
	
   1	
  

The domesticated brain: 

 genetics of brain mass and brain structure in an avian species 

 

 

Henriksen, R.1, Johnsson, M.1, Andersson, L.2, Jensen, P.1, Wright, D.1 

 

1AVIAN Behavioural Genomics and Physiology Group, IFM Biology, Linköping 

University, Linköping 58183, Sweden 

2 Dept of Medical Biochemistry and Microbiology, Uppsala University, BMC, Husargatan 

3, Uppsala 75123, Sweden 

 

Correspondence to domwright@gmail.com 

  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 31, 2016. ; https://doi.org/10.1101/066977doi: bioRxiv preprint 

https://doi.org/10.1101/066977


	
   2	
  

ABSTRACT 1	
  

As brain size usually increases with body size it has been assumed that the two are tightly 

constrained and evolutionary studies have therefore often been based on relative brain size (i.e. 

brain size proportional to body size) instead of absolute brain size. The process of domestication 

offers an excellent opportunity to disentangle the linkage between body and brain mass due to 

the extreme selection for increased body mass that has occurred. By breeding an intercross 

between domestic chicken and their wild progenitor, we address this relationship by 

simultaneously mapping the genes that control inter-population variation in brain mass and 

body mass. Loci controlling variation in brain mass and body mass have separate genetic 

architectures and are therefore not directly constrained. Genetic mapping of brain regions in the 

intercross indicates that domestication has led to a larger body mass and to a lesser extent a 

larger absolute brain mass in chickens, mainly due to enlargement of the cerebellum. 

Domestication has traditionally been linked to brain mass regression, based on measurements of 

relative brain mass, which confounds the large body mass augmentation due to domestication. 

Our results refute this concept in chicken and confirm recent studies that show that different 

genetic architectures underlie these traits. 
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INTRODUCTION 3	
  

Brain size variation across vertebrate species continues to fascinate evolutionary biologists, due 4	
  

to the cognitive and behavioral phenotypes it is thought to underlie. Most studies on brain size 5	
  

differences suggest some kind of trade-off between the costs of developing and maintaining 6	
  

energetically expensive brains and certain physiological variables (such as body size 1, 7	
  

metabolic rate 2, development time 3) or lifestyle variables (e.g. foraging ecology 4 and social 8	
  

environment 5). One physiological variable that correlates notably with brain size is body size 1. 9	
  

As brain size usually increases with increasing body size 6 it has been assumed that the two are 10	
  

tightly constrained during developmental growth 7. Researchers have therefore often relied on 11	
  

relative rather than absolute brain size in correlative studies. The relationship between body size 12	
  

and brain size is, however, poorly understood and the use of allometry in brain size evolution 13	
  

studies has been criticized 8-10. Understanding the genetics of brain size evolution is extremely 14	
  

pertinent to determine the relationship between brain size and body size. Most importantly, to 15	
  

what degree there is overlap (and potential pleiotropy) between the genes responsible for both. 16	
  

To date, studies on the genetic relationship between brain and body size are almost entirely 17	
  

limited to phylogenetic comparisons and measures of selection, and have failed to identify the 18	
  

overlap of the genetic architecture between these traits (brain size and body size), especially 19	
  

using a within-species approach. The analysis of the rates of evolution in a between-species 20	
  

analysis of cichlids can indicate that brain size and body size can have distinct rates of evolution 21	
  

11. Similarly, selection on body mass can potentially drive reduced relative brain mass 12, whilst 22	
  

different orders of animals may have different brain-body mass variation, which is driven 23	
  

primarily by variability in body mass 13. Genetic correlations between brain and body size in 24	
  

stickleback (Gasterosteus aculeatus) showed a positive correlation between the two traits 14, but 25	
  

also a large standard error to this estimate (with the correlation being between 12-96%). In the 26	
  

principle study to actually assess the genetic architecture of quantitative variation in brain size, a 27	
  

quantitative trait loci (QTL) study in inbred mice strains identified genomic regions associated 28	
  

with overall brain mass 15, though was primarily focussed on identifying QTL for separate brain 29	
  

sub-regions. In this study, however, the genetic architecture for body mass was almost entirely 30	
  

unresolved (identifying only one suggestive locus), making it impossible to assess any potential 31	
  

overlap between brain and body mass loci. Therefore, nothing is known regarding the combined 32	
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genetic architectures for brain mass and body mass. Thus, to date, no studies exist that 33	
  

comprehensively examine the genetic architecture of both brain mass and body mass in an intra-34	
  

species specific manner.  35	
  

 

The genetics underlying loci affecting overall brain size and body size in avian (or indeed 36	
  

any other) species have yet to be explored, although the genes underpinning certain brain 37	
  

regions in birds have been investigated. Most genetic work on avian brain regions has been on 38	
  

genes relating to variation in the brain structures governing song learning 16-18, and genetic 39	
  

programs involved in determining the basic architecture of the telencephalon 19-21. The genetic 40	
  

basis of overall brain composition differences has yet to be investigated in birds. The degree to 41	
  

which different brain regions can develop independently is highly debated. According to the 42	
  

