

2
k ) via the following simple analytic

formula

δ̂k,i = y∗Tk Hk,iy
∗
k. (4)

Here, we define Hk,i = (S−1)iiΣ̂k,i + (S−1)ijΣ̂k,j + (S−1)ilΣ̂k,l, where S is a 3 × 3 matrix in which

Sij = trace(Σ̂k,iΣ̂k,j) for every i, j, l = 1, 2, 3.

Hypothesis Testing

MEPIT provides two options to compute p-values. The first option is approximate and is based on a
normal test that only requires variance component estimate σ̂2 and its corresponding standard error. In
particular, the variance of the MQS estimates in Equation (4) are given via a previously suggested and
computationally efficient approximation [34]

V(δ̂k,i) ≈ 2y∗Tk HT
k,iVkHk,iy

∗
k, (5)

where Vk = σ̂2
kG∗k + ω̂2

kK∗k + τ̂2kMk. Given the estimate in Equation (4) and its standard error in
Equation (5), we can rely on asymptotic normality and perform a normal test (or z-test) to compute
p-values. More specifically, we use a two sided test since the MQS estimates can be either positive
or negative. The normal test is computationally efficient, but when the sample size is small it is not
appropriate.

We also provide a second, exact option to compute p-values which is valid in the case of small
sample sizes. The second option relies on the fact that the MQS variance component estimate in Equa-
tion (4) follows a mixture of chi-square distributions under the null hypothesis. This is because y∗

is assumed to follow a multivariate normal distribution under the modeling assumptions. In particular,
σ̂2 ∼

∑n
i=1 λiχ

2
1,i, where χ2

1,i are chi-square random variables with one degree of freedom and (λ1, . . . , λn)
are the corresponding eigenvalues of the matrix(

ω̂2
0K
∗
k + τ̂20Mk

)1/2
Hk,1

(
ω̂2
0K
∗
k + τ̂20Mk

)1/2
,

with (ω̂2
0 , τ̂

2
0 ) being the MQS estimates of (ω2, τ2) under the null hypothesis. We can use the Davies

method [50] to compute exact p-values.
While the Davies method is expected to produce calibrated p-values, it is also computationally de-

manding (Table S1). Therefore, in practice, we advertise a hybrid p-value computation procedure that
uses the normal test by default and applies the Davies method when the p-value from the normal test
is below the threshold of 0.05. The hybrid procedure combines the advantages of the two different tests
and produces calibrated p-values while remaining computationally efficient (Table S1). As we will also
show in the results section, MQS estimation procedures allow for both accurate and efficient marginal
epistatic mapping in moderately sized genome-wide association studies.
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Real Data Sets

We used two data sets in the present study: the WTCCC data and a swine GWAS data. The WTCCC
data set is from the Wellcome Trust Case Control Consortium (WTCCC) 1 study [51] (http://www.
wtccc.org.uk/). The data set consists of about 14,000 cases of seven common diseases, including 1,868
cases of bipolar disorder (BD), 1,926 cases of coronary artery disease (CAD), 1,748 cases of Crohn’s
disease (CD), 1,952 cases of hypertension (HT), 1,860 cases rheumatoid arthritis (RA), 1,963 cases of
type 1 diabetes (T1D) and 1,924 cases of type 2 diabetes (T2D), as well as 2,938 shared controls. We
selected a total of 458,868 shared SNPs following a previous study [47]. In the analysis, we mapped
SNPs to the closest neighboring gene(s) using the databases dbSNP, ImmunoBase, and UCSC Genome
Browser, which can be found at the following:

• dbSNP: http://www.ncbi.nlm.nih.gov/SNP/

• ImmunoBase: http://www.immunobase.org/

• UCSC Genome Browser: http://ucscbrowser.genap.ca/

The swine genome-wide association data set consists of n = 820 female pigs. The sows were from a
commercial operation which utilized breeding stock from Newsham Choice Genetics (West Des Moines,
IA, USA) [52]. More specifically, these animals belonged to a Large White grandparent maternal line
and a Large White × Landrace parent maternal line [53]. Using Illumina’s PorcineSNP60 BeadChip, the
pigs were genotyped at exactly 64,232 SNPs. Only polymorphic SNPs that were able to be mapped to
a genomic location using Sus scrofa (SSC) Build 10.2, those with call rates greater than 90%, and those
with minor allele frequency above 5% were used for analyzation. These quality control measures left a
final dataset with p = 55,393 markers. For interpretation of the analysis, we first mapped each significant
SSC marker to its corresponding reference SNP, and used those to find the closest neighboring gene(s)
according to dbSNP.

Other Methods

Single-SNP trait additive association analyses and pairwise epistatic analyses were fit with a linear re-
gression model by using the -lm argument in the GEMMA software [47, 49]. This software is publicly
available at http://www.xzlab.org/software.html.

Software Availability

The software implementing MEPIT is freely available at https://github.com/lorinanthony/MEPIT.
We use the CompQuadForm R package to compute p-values from the Davies method. The Davies
method can sometimes yield a p-value equal exactly to 0 when the true p-value is extremely small [55].
In this case, we report p-values as P ≈ 0. If this is of concern, one can compute the p-values for MEPIT
using Kuonen’s saddlepoint method [55,56] or Satterthwaite’s approximation equation [57].

