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The metabolic byproducts secreted by growing cells can be easily measured and provide11

a window into the state of a cell; they have been essential to the development of microbiol-12

ogy1, cancer biology2, and biotechnology3. Progress in computational modeling of cells has13

made it possible to predict metabolic byproduct secretion with bottom-up reconstructions of14

metabolic networks. However, owing to a lack of data, it has not been possible to validate15

these predictions across a wide range of strains and conditions. Through literature mining,16

we were able to generate a database of Escherichia coli strains and their experimentally mea-17

sured byproduct secretions. We simulated these strains in six historical genome-scale models18
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of E. coli, and we report that the predictive power of the models has increased as they have19

expanded in size and scope. Next-generation models of metabolism and gene expression are20

even more capable than previous models, but parameterization poses new challenges.21

1 Introduction22

All cells secrete metabolic byproducts in the course of growing and producing energy, and these23

byproducts play important roles in the study of biological systems. Byproducts are a readout of the24

cellular state; lactate excretion, for instance, is characteristic of tumor cell growth2,4. Byproducts25

can be engineered for bioproduction of commodity chemicals and biofuels5–7. And byproducts of26

yeast fermentation – including ethanol – are responsible for the most popular beverages in human27

history8. With the critical roles played by metabolic byproducts in disease and biotechnology, it28

is of great interest to be able to predict the byproducts that a cell will secrete under a specific29

condition. However, no published study has assessed whether existing computational methods are30

able to predict metabolic byproducts for a range of strains and conditions.31

Computational models have been shown to correctly predict byproduct secretion under com-32

mon laboratory conditions. During aerobic growth, the model bacterium Escherichia coli oxidizes33

substrate molecules to secrete CO2 and water; during anaerobic fermentation, E. coli secretes34

mixed-acid fermentation products (ethanol, acetate, formate, D-lactate, and succinate)9. Genome-35

scale models (GEMs) and constraint-based reconstruction and analysis (COBRA) methods rely on36
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knowledge of the metabolic network and mass-balance during steady state growth to predict the37

optimal distribution of metabolic flux for growth10. GEMs have been shown to be able to predict38

E. coli byproduct secretions in certain cases11,12. In the context of GEMs, the byproducts that must39

be secreted for optimal growth are called growth-coupled, and computational methods have been40

developed to predict and engineer growth-coupled chemical production13–15. However, few exper-41

imental studies have followed from the computational method development (among them:12,16), so42

it is unclear how these methods would scale up to a wide variety of strains and conditions.43

Next-generation GEMs of metabolism and gene expression (called ME-models17–19) are now44

available; ME-models predict the composition of the entire proteome of a cell. In contrast, GEMs45

of metabolism (M-models) predict only the reaction fluxes in a metabolic network18. One new46

capability of ME-models is the ability to predict the bacterial Warburg effect, the tendency of bac-47

teria to secrete acetate during aerobic growth in the presence of excess substrate4,20. In ME-models,48

the limitations of ribosome efficiency lead to low-yield metabolic approaches like acetate secre-49

tion17. The same effect can be seen in smaller-scale growth models and is supported by phenotypic50

data4,20. Whether ME-models can correctly predict byproduct secretion for other conditions is not51

currently known.52

High-quality genotypic and phenotypic data are required to test any model predictions, and53

such data have not been available for the study of byproduct secretion. The present study takes54

a novel approach by mining the research literature for examples of engineered strains of E. coli55

with diverse byproduct secretion mixtures. We collected 73 papers reporting a total of 89 strains of56
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E. coli that have a wide range of gene knockouts, heterologous pathways, and growth conditions,57

and we simulated these paired genotype-phenotype data in 6 historical GEMs of E. coli, includ-58

ing the next-generation ME-model. We find that GEMs have been improving in their ability to59

recapitulate measured byproducts from experimental studies as the models have increased in size60

and scope. We explore the possible reasons for incorrect predictions and provide insights into the61

challenges of simulating byproduct secretion for any growing cell.62

2 Results63

Literature mining provides a diverse set of strains and phenotypes. An impressive body of64

data on E. coli byproduct secretion can be found in the peer reviewed literature (Fig. 1). We gen-65

erated a bibliomic database using a workflow for identifying relevant papers, extracting data, and66

performing quality assessment (Fig. S1). Each paper in the database reported a strain design of67