‘mosaic evolution’ hypothesis individual brain regions can develop and grow independently in 43	
  

size 22 while the ‘concerted evolution’ hypothesis argues that different brain regions have been 44	
  

limited by developmental constraints and that brain size alters predominantly as a whole 3. In 45	
  

the case of the latter hypothesis therefore individual regions cannot change in size 46	
  

independently. To date, only two studies have attempted to identify gene regions that affect 47	
  

variation in brain substructure size within species. The previously mentioned QTL study in 48	
  

inbred mice strains 15, and a Genome Wide Association Study (GWAS) study by Hibar et al. 23 49	
  

that identified eight loci affecting putamen and caudate nucleus volumes in humans. 50	
  

 51	
  

Brain size differs substantially within species 24. Since evolution operates through 52	
  

intraspecific variation, within species differences can help disentangle the relationship between 53	
  

brain and body size and the degree to which different brain structures are constrained 54	
  

developmentally. The process of domestication is especially interesting because of the huge 55	
  

differences in both brain and particularly body size in domesticated animals as compared to 56	
  

their wild progenitors, and the reduction in relative brain size. This generates a perfect model 57	
  

for assessing the effects of variation in brain and body size, how body size is constrained by 58	
  

brain size and vice-versa. A classical effect of domestication is reduced relative brain size, with 59	
  

this believed to reflect the reduced functional needs of domesticated animal’s brains. Studies 60	
  

have reported smaller brain size in both domesticated mammalian (sheep: 25, pig: 26,27, mink: 28), 61	
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and avian species (turkeys: 29, chickens: 30, pigeons: 31, ducks: 32), as compared to their wild 62	
  

progenitors. However, the methods used in virtually all studies on brain size reduction in 63	
  

domesticated animals confound the effect of brain reduction with the often very large body size 64	
  

augmentation that has occurred during domestication. The effect of reduced relative brain size 65	
  

with directional selection is not limited to domestication, with studies on fish showing that 66	
  

reduced relative brain mass can be potentially driven by increased selection for body mass 12. 67	
  

Thus results from the genetic dissection of domestication may be pertinent in a wider 68	
  

perspective.  69	
  

 

 Genomic sequencing of the wild progenitor of all domesticated chickens, the Red 70	
  

Junglefowl (RJF) Gallus gallus, as well as different domestic chicken breeds has enabled the 71	
  

identification of selective sweeps – gene regions that have been strongly selected upon during 72	
  

domestication 33. Although the domestic chicken and RJF differ both physiologically and 73	
  

behaviourally they still belong to the same species and can interbreed. This allows us to perform 74	
  

a similar QTL analysis as that by Hager and colleagues in mice 15 but with the added advantage 75	
  

that large differences in the domestic chicken and RJF brain and body mass and genome 76	
  

provides us with an a priori hypotheses regarding brain and body phenotype (mass) and which 77	
  

genes might be involved (underlying selective sweep-regions).  78	
  

 

In this study we use a domestic (White Leghorn chicken, Gallus gallus domesticus) x wild 79	
  

(RJF) advanced intercross to fine-map quantitative trait loci (QTL) pertaining to brain mass and 80	
  

body mass differences between wild and domestic populations, as well as ontogenetical 81	
  

analyses of brain and body mass development in wild and domestic birds. This intercross allows 82	
  

us to separately map both brain mass and body mass QTL and determine the genetic 83	
  

architecture of both traits. Brains from this intercross population were further subdivided into 4 84	
  

brain regions and weighed. To access potential differences in cerebrotype, each brain region 85	
  

was mapped both as a whole-weight measure and in terms of the proportion of total brain mass 86	
  

accounted for by each region (termed ‘proportional QTL’). It is important to note that the QTL 87	
  

mapping procedure only detects loci that differ between the parental populations, i.e. those loci 88	
  

that are distinct between wild and domestic birds. Loci that both populations have in common 89	
  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 31, 2016. ; https://doi.org/10.1101/066977doi: bioRxiv preprint 

https://doi.org/10.1101/066977


	
   6	
  

will not be detected. In this way, we can therefore specifically detect those loci that control 90	
  

brain mass and body mass that have been selected upon by domestication. However, the general 91	
  

loci that both domestic and Red Junglefowl share will be undetected, and therefore missed. 92	
  

Ontogenetic brain and body mass development analyses were performed using populations of 93	
  

wild and domestic birds. These allow the developmental growth trajectories of both brain mass 94	
  

and body mass to be compared between wild and domestic birds. If brain mass is indeed 95	
  

inextricably linked with body mass, the growth trajectories of both brain mass and body mass 96	
  

should mirror one another, in both wild and domestic populations. This enables a separate 97	
  

analysis of the relationship between brain and body mass in an inter-population context. To our 98	
  

knowledge, this is the first study to actually identify multiple genomic regions underpinning the 99	
  

mass differences in both whole brain and brain region mass, whilst simultaneously mapping 100	
  

body mass, not only between a wild and domesticated population but also in vertebrates in 101	
  

general. This approach separates and decouples the detected brain loci at a genetic level from 102	
  

those loci affecting only body mass.  103	
  

 