Results

Simulations: Type I Error Control

To validate MEPIT and our hybrid testing procedure in terms of controlling type I error, we carried
out a simulation study. Specifically, we utilize chromosome 22 of the control cases from the WTCCC
1 study [51] to generate continuous phenotypes. Exclusively considering this group of individuals and
SNPs leaves us with an initial dataset consisting of n = 2,938 control samples and p = 5,747 markers.
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In order to investigate the type I error control, we first subsample from the genotypes for n =
1,000, 1,750, and 2,500 subjects. Next, we randomly select 1,000 causal SNPs and simulate continuous
phenotypes by using a linear model, y = Xβ + ε. We simulate the additive effect sizes of each causal
SNP and random noise term both from a standard normal distribution, and then we scale the two terms
further to ensure a heritability of 50%. Note that the idea of the null model holds because MEPIT
does not consider additive effects and solely searches for significant marginal epistatic effects that are a
summation of pairwise interactions. We then assess the calibration of MEPIT under both the normal test
and the Davies method for each sample size n. Figure 1 shows the quantile-quantile (QQ) plots based on
application of MEPIT to these null datasets under both hypothesis testing strategies. The normal test
heavily relies on the assumption of asymptotic normality — therefore, it is expected to see improvement
of performance as the sample size increases. However, as one also expects, the normal test is inaccurate in
the extreme tails of the test even for larger sample sizes. On the other hand, utilizing the Davies method
via a mixture of chi-squares allows MEPIT to robustly control for type I error across all sample sizes.
Table 1 shows the empirical type I error rates estimated for MEPIT at significance levels α = 0.05, 0.01,
and 0.001, respectively. As expected based on the QQ plots, under the Davies method, MEPIT controls
the type I error rate for reasonably sized datasets, and can be slightly liberal when the sample size is
small. Presumably, the liberal behavior of p-values in small samples arises from the fact that frequentist
tests do not account for uncertainty in the variance component estimates in the null model. Based on
the null simulation results, we use a hybrid p-value computation procedure (detailed in Material and
Methods) that recalibrates p-value for a SNP using the Davies method when the z-test p-value for the
SNP is below the threshold of 0.05.

Simulations: Estimating and Identifying Marginal Epistatic Effects

In this section, we use simulation studies to illustrate the advantages of MEPIT in identifying marginal
epistatic associations. In addition to correctly detecting marginal epistatic associations, we will show that
MEPIT can also estimate the marginal epistatic effects reasonably well. Therefore, analogous to SNP
heritability estimation settings [45, 47], these variance component estimates can serve as a measurement
of the marginal interaction phenotypic variance explained (PVE) by each epistatic causal variant.

To test the power of MEPIT, we again consider simulation designs similar to those proposed by
previous epistatic analysis studies [32]. First, we assume that the broad-sense heritability is known
(H2 = 0.6) [47,51,58,59]. Next, we use the 22nd chromosome of all control cases from the WTCCC 1 study
X (i.e. n ≈ 3,000 and p ≈ 6,000) to simulate continuous phenotypes that mirror genetic architectures
affected by a combination of additive and pairwise epistatic effects. Specifically, we randomly choose
1,000 causal SNPs to directly affect the phenotype and classify the causal variants into three groups: (1)
a small set of interaction SNPs, (2) a larger set of interaction SNPs, and (3) a large set of additive SNPs.
In the simulations carried out in this study, SNPs interact between sets, so that SNPs in the first group
interact with SNPs in the second group, but do not interact with variants in their own group (the same
applies to the second group). One may view the SNPs in the first set as the “hubs” in an interaction
map. We are reminded that interaction (epistatic) effects are different from additive effects. All causal
SNPs in both the first and second groups have additive effects and are involved in pairwise interactions,
while causal SNPs in the third set only have additive effects.

The additive effect sizes of all causal SNPs again come from a standard normal distribution or β ∼
MVN(0, I). Next we create a separate matrix W which holds the pairwise interactions of all the causal
SNPs between groups 1 and 2. These SNPs have effect sizes also drawn as α ∼ MVN(0, I). We scale both
the additive and pairwise genetic effects so that collectively they explain a fixed proportion of genetic
variance. Namely, the additive effects make up ρ%, while the pairwise interactions make up the remaining
(1− ρ)%. Once we obtain the final effect sizes for all causal SNPs, we draw errors to achieve the target
H2. The phenotypes are then created using the model y = Xβ + Wα + ε, where α are the simulated
effect sizes of the pairwise epistatic effects.
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We consider a few scenarios that depend on two parameters:

• (1− ρ), which measures the portion of H2 that is contributed by the interaction effects of the first
and second groups of causal SNPs. Specifically, the phenotypic variance explained (PVE) by the
additive genetic effects is said to be V(Xβ) = ρH2, while the PVE of the pairwise epistatic genetic
effects is given as V(Wα) = (1− ρ)H2.

• p1/p2/p3, which are the number of causal SNPs in each of the three groups, respectively.