E. coli in which the fermentation pathways were engineered to force the cell to secrete a target68

molecule (Fig. 2). The bibliomic database includes the gene knockouts, heterologous pathway69

descriptions, substrate conditions, oxygen availability, and the parent cell line for each strain (Sup-70

plementary Data 1). It is difficult to extract and normalize quantitative measures of byproduct71

secretion from the literature. Instead, we recorded the molecule that was targeted for overproduc-72

tion in the study, and we confirmed that this byproduct was the major secretion product in each73

case (see Methods). The bibliomic database contains 73 papers and 89 strains of E. coli; this74

is approximately 20% of all papers on metabolic engineering of E. coli collected in the LASER75

database21.76
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The strains in the bibliomic database were simulated in six GEMs of E. coli (Table 1). The77

models have increased in size and complexity over the past decade; they include five M-models and78

one ME-model that includes 1,683 genes and accounts for 80% of the proteome by mass17,18. Gene79

knockouts, heterologous pathways, and environmental conditions from the bibliomic database80

were recreated in each of the GEMs. For each strain, flux balance analysis (FBA)22 was used81

to find the predicted growth rate and the growth-coupled yield, the carbon yield of a compound82

at the maximum growth rate. The analysis began with two comparisons between the bibliomic83

database and the simulations: (1) whether the strain grew in a given environment and (2) whether84

the simulation predicted growth-coupled secretion of the target byproduct from the study.85

The predictive power of GEMs has generally increased over time, with the increasing size86

and scope of the models. New GEMs provide better predictions of growth-coupled secretion com-87

pared to their predecessors (“Model accuracy” in Fig. 3). In order to understand the reasons for88

this trend, we designed a computational approach to categorize cases of incorrect prediction. Ex-89

haustive search and parameter sampling were employed in the M- and ME-models, respectively,90

to determine what changes to the modeling approach might lead to in silico secretion of the tar-91

get byproduct (see Methods). These categories provide insights into the general challenges of92

modeling byproduct secretion.93

Genome-scale models do not differentiate between isozymes. Isozymes are common in metabolic94

networks, and they are represented in M-models, but their diverse regulatory and catalytic prop-95

erties lead to a broad and complex set of challenges for metabolic modeling. Reactions are often96
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catalyzed by a major isozyme that is responsible for most catalysis, while minor isozymes are also97

present in the cell but have a smaller role (they may not be expressed or have less-favorable ki-98

netics)23; recent progress in studying enzyme promiscuity and underground metabolism suggests99

that isozymes are even more widespread than previously thought24. Many experimental studies100

report gene knockouts of major isozymes that decrease the activity of the associated reaction sig-101

nificantly, enough so that the minor isozymes can be ignored (e.g. removing ldhA and ignoring102

dld 25–27). However, M-models do not distinguish between major and minor isozymes, so these103

cases are incorrectly predicted in the model; the minor isozyme catalyzes the reaction in silico,104

and the in silico gene knockout of the major isozyme has no effect. Therefore, to simulate byprod-105

uct secretion for real-world experiments, it was necessary to employ a “greedy knockout” strategy106

in which all reactions associated with a gene knockout are disabled, even if minor isozymes might107

be present (Fig. 4a).108

There are exceptions where greedy knockouts are not appropriate. For example, the alanine109

racemase activity of isozymes alrR and dadX is necessary for in silico growth, so applying the110

greedy knockout strategy to the reported strain that has a knockout of alrR leads to a prediction of111

cell death28. In other words, this strain can not be correctly simulated by M-models with or without112

the greedy knockout strategy. This issue can only be addressed through continued development of113

genome-scale modeling methods to address regulation, kinetics, allosteric inhibition, and the many114

biophysical properties that differentiate isozymes. Furthermore, ME-models can potentially select115

the appropriate enzyme based on protein cost, but ME-models do not include regulatory effects that116

often are responsible for the distinction between major and minor isozymes, so greedy knockouts117
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are still generally required. In this study, the greedy knockout approach was sufficient to correctly118

simulate most of the gene knockouts in the bibliomic database.119

Larger models solve false predictions of cell death. Every strain in the bibliomic database was120

able to grow in the published experimental studies, but many simulations of these strains in early121