METHODS 104	
  

Chicken Study population and cross design 105	
  

The intercross population was an eighth generation intercross between a population of RJF, 106	
  

derived originally from Thailand 34,35 and a line of selected White Leghorn (WL) chickens, with 107	
  

a total of 470 adult F8 individuals were used in this study. Females were assayed for brooding 108	
  

prior to culling. In addition a total of 61 RJF and 65 WL chickens were reared (in conditions 109	
  

identical to the intercross birds) to assess brain development and growth differences from age 110	
  

one, two, four, ten and fifteen weeks as well as at adult age, between RJF and WL. Eleven 111	
  

broiler birds were additionally dissected at two weeks of age, as a comparison for the other 112	
  

major domesticated strain. Volumetric measurements were taken on the brains of two adult 113	
  

male RJF and 2 adult male WL individuals. The study was approved by the local Ethical 114	
  

Committee of the Swedish National Board for Laboratory Animals. All methods were 115	
  

performed in accordance with the relevant guidelines and regulations. 116	
  

 

Phenotyping 117	
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Brain measurements and dissection 118	
  

Immediately after culling, the brains were removed from the birds and weighed, after being 119	
  

dissected into four pieces for 315 individuals and nine pieces for 129 individuals. Total brain 120	
  

mass values were available for 439 of these individuals. Four piece dissections involved 121	
  

dividing the brain into the cerebral hemispheres, optic tectum, cerebellum and a brainstem 122	
  

region (which included thalamus, the rest of the midbrain and the hindbrain; for more 123	
  

information on the dissected brain regions see supplementary figure 1 and the supplementary 124	
  

methods). Nine-piece dissections were only used for QTL analysis of body mass and whole 125	
  

brain mass, with these dissections being used for a different study (36 – with the brainstem 126	
  

region further subdivided into the optic	
   chiasma,	
   thalamus,	
   hypothalamus,	
   medulla	
  127	
  

oblongata,	
  pons	
  and	
  nucleus	
  tractus	
  solitarii). Each brain region was weighed to the nearest 128	
  

0.001g. To ascertain whether a heavier brain also equates to a larger brain, brain mass was 129	
  

compared with volume in a subset of RJF and WL birds. The proportional brain region mass 130	
  

was calculated by dividing the mass for each specific region by the total brain mass. Details of 131	
  

volumetric measures are given in the supplementary methods section as is the technique for 132	
  

assessment of brooding. Brain volume was found to scale linearly with mass (see supplementary 133	
  

figure 2A). In all four brain regions, regions with a larger mass had a greater volume, with brain 134	
  

mass explaining 98-100% of the variation when regressed on brain volume (supplementary 135	
  

figure 2B). 136	
  

 

Genotyping, QTL and mapping 137	
  

All individuals were genotyped for 652 SNP markers, with QTL analysis performed using R/Qtl 138	
  

37 for both standard interval mapping and epistatic analyses. See supplementary methods for full 139	
  

details of the mapping and models used.  140	
  

 

RESULTS 141	
  

Total brain mass is larger in domestic birds with a different growth trajectory relative to 142	
  

body mass in comparison to wild birds 143	
  

Absolute brain mass is larger in domestic (WL) chickens relative to wild RJF  (figure 1), with a 144	
  

consistent difference of approximate ~0.2g up to 5 weeks of age, with this increasing to ~0.4g at 145	
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sexual maturity. In the case of both domestic chickens and RJF brain growth is linear up to 146	
  

adulthood. In contrast body mass differences diverge rapidly after 4 weeks of age between 147	
  

domestic chickens and RJF, with domestic chickens showing a sharp exponential increase in 148	
  

mass, and at sexual maturity they weigh almost twice as much as RJF (figure 1). Thus whilst 149	
  

domestic chickens exhibit the classic effects of domestication (reduced relative brain mass, 150	
  

massively increased body mass), the differences between brain growth and body growth 151	
  

trajectories between these two populations suggests that different genetic systems are at play 152	
  

governing these different traits. If this is the case, then the genetic architecture of brain mass and 153	
  

body mass in the intercross population should be non-overlapping. Additionally, the brain 154	
  

composition of wild birds and domestic birds was also found to differ, with domestic birds 155	
  

possessing a larger cerebellum and cerebral hemispheres and smaller optic tecta and brainstem 156	
  

with these differences being largely consistent throughout post-hatch growth (Supplementary 157	
  

figure 3). Therefore, non-overlapping architecture for different brain sub-regions in the 158	
  

intercross would also favour the mosaic brain theory over the concerted brain hypothesis. 159	
  

 

 

The detected architectures for inter-population brain mass and body mass appear 160	
  

separate 161	
  

A total of 20 QTL relating to inter-population brain mass and proportional brain mass variation 162	
  

were identified (table 1 and supplementary table 2). One of the first things of note is that the 163	
  