Specifically, we set ρ = {0.5, 0.8} and choose p1/p2/p3 = 10/10/980 (scenario I), 10/20/970 (scenario
II), 10/50/940 (scenario III), and 10/100/890 (scenario IV). Note that scenarios III and IV assume a
larger number of interactions than scenario I and II do, and are thus likely to be closer to reality. For
ρ, the particular case where ρ = 0.5 assumes that additive and epistatic effects equally contribute to
the broad-sense heritability of the simulated phenotypes. The alternative case in which ρ = 0.8 is a
case where the PVE of the simulated complex traits are dominated by additive effects. We analyze 100
different simulated datasets for each value of ρ, in each scenario. All of the results described in this
section are based on the cases in which ρ = 0.8, as this case is a more realistic setting where epistatic
effects only make up a small percentage of the broad-sense heritability. The results for ρ = 0.5 can be
found in Supporting Information (see S1 Fig.).

Figure 2(a) shows the power results for MEPIT’s ability to detect both group 1 and 2 causal variants,
respectively, compared across each simulation scenario. Empirical power of MEPIT was estimated as
the proportion of p-values < 0.05. We can see MEPIT’s ability to detect both groups of causal markers
depends on the pairwise interaction PVE explained by each variant. For example in Figure 2(a), each
causal variant in group 1 is expected to explain V(Wα)/p1 = 1.2% of the true interaction PVE since in
every scenario p1 = 10. In these situations, the cumulative PVE of these markers is great and MEPIT’s
power is large for all four scenarios (approximately 40% power). Note that the power is similar to MEPIT’s
ability to detect the group 2 causal markers under Scenario I (i.e. p2 = 10), where each epistatic variant
is also expected to explain V(Wα)/p2 = 1.2% of the interaction PVE. Alternatively, MEPIT exhibits
half of the power when detecting the group 2 SNPs in the case of Scenario II (i.e. p2 = 20), as each SNP
explains only V(Wα)/p2 = 0.6% of the PVE (approximately 20% power). In addition, MEPIT’s power
to identify group 1 variants is independent of the number of variants in group 2 (i.e. p2), suggesting
that MEPIT’s power depends on the total interaction effects rather than individual pairwise effect or the
number of interaction pairs. The results based on the genome-wide significance threshold are similar and
can be found in Supporting Information (see S2 Fig.).

Next, we assess MEPIT’s ability to accurately estimate the expected contribution of each group 1 and
2 causal SNP to the interaction PVE. Figure 2(b) show boxplots of these estimates. The true expected
interaction PVE explained by each causal SNP is depicted as the grey dashed lines. These plots show
that even though MEPIT’s power is directly affected by the epistatic contribution to the phenotypic
variation, its ability to rightly estimate the effects of causal interacting SNPs is robust and unbiased. It
is important to note that we see MEPIT maintain its estimation ability even when the portion of PVE
explained by a set of causal SNPs is very small (i.e. group 2 SNPs in scenario IV). The estimation results
are consistent with the well-known robustness of variance component models in estimating PVE in other
settings (e.g. estimation of SNP heritability) [45,47].

Simulation Comparisons

Here, we compare the performance of MEPIT with a standard exhaustive search procedure that examines
all pairwise interactions to explicitly identify the exact pairs of variants involved in epistatic interactions
[25,26,60,61]. Specifically, in the exhaustive search, we consider the linear model y = µ+ xiβi + xjβj +
(xi ◦ xj)αij + ε and test H0 : αij = 0 for every marker combination of i and j in turn. Keeping notation
consistent, xi ◦xj denotes element wise multiplication between genotypes i and j, and αij represents the
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effect size of their interaction. Note that the exhaustive search procedure is computationally feasible here
because we only have p ≈ 6, 000 markers in the simulations.

It is helpful here to point out that we do not view MEPIT as a replacement for the exhaustive search
procedure, nor do we view MEPIT as a superior method. Rather, we view MEPIT as an attractive
alternative strategy for mapping epistasis: MEPIT not only can perform a significance test to detect
variants involved in epistasis, but also can be used to obtain a prioritized set of variants that are further
used to identify pairwise interactions. Our simulation comparisons are thus targeted to illustrate how
MEPIT can be used in these two tasks, and how its performance differs from the exhaustive search
procedure in different scenarios.

Identifying variants involved in epistasis. We first compare MEPIT with the exhaustive search
method in identifying variants that are involved in epistasis. For this task, MEPIT can directly perform
a significance test and produce a p-value. Here, we note that the power of MEPIT and the exhaustive
search method are determined by different factors: the power of the linear interaction method depends
on each individual epistatic interaction effect size αij , while the power of MEPIT, as we have shown in
the previous section, depends on the marginal epistatic effects — the summation of interaction effects.
Therefore, we would expect MEPIT and the exhaustive search method to be advantageous in different
situations (if the exhaustive search method is computationally feasible). In particular, we would expect
the exhaustive search method to be more powerful in scenario I (and II) where each individual interaction
effect is large, and MEPIT to be more powerful in scenario (III and) IV where each individual interaction
effect is small but the marginal epistatic effect remains large. To validate our expectations, we again
generate continuous outcomes using the same previously described y = Xβ+Wα+ε simulation scheme.
Once again, all results described in this section are based on cases in which ρ = 0.8, and results for
ρ = 0.5 can be found in Supporting Information (see S3 Fig.).