GEMs resulted in predictions of no growth (defined as in silico specific growth rate less than122

0.005 hr-1). These incorrect predictions have decreased as the GEMs have increased in size and123

scope (“Experimental KO(s) are lethal in silico” in Fig. 3). In most cases, the reason for the124

improved prediction is that the more comprehensive GEMs include a pathway that can rescue an125

essential cellular function when another important pathway is disabled by gene knockouts. In126

the five E. coli M-models, the lethal genotypes were analyzed by exhaustively searching for the127

minimal combinations of reactions that lead to in silico cell death (Fig. S2).128

The biggest improvement in modeling the strains in the bibliomic database can be attributed129

to a single reaction. The models iJR904 and iAF1260 incorrectly predict that fumarate reduc-130

tase (FRD, frd) is essential under anaerobic conditions, and 63% of the designs in the bibliomic131

database include a knockout in the frd operon (see the large jump from iAF1260 to iAF1260b132

in Fig. 3a). These incorrect predictions were corrected in iAF1260b and later GEMs with the133

inclusion of a new reaction (DHORDfum) that rescues growth when FRD is removed (Fig. 4b).134

However, there is no experimental evidence to support the presence of the DHORDfum reaction.135

So why does this reaction exist in the models, and why does it improve predictions?136

One explanation is that the DHORDfum reaction does not take place in the cell, and, in-137
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stead, succinate dehydrogenase (SUCDi, sdh) acts in the reverse direction to rescue conversion of138

fumarate to succinate; this has actually been shown experimentally29. Thus, the evidence supports139

removing DHORDfum from the models and making SUCDi reversible. However, this change in-140

troduces the challenges associated with modeling isozymes for the activity catalyzed by frd and141

sdh, so the presence of DHORDfum has served as a convenient hack for modeling E. coli.142

Simulations suggest that some strains have room to evolve. When the experimental observa-143

tions of byproduct secretion disagree with predictions, another possible explanation is that the144

experimental strain could evolve to grow faster by adopting the byproduct secretion strategy pre-145

dicted by the model (“Target byproduct is not growth-coupled” in Fig. 33). FBA simulations146

predict the metabolic state of a cell that is operating close to optimal growth; GEMs are power-147

ful for predicting cellular behavior precisely because fast growing cells often adopt a near-optimal148

strategy for growth30,31. Thus, some of the disagreement between observation and prediction might149

be caused, not by model errors, but rather by an assumption of the modeling approach (the opti-150

mality assumption). This hypothesis can be tested through laboratory evolution by passing the151

strain repeatedly12. (The process is also called serial passage, metabolic evolution, growth rescue,152

or adaptive laboratory evolution (ALE).) Laboratory evolution was used in 14 studies (19 strains)153

in the bibliomic database to improve byproduct secretion, and the predictive power of the model154

is greater for these cases than for the bibliomic database in general (Fig. S3). This supports the155

hypothesis that FBA predicts byproduct secretions that are not correct for the reported strains but156

would be correct if the strains were evolved through growth selection.157
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Next-generation ME-models improve predictions but require parameterization. ME-models158

expand upon M-models by explicitly accounting for all of the biochemical reactions in the gene159

expression machinery of the cell (including transcription and translation)17,18. To include protein160

production in the ME-model, one must estimate the turnover rate of each enzyme (keff ) that de-161

termines how many active proteins must be present to convert one set of reactants to products in162

a given time. ME-model simulations used a set of experimentally validated kinetic parameters163

from a recent study32. For high-flux reactions, the keffs were shown to be consistent across four164

growth conditions. However, it is still possible for keffs to change between conditions, depending165

on metabolite concentrations and other variables (they range between 0 and kcat). Therefore, we166

sampled keffs in the ME-model to generate an ensemble of models for each strain that was not167

growth-coupled with default parameters (see Methods). We found that 26 / 41 strains in this set168

could be growth-coupled in the ME-model with at least one model in the ensemble, including 9 / 11169

designs for succinate production (Fig. 4e). Addressing kinetic parameters will have to be a part170

of ME-model development going forward, and this should lead to better predictions of byproduct171

secretion.172

The protein costs associated with metabolic pathways in the ME-model also solve another173

failure mode in M-models: alternative optimal solutions. Alternative optimal solutions occur in M-174

models when two metabolic states lead to the same growth rate, and this common failure mode has175

been solved with next-generation ME-models (“Alternative optimal growth-coupled solutions” in176