QTL for brain mass and proportional brain region mass and absolute brain region mass are 164	
  

entirely separate from the QTL for body mass. There is no overlap for any of the loci involved, 165	
  

indicating that the genes selected by domestication (i.e. those leading to inter-population 166	
  

variation) for body mass and brain region mass are at least partially separate, i.e. it is possible to 167	
  

select for increased brain growth without increased body mass and vice-versa during 168	
  

domestication (see figures 2 and 3). Although body mass was not used as a covariate for the 169	
  

brain mass QTL analysis presented above (due to the possibility that including it could mask 170	
  

QTL that overlap body mass by already factoring body mass out the model), its inclusion lead to 171	
  

no changes in the detected QTL position, and in fact strengthened the QTL in some cases, 172	
  

further highlighting the separate nature of the two architectures. A general caveat with QTL 173	
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analysis is that the genes controlling brain mass and body mass that are shared between 174	
  

domestic and wild populations (i.e. intra-population variation) will not be detected as QTL in 175	
  

this analysis. However, the phenotypic correlation between brain and body mass in this cross is 176	
  

relatively low and undetected loci causing intra-population variation that also overlapped would 177	
  

increase this correlation. Although significant, sex and body mass together account for only 178	
  

18% of the total variation in brain mass, with sex alone accounting for 16% of the variation. 179	
  

Similarly, when a linear model fitting all the detected QTL as well as body mass was regressed 180	
  

onto brain mass, body mass still only accounted for 2% of the variation in brain mass variation, 181	
  

whilst the detected genetic loci accounted for 22% of the brain mass variation. A further caveat 182	
  

is that genes with effects too small to be detected may yet be pleiotropic between brain and 183	
  

body mass, though given the lack of any phenotypic correlations as noted above, this seems less 184	
  

probable. In the case of the genetic architecture for body mass, the detected QTL account for 185	
  

over 36% of the total variation for body mass (excluding sex differences), whilst the total GLM 186	
  

that included all body mass QTL and other covariates explained 84% of the variation for body 187	
  

mass. Therefore, relatively little unexplained variation is present in the model for body mass. A 188	
  

significant sex interaction can indicate that a QTL has greater effect on one sex as compared to 189	
  

the other. In this case, very few sex interaction effects were seen for cerebellum and total brain 190	
  

mass traits, with the only interactions being on chromosomes 3 (total brain mass) and 5 191	
  

(proportional cerebellum mass), and none were found for any other traits (see supplementary 192	
  

table 3). 193	
  

 

Domestic genotypes cause larger brains and larger cerebella than wild genotypes 194	
  

In the case of the cerebellum and total brain mass QTL, the observed allelic effect is in 195	
  

accordance with the phenotypic differences seen in the wild and domestic breeds (see 196	
  

supplementary figures 3-4). Domestic alleles correlate with an increase in cerebellum mass and 197	
  

total brain mass in 6 out of 7 of the cerebellum QTL and 3 out of 4 of the brain mass QTL 198	
  

identified, i.e. the QTL are not transgressive (see the additive and dominance QTL effect sizes 199	
  

in table 1), meaning that the alleles correlating with an increase in the phenotype come from the 200	
  

parental strain possessing the larger phenotype. In combination with the observation that brain 201	
  

mass has a separate genetic architecture to body mass in this cross, this indicates that once the 202	
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genes underpinning brain mass and body mass are de-coupled, domestic chickens have larger, 203	
  

not smaller, brains as compared to their wild counterparts. Further to this, the cerebellum is also 204	
  

larger in mass in the domestic chickens (both totally and as a proportion of total brain mass), 205	
  

with the genetic control of this trait separate from overall body mass. There is a strong overlap 206	
  

between the observed genetic architectures for the cerebellum and total brain mass, with three of 207	
  

the four brain mass QTL overlapping total cerebellar mass QTL (on chromosomes 1,3, and 7, 208	
  

see table 1).  209	
  

 

Brain regions each have their own unique genetic architecture   210	
  

The different brain regions have separate genetic architectures from one another for both total 211	
  

and proportional mass, as determined by the loci detected. Although in the case of the optic 212	
  

tectum and brainstem regions very few QTL were identified (only two loci in total). For both 213	
  

cerebral hemispheres and the cerebellum multiple QTL were identified (18 in total), explaining 214	
  

a relatively large amount of the variation in the cross (26% of total variation for proportional 215	
  

cerebral hemispheres mass, 26% of total variation for total cerebellum mass, 22% of the 216	
  

variation for total brain mass). Even with these more complete genetic architectures, there was 217	
  

nevertheless no overlap between different brain regions QTL with one another, indicating that, 218	
  

at least partially, this supports the mosaic theory of brain evolution 22. 219	
  

 

Brain mass is selected for during domestication 220	
  

Selective sweeps have been putatively identified in the chicken genome, representing regions 221	
  

that have reduced heterozygosity during the periods of selection that occurred during 222	
  

domestication 33. By using a clustering analysis based on the number of sweeps detected in the 223	
  

genome, the confidence intervals of the brain QTL and the number of overlaps between brain 224	
  