We evaluate MEPIT’s and the exhaustive search’s ability to accurately identify marginal epistatic
effects for markers in each of the two causal groups. The criteria we use compares the false positive rate
(FPR) with the rate at which true variants are identified for each model (TPR). Figure 3 depicts the
ability of MEPIT and the exhaustive search to detect causal variants in groups 1 and 2. In particular,
these plots depict the portion of causal markers discovered after prioritizing all of those considered in
order of their significance. We assess the marginal epistatic detection in the exhaustive search by first
running the previously described pairwise linear model, ordering the resulting p-values for each possible
interaction, and drawing a power curve for identifying the SNPs that are members of simulated causal
groups 1 and 2. For example, if the top p-values from the exhaustive search are interactions SNP1-SNP2,
SNP2-SNP3, SNP4-SNP5, and only SNP2 is the true causal epistatic variant, then the top three pairs
only marginally identify 1 true variant and 4 false variants.

As expected, while the power of MEPIT depends on the pairwise interaction PVE explained by each
SNP, the power of the exhaustive search depends on the individual interaction effect size. For example,
the power of the exhaustive search to detect group 1 causal epistatic SNPs is dependent on the number
of group 2 causal SNPs, which determines the interaction effect size in simulations. Therefore, while
the exhaustive search exhibits higher power in the sparse scenario where there are only a small number
of interactions each with a large effect size (e.g. scenarios I and II), its power quickly decays in the
more polygenic scenario where there is a large number of interactions each with a small effect size (e.g.
scenarios III and IV). MEPIT is able to perform well in the more realistic polygenic scenarios (III and
IV) by modeling the marginal epistatic effects of each variant, allowing the detection of epistatic variants
not to be dependent on the individual pairwise interaction effect size.

We are reminded that another advantage to MEPIT is the reduced space it must search over. For
p genetic markers, the exhaustive search must run p(p− 1)/2 tests while MEPIT only has to perform p
tests. As a result, even in our simulation study with only 6,000 variants, the exhaustive search approach
is already slower than MEPIT. The computational advantage of MEPIT over the exhaustive search
approach can be much larger in moderate size GWASs with millions of markers.
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Identifying pairwise interactions. Although we have focused on identifying marginal epistatic
effects so far, MEPIT can also be used to facilitate the identification of pairwise (or high-order) epistatic
interactions. In addition to comparing MEPIT with the exhaustive search method, we also consider
another common approach to identify these epistatic pairs — the two-step filtering association mapping
procedures detailed in [21, 25, 28, 62]. These methods often apply a marginal (additive) single-SNP
test [49, 63] first to identify associated genetic variants with non-zero additive effects, then focus on the
identified variants to test all pairwise interactions between them. Depending on the correlation between
the marginal additive effect size and the probability of being involved in epistasis across genome-wide
SNPs, these filtering methods can be more powerful than the exhaustive search strategy in the previous
section, and is certainly much more efficient computationally. Here, instead of using the additive test, we
propose using MEPIT as the initial filter. We hypothesize that the initial list of associated SNPs from
MEPIT will be more robust and more likely capture epistatic effects as MEPIT directly prioritizes SNPs
based on marginal epistatic effects. By using marginal epistatic evidence in the initial filtering step, we
expect MEPIT to outperform the previous common procedure of using a linear model for filtering.

In this set of simulations, we utilize the same subset of real genotypes used for the marginal epistatic
simulations in the last section [51], and again generate phenotypes under the same four simulation sce-
narios where pairwise interactions are well defined. After randomly selecting the three sets of causal
SNPs and creating their pairwise interactions, we run MEPIT and the single-SNP linear model using
all variants. We also reuse the exhaustive search, again as a baseline comparison. For MEPIT and the
single-SNP linear model, we rank each variant according to their marginal p-values. The top 100 SNPs
identified by both models are then selected, and all pairwise interactions among them are tested using a
linear model that controls for the two main effects. For the exhaustive search, we simply rank the top
1002 interactions to assess pairwise power. The results based on the top 250 SNPs are similar and can
be found in Supporting Information (see S5 and S6 Fig.).

Figure 5 compares the power of the filtering procedure using the two different methods as the ini-
tial step. Phenotypes used to create this figure were generated under each scenario with broad-sense
heritability H2 = 0.6 and ρ = 0.8. All results for ρ = 0.5 can be found in Supporting Information
(see S4 Fig.). Compared with the single-SNP test, filtering SNPs using MEPIT provides more power in
finding true pairwise epistatic interactions. In fact, even for the cases in which marginal additive effects
contribute to majority of the broad-sense heritability (i.e. ρ = 0.8), using MEPIT as the initial filtra-
tion procedure (as opposed to the single-SNP linear model) provides more power to finding exact causal
epistatic pairs. This improvement comes from the fact that MEPIT allows the ranking of variants to be
based on their marginal epistatic effects, rather than their marginal additive effects. Therefore, the set of
SNPs identified by MEPIT in the first step already contains variants that capture epistatic effects, thus
resulting in higher power in the second step to identify epistatic interaction pairs. In addition, similar to
the simulation comparison in the previous sub-section, MEPIT and the exhaustive search procedure are
advantageous in different settings: the exhaustive search procedure is again more powerful in the sparse
setting where each individual pairwise interaction is large (scenarios I and II) while MEPIT gains advan-
tage in the polygenic setting with a large number of interactions each with small effects (scenarios III
and IV). Therefore, MEPIT also represents an attractive alternative to identifying pairwise interactions.