Fig. 3)33. In ME-model simulations, each pathway has specific enzyme costs that must be precisely177

allocated using cellular resources. Therefore, pathways with the same metabolic contribution to178
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cellular growth (e.g. same ATP production and redox balance) that are equivalent in the M-model179

have different proteomic costs in the ME-model. In all cases, this failure mode of M-models180

disappear in ME-model predictions (with one example provided in Fig. 4d).181

In addition to removing alternative optimal solutions, the proteomic pathway costs in the182

ME-model can address challenges of encoding reversibility in the M-model. As an example, the183

production of isobutanol using a 2-keto acid based pathway was recently demonstrated34,35, and184

the optimal in silico phenotype of this production strain varies between models of E. coli (Fig. 3b).185

iAF1260b correctly predicts the production of isobutanol as the optimal fermentation product; in186

contrast, iJO1366 predicts that hexanoic acid, a 6-carbon intermediate in the β-oxidation cycle, is187

the preferred product. This difference can be traced to the thermodynamic reversibility of the thi-188

olase reaction in the second round of the reversed β-oxidation cycle – it is irreversible in iAF1260189

(KAT2) and reversible in iJO1366 (ACACT2r) (Fig. 4c). The reversibility in iJO1366 is in line190

with experimental evidence36, but it also leads to the seemingly incorrect prediction of hexanoic191

acid secretion. The ME-model suggests that the incorrect prediction of hexanoic acid secretion192

by iJO1366 is not so much a matter of thermodynamics as a matter of pathway length and thus193

proteomic cost. When the cost of producing enzymes for metabolic pathways is incorporated into194

genome-scale models, long pathways like the hexanoic acid production route through β-oxidation195

carry a greater cost than the shorter 2-keto acid route to isobutanol. This case shows the power196

of a constraint-based modeling approach: Properly encoding reversibility in M-models has been a197

long-standing challenge, so the ME-model applies a completely different constraint (pathway cost)198

that makes the reversibility of β-oxidation unimportant for correct predictions.199
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3 Discussion200

As cellular models become larger and more complicated, the datasets used to validate them must201

also grow. This study presents a novel approach to model validation based on literature mining.202

In spite of the uneven quality of literature data, this approach was capable of generating important203

insights into the abilities of GEMs to predict byproduct secretion. Higher-quality data would204

enable an even more thorough model validation, and there is a great need in systems biology205

for standardizing genotype-phenotype datasets. Standards for storing phenotypic data have been206

discussed37,38, and it is essential that progress be made.207

There are a few challenges that will have to be addressed to scale these methods to larger and208

more complicated systems. First, many data points in the bibliomic database cannot be modeled in209

existing GEMs. For instance, regulatory knockouts are not in the scope of M- and ME-models, so210

they were ignored in this study. The correct predictions of strains in the bibliomic database draw211

largely from the concept of redox balance in the cell (NAD(P)H produced during glycolysis must212

be consumed by fermentation pathways), and extending prediction of byproduct secretion to other213

applications where redox balance is not the driving phenomenon may require further development214

of the modeling methods. However, constraint-based modeling methods are generally extensi-215

ble, as we have seen with the development and implementation of ME-models. Exploration of216

constraint based approaches to other subsystems – including protein structures, membrane translo-217

cation, and regulation – are under way39.218

Second, strains modeled using GEMs and FBA must be operating close to an optimal growth219
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state. Understanding the byproduct secretion of strains that are not growing rapidly will require220

research into other objective functions that could make the models predictive for strains that are221

not optimizing for growth40,41. On the other hand, the optimality assumption of FBA offers an222

advantage: GEMs and laboratory evolution can be used together for systematic optimization of223

microorganisms12,16.224

Finally, the extension of these methods to larger and more complex organisms, such as tumor225

cells, will require rigorous development and assessment of GEMs. This study provides an example226

of validating model predictions using genotype-phenotype data mined from the literature. The227

collection of these data will need to be scaled up to validate larger and more complex models. All228

cells have the same basic features that include gene expression, metabolism, and, by necessity,229

byproduct secretion; with targeted validation studies, we can feel increasingly confident in our230

ability to model and understand them.231

4 Methods232

Literature mining. A literature mining search was performed to identify all papers reporting the233

construction of a cell factory strain of E. coli for the production of a fermentation product. A234

workflow was developed (Fig. S1), hundreds of papers were collected, and 73 were included in the235

bibliomic database based on their matching the following criteria:236

• Utilized a strain of E. coli.237
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• Modified the strain for production of a native or heterologous metabolite.238