QTL and selective sweep loci, we found that the QTL relating to cerebellum mass (7 loci in 225	
  

total, marked in bold in table 1) contained a significant enrichment of selective sweeps (P=0.04, 226	
  

using the clustering test as described in the supplementary methods), as did the regions relating 227	
  

to total brain mass (4 loci overlapped, P=0.01, clustering test). These results indicate that loci 228	
  

affecting cerebellum and total brain mass may have been directly selected upon during 229	
  

domestication, or that these loci are closely linked with other genes targeted by domestication 230	
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selection. Given this significant overlap between selective sweeps and QTL regions, genes 231	
  

contained within these sweeps are good candidates for the genes causal to the QTL (often 232	
  

referred to as Quantitative Trait Genes). Twelve genes are present in the selective sweeps within 233	
  

total brain and cerebellar QTL (see table 1). Four of these (FGF3, FGF9, BIN1, SHANK1) have 234	
  

previous associations with neuronal conditions or neurogenesis (see discussion). 235	
  

 236	
  

Brooding behaviour correlates with proportional cerebellum mass 237	
  

Given the strong selection on the mass of the cerebellum in domestic chickens, we correlated 238	
  

brooding behaviour with proportional cerebellum mass. We found a strong negative relationship 239	
  

between brooding behaviour and proportional cerebellum mass (GLM, n=123, F=-2.6, 240	
  

P=0.009), indicating that birds with a larger cerebellum and thereby a more domesticated brain 241	
  

cerebrotype displayed less brooding behaviour, characteristic of domestic chickens. Body mass 242	
  

was included in the model as a covariate, so these results are not due to overall body mass 243	
  

effects. Four QTL were detected for brooding behaviour (see supplementary table 2). Although 244	
  

none overlapped total brain mass QTL, the confidence interval of one (on chromosome 9) was 245	
  

within 32cM of a total brain mass QTL, whilst another (on chromosome 4) was within 38cM of 246	
  

a QTL for proportional optic tectum mass. In the case of the latter this distance corresponds to 247	
  

around 200kb, whilst in the case of the latter it is around 10Mb. No correlations were found 248	
  

between other brain regions and brooding. 249	
  

 250	
  

RJF and WL fat/ lean/ bone body tissue proportions 251	
  

The body composition, and in particular the lean mass to fat mass percentage, could potentially 252	
  

be important in explaining intra-species brain mass differences, especially if lean mass requires 253	
  

a proportional increase in neurons. If domestic birds have a far greater percentage of fat mass, 254	
  

then departures from the usual brain allometry may be due to large brain mass not being 255	
  

required for the extra fat tissue. Using data from a previous study by Rubin and colleagues 38 256	
  

that measured overall fat, lean and bone mass in both wild and domestic chickens using Dual X-257	
  

ray Absorbancy (DXA) techniques it is possible to calculate the relative proportions of these 258	
  

tissue types (see supplementary table 4). Although domestic females have a higher percentage 259	
  

of body fat (65% lean mass in WL females to 84% lean mass in RJF females), the domestic 260	
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males (that show the largest decrease in relative brain mass) actually possess a far lower 261	
  

percentage body fat than their wild counterparts, with a correspondingly higher proportion of 262	
  

lean muscle mass (86% lean mass in WL males to 77% lean mass in RJF males). 263	
  

 264	
  

DISCUSSION 265	
  

Domesticated chickens (WL) have a larger brain mass and body mass than their wild progenitor, 266	
  

but whereas body mass has increased by ~85% during domestication, brain mass has only 267	
  

increased by ~15%. This indicates that brain mass has been altered less by selection during 268	
  

domestication than body mass and that in chickens reduced relative brain mass during 269	
  

domestication has mainly been caused by an increase in body mass. By separating the linkage 270	
  

between loci affecting inter-population variation in brain mass and body mass in an advanced 271	
  

intercross we demonstrate that domestication selection has acted on apparently separate loci to 272	
  

increase brain mass and body mass in domesticated individuals. Therefore selection on body 273	
  

mass is not limited by brain mass and vice-versa in the chicken, with domestication leading to 274	
  

(at least partially) separate genetic architectures for these traits. It is important to note that brain 275	
  

and body mass architectures that are common to both wild and domestic populations will not be 276	
  

detected with this analysis. This means we cannot infer that no loci affecting brain mass and 277	
  

body mass are pleiotropic or overlap, only that those that are due to domestication selection do 278	
  

not. Similarly, with any QTL study there is always the possibility that loci with effect sizes too 279	
  

small to detect exist and do overlap and exhibit pleiotropy. However, the relatively small 280	
  

percentage of variation of brain mass explained by body mass suggests that these within-281	
  

population loci are of smaller effect than the between-population loci. In the combined model of 282	
  