Detecting Epistasis in WTCCC Data

In addition to the our simulation study, we further assess MEPIT’s ability to detect epistasis by analyzing
two real GWAS datasets. The first dataset we consider consists of 7 common diseases from the Wellcome
Trust Case Control Consortium (WTCCC) 1 study [51]. Specifically, this data includes about 14,000
cases from seven common diseases and about 3,000 shared controls, typed at a total of about 450,000
SNPs. The seven common diseases are bipolar disorder (BD), coronary artery disease (CAD), Crohn’s
disease (CD), hypertension (HT), rheumatoid arthritis (RA), type 1 diabetes (T1D), and type 2 diabetes
(T2D). Overall, for each disease we have a dataset that consists of n ≈ 5, 000 subjects.
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For each disease, we provide a summary table in Supporting Information which lists the marginal
epistatic p-values for all significant SNPs as computed by MEPIT (see S2 Table). For this analysis,
strong significance of association for a particular SNP or locus was determined by using the same marginal
genome-wide significance threshold used in the original study (P < 5 × 10−7) [51]. Similarly, we deem
an association to be moderate if a SNP has a p-value that falls between 5 × 10−7 < P < 1 × 10−5. In
Table 2, we list the number of strong and moderate marginal epistatic associations according to MEPIT
across each of the seven diseases.

Figure 5 displays manhattan plots of our epistatic genome-wide scan for two of the seven diseases, RA
and T1D, where the only strong and moderately significant marginal epistatic effects were detected (see
S7 Fig. for genome-wide scans of the other diseases). We stress that the interpretation of these images is
slightly different than what is used for traditional manhattan plots. Specifically, in these figures spikes
across chromosomes suggest loci where members involved in epistatic interactions can be found. Overall,
MEPIT most noticeably identified the major histocompatibility complex (MHC) region on chromosome 6
in RA and T1D as having variants involved in prominent pairwise interactions. It is well known that the
MHC region holds significant clinical relevance in complex traits and diseases with respect to infection,
inflammation, autoimmunity, and transplant medicine [65,66]. Since this region has also been consistently
implicated by other epistatic analyses, we restrict our focus to these two phenotypic traits. In Table 3, we
list all MEPIT-discovered loci with at least one variant whose marginal p-value is below the predefined
moderate genome-wide significance threshold.

We took all of the markers identified as having at least moderately significant marginal epistatic
associations in T1D (= 27) and analyzed all 351 pairwise interactions between them. The last row in
Table 2 lists the number of epistatic interactions with pairwise p-values below the Bonferroni-corrected
threshold P < 8 × 10−13, which would have been used if we examined all genome-wide SNP pairs. A
summary table with all of the significant joint pairs from T1D can be found in the Supporting Information
(see S3 Table). Similar to what was shown in the numerical experiments and simulation studies in previous
sections, MEPIT exhibits great ability to detect the “hub” SNPs of interactions. For instance in T1D,
the SNP rs9270986 (MEPIT P ≈ 0) is part of many of the top significant epistatic pairs. All these
interaction effects have been verified in previous epistatic analyses [25,32,67].

Detecting Epistasis in Body Composition Traits in Pigs

The second real GWAS dataset we analyze comes from a swine genome-wide association study which
focused on the development of a high density porcine SNP array that has made GWAS feasible in
pigs [53]. Using Illumina’s PorcineSNP60 BeadChip, a pilot study in n = 820 commercial female pigs
were genotyped for approximately 64,000 SNPs and phenotyped for two backfat thickness traits: 10th rib
backfat and the last rib backfat. Specifically, these two highly selected for traits are important indicators
of lean meat content. Only polymorphic SNPs that were able to be mapped to a genomic location using
Sus scrofa (SSC) Build 10.2, those with call rates greater than 90%, and those with minor allele frequency
above 5% were used for analysis. These quality control measures left a final dataset with p ≈ 55,000
markers.

For this analysis, significance of association for a particular SNP or locus was determined by using
a genome-wide significance threshold. Here, we follow a previous GWA animal study [69] and use the
Dunn-S̆idák correction, an exact form of the Bonferroni-correction, to account for the number of tests
performed. Specifically, for p variants, the corrected 5% genome-wide significance threshold for both
traits is given as P < 1 − (1 − 0.05)1/p ≈ 9 × 10−7. Markers that pass this threshold are considered to
have strong marginal epistatic associations with the backfat traits. Once again, we deem an association
to be moderate if a SNP has a p-value that falls between 5× 10−7 and 9× 10−7.