• Removed alternative fermentation pathways using gene knockouts.239

Metadata were collected from each paper, including the target production molecule, whether240

simulations were performed to identify knockouts, the parent E. coli strain, the genetic additions241

and deletions, the aerobicity and carbon sources during fermentation experiments, whether lab-242

oratory evolution was performed, and (when possible) the measured fermentation profile of the243

engineered strain.244

A single target molecule was selected for each experiment, even though in some cases a245

mixture of products was reported. When papers reported mixtures of hydrogen or formate with a246

coproduct, the coproduct was considered the target molecule.247

Simulations. To simulate reported designs, the gene knockouts were implemented in silico using248

a “greedy knockout” strategy. For each gene that was knocked out experimentally, all reactions249

associated with that gene in the metabolic model are turned off. The alternative strategy is to250

evaluate the gene-protein-reaction (GPR) rules for each reaction in turn, to determine whether the251

reaction is turned off or remains unchanged; however, as discussed in the text, only the “greedy252

knockout” approach was able to correctly simulate strains in the bibliomic database.253

For all non-native genes reported in the papers, pathways were reconstructed by creating254

in silico reactions corresponding to the genes used in these experiments. For transport reactions,255

transport was assumed to be non-energy-coupled unless otherwise specified in the iJO1366 recon-256
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struction or in the literature.257

Polymer production must be considered separately from ordinary metabolite secretions. To258

simulate these strains, the production of the monomer was optimized. It is unclear whether poly-259

mers such as polylactic acid (PLA) would be growth coupled. The PHA synthase is not energy260

coupled42, so an equilibrium between monomer and polymer would probably be achieved in the261

optimal state (this has been shown for soluble heteroglycans43). However, by upregulating the262

PHA synthase in an strain optimized for monomer production, one can use the growth-coupling263

effect to perform much of the strain optimization. Thus, growth-coupling of the monomer is of264

interest.265

Five M-models and one ME-model of E. coli K-12 MG1655 were used for the simulations in266

this work. The M-models were collected from the BiGG Models database44, and they were used as267

reported in their respective publications (Table 1). As described previously, the iJO1366 oxidative268

stress reactions CAT, SPODM, and SPODMpp and the FHL reaction were constrained to zero45.269

A new software implementation of the ME model iOL1650-ME was used. Pathway diagrams were270

generated using Escher46, and COBRA simulations were performed with COBRApy47.271

For M-model simulations, the substrate uptake rates (SURs) for the solitary carbon substrates272

in each simulation were constrained to a maximum uptake rate of 10 mmol gDW-1 hr-1. The273

oxygen uptake rates were constrained to 0 for anaerobic conditions and 20 mmol gDW-1 hr-1 for274

aerobic conditions. For ME-model simulations, SURs were left unbounded and the ME-model275

optimization procedure chose optimal SURs. If LB or yeast extract was present in the medium,276
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the simulations were still performed with an in silico minimal media based on the assumption277

that cells will preferentially consume glucose before more-complex carbon sources; however, if278

this approximation led to a lethal phenotype in iJO1366, then supplementations known to exist279

in rich media were added to alleviate the lethal phenotype. Microaerobic designs were assumed280

to be anaerobic because it has been observed that even under aerobic conditions the anaerobic281

physiology contributes to fermentation48.282

FBA was used to find the maximum and minimum secretion of each metabolite in the net-283

work when the growth rate is near its maximum (within 0.01%)22. The key outputs of these sim-284

ulations are predicted growth rate – the flux through the biomass objective function – and the285

growth-coupled yield – the minimum carbon flux through the target molecule exchange reaction at286

the maximum growth rate287

Parameter sampling. Parameter sampling in the ME-model was employed to determine the sen-288

sitivity of ME-model simulations to keff values. For each sampling simulation, an ensemble of289