QTL and body mass covariates affecting brain mass, body mass explains only 2% of brain mass 283	
  

variation whilst the QTL explains around 22%, and sex explains 4% of the variation. Likewise, 284	
  

if numerous undetected, small-effect loci were also pleiotropic we would still expect the brain 285	
  

and body mass correlation to be higher. It is also possible that developmental constraints 286	
  

between brain and body mass may not necessarily exist at a pleiotropic level, but there could 287	
  

still be a physiological constraint. In this case, however, a stronger correlation between brain 288	
  

mass and body mass would still be expected in the above linear model. Our study is the first to 289	
  

provide evidence for a relatively distinct genetic architecture for body mass and brain mass in 290	
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an avian species and also to demonstrate that separate loci underlie the mass of the different 291	
  

brain regions, thereby showing that the mass of an individual brain regions can be selected upon 292	
  

without being strictly constrained by the mass of the other brain regions, as predicted by the 293	
  

mosaic brain evolution hypothesis. Support for mosaic brain evolution has also been reported in 294	
  

mammals 15 and fish 14 and together with our findings in birds suggest that mosaic brain 295	
  

evolution is possible across vertebrate species.  296	
  

 297	
  

The nature of the body and brain mass increases during domestication is of relevance when 298	
  

considering allometric scaling and the relationship between brain mass and body mass. It has 299	
  

been proposed that the developmental constraints limiting brain and body mass are related to the 300	
  

overall musculature (see the trophic theory of neural connections 39, amongst others), with 301	
  

increased neural circuitry required for an increase in muscular anatomy. A possibility therefore 302	
  

is that domestic birds have a lower relative brain mass due to increased fat reserves making up a 303	
  

larger percentage of their overall body mass. The majority of the mass gain in domestics would 304	
  

then be due to increased fat deposits and thus not require any increase in brain mass. However, 305	
  

the calculations we performed using the data from a previous study by Rubin and colleagues 38 306	
  

indicates that this does not appear to be a limiting factor in this instance, with male WL birds 307	
  

having a higher lean body mass percentage than their RJF counterparts. Similarly, we have also 308	
  

shown that in chickens an increase in brain mass also correlates with an increase in brain 309	
  

volume. Similar strong correlations between brain mass and brain volume have recently been 310	
  

shown in stickleback fish 14. This suggests that the density of brain tissue is constant, however it 311	
  

remains an open and intriguing question whether the increased brain mass induced by 312	
  

domestication relates to the incorporation of more neurons, or alternatively non-neuronal cells 313	
  

such as blood cells or glia, connections and the like.  314	
  

 

Although the brain and the four different brain regions grow continuously until adulthood in 315	
  

both RJF and WL, the proportional mass of each brain region changes during posthatch 316	
  

development and domestic and wild birds differ in the proportional mass of certain brain 317	
  

regions. These differences in cerebrotype between RJF and WL, caused by selection during 318	
  

domestication, must therefore occur initially during prehatch development or during the first 319	
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week posthatch. Our findings suggest that selection during domestication in chickens has been 320	
  

stronger on the cerebral hemispheres and cerebellum than on the brainstem region and optic 321	
  

tectum. This is further supported by the enrichment of selective sweeps (gene regions that have 322	
  

been strongly selected upon during chicken domestication), which are present in the QTL 323	
  

regions for both cerebellum and overall brain mass. Increased proportional cerebellum mass, 324	
  

compared to their wild counterparts, is seen in most studies on domesticated birds, including 325	
  

domesticated geese 40, turkeys 29 and pigeons 41 (but see also 31 for opposite results), but not in 326	
  

ducks 32, suggesting that proportional enlargement of the cerebellum may have played an 327	
  

important role during domestication in several birds species. 328	
  

 329	
  

We find that brooding behaviour is inversely correlated with the proportional mass of the 330	
  

cerebellum. These findings suggest that the cerebellum could help govern this behaviour, and 331	
  

therefore provide a link between domestication effects on brain composition (an enlarged 332	
  

cerebellum) and domestication effects on behaviour (reduced broodiness). Proportional 333	
  

enlargement of the cerebellum and cerebral hemispheres could potentially have been important 334	
  

for the chicken to adapt to several aspects of the domesticated environment. In birds increased 335	
  

cerebral hemispheres mass has been linked with increased social complexity 42 and the 336	
  

cerebellum has been linked with foraging strategy 43. Wild RJF live in small group sizes of 337	
  

around 4-10 individuals 44, whereas domestic chickens are kept in far larger groups. Although 338	
  

these theories are tempting to extrapolate upon, care must be taken in their interpretation given 339	
  

the purely correlative data.  340	
  

 

The ultimate goal of a QTL study is often to identify the genes themselves that underlie the 341	
  

trait in question. In standard (F2 or similar) QTL analyses, the confidence intervals of detected 342	
  