Analyses for the two backfat traits revealed the exact same epistatically associated locus on chromo-
some 1 of the SSC1 (SSC1) between 274.1 Mb-276.6 Mb marked by the same 5 markers (INRA0006067,
INRA0006074, DRGA0002004, INRA0006186, and INRA0006192). This result comes as no surprise since
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the genetic correlation between the 10th and last rib backfat thicknesses has been estimated to be nearly
0.90 [53,70]. Table 4 lists the variants located on the MEPIT-discovered locus, all of which at least satisfy
the moderately significant genome-wide threshold. In the Supporting Information there are manhattan
plots of the marginal epistatic genome-wide scan for both traits (see S8 Fig.), as well as a table summary
of the pairwise p-values between the moderately and strongly associated marginal epistatic variants for
both traits (see S4 Table).

The novel epistatic region on SSC1 contains a couple of potentially interesting interacting genes
specifically within the context of porcine fat, growth rates, and metabolism. These genes are KANK1
and KLF9. In particular, studies have shown that KANK1 is associated with fasting proinsulin or
insulinogenic index, and may have an influence on abnormal insulin production [71]. This is contextually
important because insulin indirectly regulates and acts upon blood sugar levels and the production of fat
tissue. Similarly, KLF9 has been shown to promote porcine adipocyte differentiation, a process that is
responsible for establishing the mature fat-cell phenotype [72–74]. These validating findings from previous
studies, particularly within the porcine literature, lead us to believe that the analysis conducted here may
contain true positives.

Discussion

We have presented MEPIT for detecting variants that are involved in epistasis in genome-wide association
studies. For each variant in turn, MEPIT estimates and tests its marginal epistatic effect — the combined
epistatic effect between the examined variant and all other variants. By modeling and inferring the
marginal epistatic effects, MEPIT can identify variants that exhibit non-zero epistatic interactions with
any other variant without the need to identify the specific marker combinations that drive the epistatic
association. Therefore, MEPIT represents an attractive alternative to standard methods [24–26, 32, 33]
for mapping epistasis. With both simulations and real data applications, we have illustrated the benefits
of MEPIT.

In the present study, we have focused on estimating and testing marginal epistatic effects in the
presence of pairwise interactions with MEPIT. MEPIT can also be easily extended to detect variants
that are involved in higher-order interactions. Specifically, in the presence of higher-order interactions,
we can introduce extra random effects terms to represent the combined higher-order interaction effects
between the examined variant and all other variants — meaning, one extra random effects term for
each extra order of interactions. Under the normality assumption of the interaction effect sizes, the
introduced random effects terms all follow multivariate normal distributions, with the covariance matrices
determined as a function of the Hadamard product of the additive genetic relatedness matrix [16,68,75–
77]. Therefore, we can use a multiple variance component model with additional variance components to
map epistatic variants in the presence of higher-order interactions. From there, we can test the variance
components jointly to identify variants that are involved in any order of epistatic interactions. We
can test each variance component separately to identify variants that are involved in a particular order
epistatic interaction. Or, better still, we can perform variable selection on the variance components to
identify which higher order interaction a particular variant of interest is involved in. Extending MEPIT to
mapping high-order interactions will likely provide further insights into the epistatic genetic architecture
of various traits and diseases.

Here, we have focused on demonstrating MEPIT with a variance component model. The variance
component model in MEPIT effectively assumes that the interaction effect between the examined variant
and every other variant follows a normal distribution. The normality assumption and the resulting
variance component model have been widely used in many areas of genetics. For example, variance
component models are used in rare variant tests to combine the additive effects of multiple rare variants to
improve association mapping power [46,78–81]. Similarly, variance component models are used to jointly
model all genome-wide SNPs at once for estimating SNP heritability [45,47]. Studies have already shown
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that variance component models produce unbiased estimates regardless of whether or not the underlying
effect sizes follow a normal distribution, and are robust even when the model is severely misspecified
[45,47]. In addition, MEPIT can easily be extended to incorporate other effect size assumptions. Indeed,
the main idea in MEPIT of mapping marginal epistatic effects is not restricted to the particular variance
component model we examine here, nor is it restricted to the normality assumption of the interaction effect
sizes. Therefore, we can incorporate sparsity-inducing priors for effect sizes if the number of interaction
pairs is known to be small a priori. Alternatively, we can use the recently developed hybrid effect size prior
that has been shown to work well under a variety of effect size distributions [47]. Different interaction
effect size assumptions can be advantageous under different genetic architectures and incorporating them
in different scenarios will likely improve the power of MEPIT further.

There are many other potential extensions of MEPIT. We have only focused on analyzing one pheno-
type at a time in this study. However, it has been extensively shown that modeling multiple phenotypes
can often dramatically increase power [49, 82]. Therefore, it would be interesting to extend MEPIT to
take advantage of phenotype correlations to identify pleiotropic epistasis effects. Modeling epistasis in
the context of multiple phenotypes could be highly non-trivial, as we need to properly model the shared
epistatic components between phenotypes, in addition to the shared additive effects between phenotypes.
Modeling strategies based on the multivariate linear mixed model (mvLMM) [49] could be helpful here.
In addition to its use in genetic association studies, MEPIT can also be applied to other association stud-
ies, such as eQTL mapping studies [83]. Often times, eQTL studies deal with SNP effect sizes (on gene
expression levels) that are orders of magnitude larger than that (on organism-level traits) from GWASs.
Thus, eQTL studies requires a much smaller sample size than GWASs and subsequently allow for the
efficient application of many sophisticated models. Recent studies have started to reveal an initial set
of epistatic interactions that underlie gene expression variation [84–86]. By adapting MEPIT to eQTL
studies, we expect to better understand the genetic architecture that underlie gene expression variation.