200 models was generated with keff values selected randomly from a lognormal distribution of290

possible kcats. The distribution was determined from a collection of all kcats in the BRENDA291

enzyme database (µ = 2.48 and σ = 3.29)49.292

Failure model categorization. Growth-coupling was defined as secretion of the target molecule293

with greater than 15% carbon yield or, for hydrogen production, greater than 2 mmol gDW-1 hr-1.294

Lethal phenotypes were defined as having an in silico growth rate below 0.005 hr-1. Alternative295

optima were identified by finding designs whose maximum secretions were above the threshold296
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for growth coupling but whose minimum secretions were below this threshold.297
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9 Tables456

Table 1: The increasing size and scope of genome-scale models of E. coli.

Model Genes Reactions Metabolites/Components Year (Reference)

Core model 137 95 72 200650

iJR904 904 1075 761 200351

iAF1260 1,260 2,382 1,668 200752

iAF1260b 1,260 2,388 1,668 201014

iJO1366 1,366 2,583 1,805 201145

iOL1650-ME 1,683 12,009 6,563 201317

25

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 1, 2016. ; https://doi.org/10.1101/066944doi: bioRxiv preprint 

https://doi.org/10.1101/066944
http://creativecommons.org/licenses/by/4.0/


10 Figures457

a

b

Figure 1: The bibliomic database. (a) The number of papers published for each target molecule
over time. (b) The individual genes that have been knocked out for each target molecule. The
sums across the bottom indicate the total number of designs that include a given gene, and the
sums across the right indicate the total number of unique genes knocked out for a given target
molecule. These common knockouts remove the routes to the native fermentation products acetate
(pta, ackA, pflB), ethanol (adhE, pflB), formate (pflB), D-lactate (ldhA), and succinate (frdABCD).
These knockouts represent a common strategy where the highest-yield fermentation pathways are
knocked out, one by one, until the target pathway becomes the optimal route for balancing the
redox state of the cell.
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Figure 2: The engineered fermentation pathways in E. coli. All the engineering pathways in
the bibliomic database are shown, along with their metabolic precursors. Native products (yellow)
are those that appear in the genome-scale model iJO1366. Native pathways in iJO1366 (dark blue
arrows) and non-native pathways (light blue arrows) are also differentiated.
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a b

Figure 3: Simulations of the bibliomic dataset in E. coli GEMs. (a) The 89 strains in the
bibliomic database were simulated in six GEMs of E. coli, and the incorrect predictions were cate-
gorized to suggest a reasons for the errors. The solid line signifies that the experimentally observed
target byproduct is growth-coupled in the model. The dashed line represents the possibility of im-
proving predictions in the ME-model by correctly determining the kinetic parameters (keffs). (b)
The categories separated according to the target molecule.
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Figure 4: Comparing simulations with experiments. All modeling approaches have failure
modes, and comparing model predictions to experimental results allows these failure modes to
be analyzed. (a) A “greedy knockout” strategy is necessary to contend with major and minor
isozymes that are difficult to simulate in GEMs. (b) The genes in the frd operon are responsible
for most of the incorrect predictions of cell death in iJR904 and iAF1260. This error was fixed in
iAF1260b and later models with the addition of the reaction DHORDfum. (c) For an isobutanol de-
sign, the ME model correctly predicts isobutanol secretion in preference to hexanoic acid secretion
because the hexanoic acid pathway has greater protein cost34,35. (d) Alternative optimal pheno-
types appear in M-models when two pathways have equivalent stoichiometries, as in this example
for L-alanine secretion. ME-models explicitly account for the cost of producing pathway enzymes,
so the shorter L-alanine production pathway is optimal in ME-models. (e) Succinate secretion is
difficult to predict using existing GEMs, but an ensemble of ME-models with sampled kinetic
parameters demonstrates that for certain parameter sets succinate secretion is correctly predicted.
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11 Extended Data458
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Figure S1: A workflow for generating a bibliomic dataset through literature mining.
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Figure S2: The combinations of reaction knockouts that are lethal in the M-models after simulating
the bibliomic database.
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