QTL are so large (typically in the region of 20-30 megabases) that identifying putative 343	
  

candidate genes is virtually impossible. However, in the study presented here the combination 344	
  

of the advanced intercross and the overlap with selective sweeps for domestication yield a 345	
  

number of candidate genes for brain growth. In regards to the QTL for cerebellum mass and 346	
  

total brain mass, 12 genes in total are present within sweeps in these regions. Of these, four 347	
  

have prior associations with neural conditions and neuronal generation, reinforcing them as 348	
  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 31, 2016. ; https://doi.org/10.1101/066977doi: bioRxiv preprint 

https://doi.org/10.1101/066977


	
   15	
  

excellent candidate genes for increased brain and cerebellum mass. The chromosome 1 sweep at 349	
  

182.6Mb, in the middle of the QTL region for total cerebellum mass, contains the gene FGF9, 350	
  

which regulates the generation and positioning of Bergmann glia cells in the developing mouse 351	
  

cerebella 45. FGF9 also has a crucial role in embryonic neurological development 46-49. Similarly 352	
  

the QTL for proportional cerebellum mass on chromosome 5 contains 4 sweeps, with three 353	
  

genes present in those sweeps. Once again an FGF gene, in this case FGF3, is present. Also 354	
  

present in a separate sweep is SHANK1, mutations in which are associated with dysfunction of 355	
  

glutamatergic synapses that lead to a variety of neuropsychiatric disorders including autism and 356	
  

schizophrenia 50. The sweep located at 25.42Mb on chromosome 7 that overlaps with the total 357	
  

brain mass QTL is located within 100kb of the gene BIN1 that has effects on working memory, 358	
  

hippocampal volume and functional connectivity 51. The QTL for total cerebellum mass on 359	
  

chromosome 1 at 2204cM has an interval of 1.1Mb and is therefore sufficiently highly resolved 360	
  

to also address the genes contained within for potential functionality, containing as it does 15 361	
  

reference sequence genes. Of these, a number of highly interesting genes are identified for 362	
  

further investigation.  MAP6 is in the centre of the QTL confidence interval and mediates 363	
  

neuronal connectivity for axonal growth 52. It has been linked with synaptic plasticity anomalies 364	
  

and has associations with schizophrenia through neuronal transport defects 53 and cognitive 365	
  

impairment 54. CCKBR is linked with posttraumatic stress disorder and synaptic plasticity 55 and 366	
  

PLEKHB1 is associated with Attention Deficit Hyperactivity Disorder 56. 367	
  

 

Our findings reinforce the concerns from recent years regarding the use of relative brain 368	
  

mass in evolutionary studies. Although brain mass can co-vary with body mass, and allometric 369	
  

effects still exist, if the differing genetic architectures are confounded together meaningful 370	
  

differences will be masked. Most notably, selection can increase body mass irrespective of brain 371	
  

mass, and vice versa, so the use of relative measures can potentially be flawed. Our results also 372	
  

refute the common notion that domestication leads to the regression of brain mass in 373	
  

domesticated chicken as a result of reduced functional needs. The combination of an advanced 374	
  

intercross and the presence of selective sweeps give a number of high confidence candidate 375	
  

genes with putative effects on total brain and cerebella growth. This demonstrates that the RJF 376	
  

and the domestic chicken provide an interesting animal model for studying brain mass evolution 377	
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during domestication, and also a general model for studying evolution in brain mass and 378	
  

composition.  379	
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TABLE LEGENDS 538	
  

Table 1. QTL information for body mass, total brain mass and cerebellum QTL. Includes 539	
  

locations (both the chromosome and the position in centiMorgans), % variance explained by 540	
  

each QTL (r-squared), additive and dominance effect sizes (positive values for additive values 541	
  

indicate a larger QTL effect size in domestic genotype birds, negative a larger value in wild 542	
  

genotype birds). The lower and upper bounds of the 95% confidence interval (C.I) are noted. 543	
  

The total QTL region is therefore the region bounded between these two limits. Locations of 544	
  

selective sweeps are also provided, with AD indicating the sweep is present in both Broiler and 545	
  

Layer birds, and LR indicating the sweep is specific to Layer birds. For sweeps present in 546	
  

cerebellum and total brain mass QTL any genes present within sweeps are also provided after 547	
  

the sweep location. Cerebellum QTL are marked in bold. 548	
  

FIGURE LEGENDS 549	
  

Figure 1. Changes in body mass (solid lines: mean±SE) and brain mass (dotted lines: 550	
  
mean±SE) in White leghorn (black lines) and Red Junglefowls (red lines) from 1-week of age 551	
  
until adulthood. 552	
  

Figure	
  2.	
  QTL supports intervals (as determined by the 1.8 LOD drop method) in the genome 553	
  

separating out loci for proportional and total brain mass and body mass. X-axis represents the 554	
  

chromosome containing the QTL, whilst the size of the each bar represents the total QTL region 555	
  

size (i.e. the 95% C.I. of the QTL location).  556	
  

 Figure 3. Comparison of LOD graphs for total brain mass QTL and body mass QTL  557	
  

  558	
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Table	
  1.	
  559	
  
	
   	