MEPIT is not without its limitations. Perhaps the most noticeable limitation is that MEPIT cannot
be used to directly identify the interaction pairs that drive individual variant association. In particular,
after identifying a variant involved in epistasis, it is still unclear which variants it interacts with. Thus,
despite being able to identify SNPs that are involved in epistasis, MEPIT is unable to directly identify
the detailed interaction pairs. However, we argue that being able to identify variants that are involved
in epistasis is often an important first step towards identifying and understanding the detailed epistatic
associations. In addition, being able to identify SNPs involved in epistasis allows us to come up with an
initial likely set of variants that are worth further exploration. Indeed, we advertise a two-step ad hoc
epistasis association mapping procedure. First, we identify individual SNP associations with MEPIT.
Then, we focus on the most significant associations from the first step to further test all of the pairwise
interactions among them to identify specific epistatic interactions. Unlike the previous filtering strategies
that are commonly used in epistatic mapping, our two-step procedure is unique in the sense that the
SNP set identified in our first step contains SNPs that already display strong epistatic effects with other
variants. Therefore, our two-step procedure outperforms alternative filtering strategies in simulations.
However, we caution that the two-step procedure is nevertheless ad hoc in nature and could miss important
epistatic associations. Therefore, exploring statistical approaches that can unify the two steps would be
an interesting area for future research. Besides this main limitation, we also note that MEPIT can
be computationally expensive. MEPIT requires fitting a variance component model for every SNP in
turn, and fitting variance component models are known to be computationally challenging [48, 49]. In
this study, we use the recently developed MQS method for variance component estimation and testing.
Compared with the standard REML method, MQS is computationally efficient, allows for exact p-value
computation based on the Davies method, and is statistically more efficient than the REML estimates
when the variance component is small [34] — a property that is particularly relevant here considering
the marginal epistatic effect size is often small. MQS allows us to apply MEPIT to moderately sized
genome-wide association studies with thousands of samples and millions of variants, which is otherwise
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impossible using any other variance component estimation methods. However, new algorithms are likely
needed to scale MEPIT up to data sets that orders of magnitude larger in size.
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Figures and Tables

(a) Sample Size n = 1, 000 (b) Sample Size n = 1, 750 (c) Sample Size n = 2, 500

Figure 1. Calibration of p-values produced by MEPIT via QQ plots. The QQ plots applying
MEPIT to 100 simulated null datasets assuming sample sizes (a) 1,000, (b) 1,750, and (c) 2,500. Blue
dots are p-values produced by under the normal test (or z-test), while the black dots represent p-values
tested using the Davies method via a mixture of chi-square distributions. The 95% confidence intervals
for the null hypothesis of no association are shown in grey.

Table 1. Empirical type I error estimates of MEPIT. Each entry represents type I error rate
estimates as the proportion of p-values a under the null hypothesis based on 100 simulated continuous
phenotypes for the normal test (or z-test) and the Davies method. Empirical size for the analyses used
significance thresholds of α = 0.05, 0.01, and 0.001. Sample sizes were set to 1,000, 1,750, and 2,500.
Values in the parentheses are the standard deviations of the estimates.

Test Total Sample Size α = 0.05 α = 0.01 α = 0.001

Normal Test

n = 1,000 0.0598 (0.0061) 0.0180 (0.0031) 0.0047 (0.0013)

n = 1,750 0.0584 (0.0066) 0.0172 (0.0039) 0.0040 (0.0009)

n = 2,500 0.0576 (0.0063) 0.0147 (0.0025) 0.0028 (0.0006)

Davies Method

n = 1,000 0.0563 (0.0104) 0.0121 (0.0042) 0.0012 (0.0008)

n = 1,750 0.0528 (0.0083) 0.0108 (0.0023) 0.0011 (0.0004)

n = 2,500 0.0469 (0.0073) 0.0093 (0.0024) 0.0009 (0.0005)
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(b) PVE Estimates (ρ = 0.8)

Figure 2. Empirical power to detect simulated causal interacting makers and estimating
their marginal PVE. Groups 1 and 2 causal markers are colored in light red and light blue,
respectively. These figures are based on a broad-sense heritability level of H2 = 0.6 and parameter
ρ = 0.8, estimated with 100 replicates. Here, ρ = 0.8 was used to determine the portion of broad-sense
heritability contributed by interaction effects. Figure (a) shows the power of MEPIT to identify SNPs
in each causal group under significance level α = 0.05. The lines represent 95% variability due to
resampling error. Figure (b) shows boxplots of the marginal PVE estimates for the group 1 and 2
causal SNPs from MEPIT for the four simulation scenarios. The true PVEs per causal SNP (0.012 for
the group 1 SNPs; 0.012, 0.006, 0.0024, and 0.0012 for the Group 2 SNPs) are shown as dashed grey
horizontal lines.
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(a) Scenario I
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(b) Scenario II
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(c) Scenario III
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(d) Scenario IV