  560	
  

trait	
   chr	
   pos	
   LOD	
   r-­‐sq	
   add	
  +/-­‐	
  s.e	
   dom	
  +/-­‐	
  s.e.	
   lower	
  CI	
   upper	
  CI	
   selective	
  sweeps	
  present	
  
body	
  mass	
  (212	
  days)	
   1	
   510	
   43.5	
   21.5	
   235	
  +/-­‐	
  28	
   -­‐20	
  +/-­‐	
  38	
   507	
   516	
   	
  	
  
total	
  brain	
  mass	
   1	
   1516	
   5.3	
   3.3	
   0.06	
  +/-­‐	
  0.02	
   -­‐0.06	
  +/-­‐	
  0.04	
   1494	
   1583	
   119.46	
  LR	
  (SPAC17A2),	
  127.88	
  LR	
  (ARHGAP6)	
  
total	
  Cerebellum	
  mass	
   1	
   1593	
   13.5	
   9.9	
   0.012	
  +/-­‐	
  0.005	
   -­‐0.023	
  +/-­‐	
  0.007	
   1586	
   1598	
   127.88	
  LR	
  
proportional	
  Cerebellum	
   1	
   1945	
   4.8	
   4.8	
   0.003	
  +/-­‐	
  0.001	
   0.005	
  +/-­‐	
  0.002	
   1931	
   1956	
   179.66	
  LR	
  (UBL3),	
  182.6	
  LR	
  (FGF9)	
  
total	
  Cerebellum	
  mass	
   1	
   2204	
   9.3	
   6.6	
   0.0004	
  +/-­‐	
  0.004	
   -­‐0.004	
  +/-­‐	
  0.005	
   2196	
   2224	
   MAP6,	
  CCKBR,	
  PLEKHB1	
  
total	
  Cerebellum	
  mass	
   3	
   448	
   8.5	
   6	
   0.005	
  +/-­‐	
  0.005	
   0.022	
  +/-­‐	
  0.007	
   442	
   458	
   	
  62,62	
  LR	
  (KNF217),	
  64.04	
  LR	
  (SERINC1)	
  
total	
  brain	
  mass	
   3	
   448	
   8.7	
   5.6	
   -­‐0.12	
  +/-­‐	
  0.07	
   0.25	
  +/-­‐	
  0.09	
   444	
   454	
   	
  62,62	
  LR	
  (KNF217),	
  64.04	
  LR	
  (SERINC1)	
  
body	
  mass	
  (212	
  days)	
   4	
   265	
   8.6	
   4.7	
   8.1	
  +/-­‐	
  9.8	
   19.8	
  +/-­‐	
  12.3	
   254	
   274	
  

	
  proportional	
  Cerebellum	
   5	
   124	
   4.8	
   4.8	
   0.002	
  +/-­‐	
  0.004	
   -­‐0.03	
  +/-­‐	
  0.006	
   106	
   144	
   18.8	
  LR	
  (FGF3),	
  19.4	
  LR	
  (SHANK1),	
  20.2	
  LR	
  (CAT),	
  20.5	
  LR	
  (CD44)	
  
body	
  mass	
  (212	
  days)	
   6	
   207	
   5	
   1.9	
   26	
  +/-­‐	
  8	
   30	
  +/-­‐	
  11	
   195	
   214	
  

	
  proportional	
  Cerebellum	
   7	
   159	
   7.4	
   7.6	
   0.005	
  +/-­‐	
  0.002	
   0.004	
  +/-­‐	
  0.002	
   150	
   171	
  
	
  total	
  Cerebellum	
  mass	
   7	
   174	
   5.9	
   4.1	
   0.019	
  +/-­‐	
  0.005	
   0.003	
  +/-­‐	
  0.005	
   150	
   176	
   23.04	
  AD	
  (TANK1)	
  

total	
  brain	
  mass	
   7	
   200	
   6.6	
   4.2	
   0.02	
  +/-­‐	
  0.018	
   -­‐0.04	
  +/-­‐	
  0.03	
   190	
   212	
   23.04	
  AD	
  (TANK1),	
  23.1	
  AD,	
  25.42	
  LR	
  (BIN1),	
  25.9	
  LR	
  
total	
  brain	
  mass	
   9	
   51.1	
   13.6	
   8.9	
   0.018	
  +/-­‐	
  0.017	
   -­‐0.04	
  +/-­‐	
  0.02	
   48	
   60	
  

	
  body	
  mass	
  (212	
  days)	
   12	
   64	
   4.4	
   1.7	
   35	
  +/-­‐	
  10	
   20	
  +/-­‐	
  14	
   45	
   79	
  
	
  body	
  mass	
  (212	
  days)	
   24	
   14	
   9.5	
   5	
   0.8	
  +/-­‐	
  9.1	
   38	
  +/-­‐	
  11	
   6	
   18	
  
	
  body	
  mass	
  (212	
  days)	
   27	
   68	
   4.2	
   1.6	
   38	
  +/-­‐	
  11	
   -­‐1.8	
  +/-­‐	
  9.8	
   56	
   80	
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