Figure 3. Power analysis for detecting group 1 (light red) and group 2 (light blue) causal
SNPs. We compare the mapping abilities of MEPIT (solid line) to an exhaustive search linear model
(dotted line) in all scenarios (alternating panels), under broad-sense heritability level H2 = 0.6 and
ρ = 0.8. Here, ρ = 0.8 was used to determine the portion of broad-sense heritability contributed by
interaction effects. The x-axis shows the false positive rate, while the y-axis gives the rate at which true
causal variants were identified. Results are based on 100 replicates in each case.
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Figure 4. Analysis that compares the different proposed two-step procedures that check
every pairwise SNP interaction to identify causal epistatic pairs. Specifically, we test the
effectiveness of our method as an initial step in the pairwise detection filtration process by searching
between the top 100 marginal significant SNPs identified by MEPIT (green) and a single-SNP linear
model (purple). We use an exhaustive search linear model (orange) as a baseline comparison. We
compare the three methods in all scenarios (x-axis), under broad-sense heritability level H2 = 0.6. Here,
ρ = 0.8 was used to determine the portion of broad-sense heritability contributed by interaction effects.
The y-axis gives the rate at which true causal epistatic pairs were identified. Results are based on 100
replicates in each case. The lines represent 95% variability due to resampling error.
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Table 2. Summary of the number of significant marginal and pairwise epistatic effects
identified in the seven diseases from the WTCCC Dataset. Abbreviations are as follows: BD,
bipolar disorder; CAD, coronary artery disease; CD, Crohn’s disease; HT, hypertension; RA,
rheumatoid arthritis; T1D, type 1 diabetes; T2D, type 2 diabetes. “Strong” and “Moderate” reflect the
genome-wide significance thresholds for MEPIT p-values set to P < 5× 10−7 and
1× 10−5 < P < 5× 10−7, respectively. G×G represents the number of interactions between the
marginally strong and moderately associated markers with pairwise p-values less than P < 8× 10−13.

Association BD CAD CD HT RA T1D T2D

Strong 0 0 0 0 0 19 0

Moderate 0 0 0 0 1 8 0

G×G - - - - - 210 -

Table 3. Regions of the genome with more than one SNP marginal epistatic p-value
satisfying the moderate genome-wide significance threshold P < 1 × 10−5. Listed for all
regions are the SNPs with the lowest marginal p-value. The marginal p-values reported are found via
MEPIT. The reference column gives literature that have previously suggested some level of association
between a given region and disease. ?The MHC region on chromosome 6 are divided into three classes:
class I (29.8 Mb-31.6 Mb), class II (32.3 Mb-33.4 Mb), and class III (31.6 Mb-32.3 Mb). We treat each
of these classes as independent loci. ‡Additional SNPs in its neighborhood also show strong marginal
epistatic associations.

Disease Chromosome Region SNP MEPIT P Nearest Gene Reference

RA 6 MHC II? rs7775228 2.0× 10−6 HLA-DQA1 [25, 32]

T1D 6 MHC I rs2596437 2.4× 10−6 HLA-DRB5 [25, 32,67]

T1D 6 MHC II‡ rs9270986 ≈ 0 HLA-DRB1 [25, 32,67]

T1D 6 MHC III‡ rs3131294 ≈ 0 NOTCH4 [25, 32,67]
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Figure 5. Genome-wide scan for rheumatoid arthritis (RA) and type 1 diabetes (T1D) in
the WTCCC dataset. For both of the diseases, −log10(P ) of the MEPIT marginal epistatic p-value
for quality-control-positive SNPs are plotted against position on each chromosome. Chromosomes are
shown in alternating colors for clarity. All panels are truncated at −log10(P ) = 10 for consistency and
presentation, although the strongly associated markers in T1D had p-values P ≈ 0. Markers exceeding
the strong genome-wide significance threshold from the original analysis (P < 5× 10−7) are colored in
red. Markers colored in blue are those that are considered to have moderate associations with the
phenotypes and have p-values greater than 5× 10−7 and less than 1× 10−5.
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Table 4. Moderate and strong associations in the two backfat quantitative traits within
the pig dataset. Listed are the SNPs located in SSC1 with MEPIT p-values satisfying the moderate
significant genome-wide threshold P < 5× 10−7. The second column lists the positions (Mb) of the
markers on the first chromosome. The third and fourth columns list the p-values for each variant
corresponding to the 10th and last rib backfat traits, respectively. The last column details the genes
nearest to the significant locus. ?Genes that are most likely to associated with both traits.

SNP Position (Mb) 10th Rib (P ) Last Rib (P ) Nearest Gene(s)

INRA0006067 274.1

1.2× 10−6 ≈ 0
APBA1, DOCK8, FAM189A2,
KANK1 ?, KLF9 ?, PGM5,
PIP5K1B, PTAR1, TJP2

INRA0006074 274.7

DRGA0002004 276.2

INRA0006186 276.5

INRA0006192 276.6
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