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Abstract5

High quality behavioural annotation is a key component to link genes to behaviour,6

yet relatively little attention has been paid to check the consistency of various7

automated methods and expert judgement. In this paper we investigate the con-8

sistency of annotation for the ‘Omega turn’ of C. elegans, which is a frequently9

used behavioural assay for this animal. First the output of four Omega detec-10

tion algorithms are examined for the same data set, and shown to have relative11

low consistency, with F-scores around 0.5. Consistency of expert annotation is12

then analysed, based on an online survey combining two methods: participants13

judged a fixed set of predetermined clips; and an adaptive psychophysical proce-14

dure was used to estimate individual’s threshold for Omega turn detection. This15

survey also revealed a substantial lack of consistency in decisions and thresholds.16

Such inconsistency makes cross-publication comparison difficult and raises issues17

of reproducibility.18

1 Introduction19

Traditionally, behavioural annotation has been done manually, with the known20

weakness of inherent variability, as well as being labour intensive. In the current21

era of big data biology, there is an increasing tendency for behavioural annotation22

to be automated [1, 2]. Automated methods can obviously scale to significantly23

larger data sets, but they are also supposed to improve consistency by removing24

human judgement from the process. However, the self-consistency of automated25

methods does not guarantee consistency between different methods. Furthermore,26

these algorithms are typically validated relative to a human produced ‘ground27

truth’ dataset [3–7]. This evaluation process raises the possibility that algorithms28

are trained to learn the same observational biases - and variance - that are inher-29

ent to human annotation. Given that different research groups often use different30
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annotation methods, a lack of consistency in their output could make comparison31

of published results from these groups difficult.32

33

In this paper we specifically address the consistency of the behavioural anno-34

tation of the nematode worm Caenorhabditis elegans (C. Elegans), focusing on a35

particular worm behaviour, the Omega turn. Omega turns occur during reorienta-36

tions, with the animal adopting a shape resembling the Greek letter Ω, see Figure37

1A for a representative example. This behaviour was chosen as it is often treated38

as a discrete, well defined element of worm behaviour [5, 7–10].39

40

Our Omega turn consistency check has two components. First we examine the41

consistency of four Omega detection algorithms from the literature [4–7]. Second,42

we present the results of an on-line survey where we have invited experts to score43

Omega turns. The survey itself had two underlying components. Participants44

scored a set of predetermined clips and we have also employed an adaptive psy-45

chophysical method to identify individual’s threshold for Omega turns.46

47

The results show that both expert annotation and algorithms are surprisingly48

inconsistent, and greater effort may be needed to ensure annotation methods pro-49

vide a reliable basis for studies that include behavioural assays.50

2 Methods51

2.1 Behavioural data52

This study used data from the C. elegans behavioural database (CBD) [5]. The53

database consists of worm videos and corresponding feature files that contain a54

number of precalculated feature time series (such as speed, eccentricity, eigen-55

worm coefficients, etc.). We examined 776 experiments, all with hermaphrodite56

N2 worms. Worms were placed on a plate covered with a bacterial layer and the57

behaviour was recorded after a 30 minute habituation period. Each video is ap-58

proximately 15 minutes long, so in total 194 hours of worm behaviour was analysed.59

60

During Omega turns, the worm can contact itself, producing an intersecting61

shape in the videos, and for these frames it is difficult to extract a biologically62

meaningful skeleton [6, 11]. As a consequence these ‘coiling’ frames are not pro-63

cessed in the CBD and the features for the corresponding frames are not calculated.64

If the resulting gap in the video was smaller than 20 consecutive frames (0.6 sec)65

then linear interpolation was used to gain a proxy for the features. This interpo-66

lation method is not reliable for longer gaps, hence Omega events that contained67
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longer gaps were discarded.68

2.2 Consistency of Omega turn detection algorithms69

Algorithms70

Four algorithms have been taken from the literature to examine their consistency71

with each other. The algorithms are from the Zentracker package [4], the C. elegans72

behavioural database (CBD) [5], a computer vision based study to detect such73

events [6] and from a recent publication studying search behaviour [7]. Common74

to all these methods is that they detect Omega turns if a feature or a combination75

of features exceeds a user defined threshold. For example, [5] uses the midbody76

bend as the defining property of Omega turns. Note that this is not an exhaustive77

list of Omega turn detection algorithms. These particular algorithms have been78

chosen because the code used for the original publication was readily available.79

Consistency quantification80

To summarise annotation consistency we report the precision (positive predictive81

value) and sensitivity (also known as recall and true positive rate) [12]. Precision82

is the ratio of true positive events to all events recognised, while sensitivity is83

the proportion of true positives to all reference events. Mathematically they are84

expressed as85

Precision =
TP

TP + FP
, Sensitivity =

TP

TP + FN
, (1)

86

87

where TP , FP and FN are true positive, false positive and false negative88

respectively. For example, if one algorithm is taken as the reference for Omega89

events, a true positive occurs for the comparator algorithm when it selects the90

same event (a TP was counted if at least 50% of the frames identified as part of91

an Omega turn overlapped); a false positive when it selects an event not labelled92

by the reference algorithm; and a false negative when it fails to select an event93

that was labelled by the reference algorithm. Precision and sensitivity are often94

combined to a single number summary, the F-score, which is defined as:95

F =
2(Precision× Sensitivity)

Precision+ Sensitivity
. (2)
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Threshold tuning96

The consistency between annotation algorithms is likely to be affected by pa-97

rameter settings. Therefore we calculated the results first with the original feature98

thresholds (taken from the publication) for each method, and then with the thresh-99

olds altered so as to find the best match between each pair of algorithms that could100

be obtained by parameter adjustment.101

102

To find the best match, each algorithm was run 25 times with different thresh-103

olds. For each run the difference in the threshold was increased or decreased by104

2.5% of the initial value. Therefore a range 70%-130% of the initial threshold val-105

ues were scanned. Lower percentages correspond to a more permissive definition106

(i.e. more events classified as Omega turns), but some scales had to be inverted.107

For example [4]’s method uses an upper bound on ‘eccentricity’ and a lower bound108

on ‘solidity’. Therefore to make the run associated with 70% more permissive, the109

eccentricity scale had to be inverted.110

2.3 Community survey of Omega turns111

Survey structure112

To compare the consistency of expert Omega turn detection an online survey was113

developed 1. After a brief registration, participants were shown 40 short (2-5s)114

clips of Omega events and were asked to indicate, using a button press, if each115

was an Omega turn or not. Participants were also asked to rate their confidence116

to detect Omega turns on a scale 1-5 (with 5 being very confident).117

118

In the survey we wanted to include ambiguous, wide amplitude turns that one119

may or may not consider an Omega turn. Therefore to select events for the survey120

we have run the Omega detection algorithm by [6] on the CBD videos, but with121

the threshold reduced to 75% of its original value. Using this criteria 1526 Omega122

like events were detected.123

124

The 40 clips in the survey were made up of two components. There was a set125

of 20 predetermined videos that were scored by everyone. The remaining 20 were126

determined by an adaptive threshold finding procedure, where the next clip shown127

depends on previous answers. Specifically, the truncated staircase method was128

used [13] to estimate thresholds (see below). To conceal this structure and reduce129

order effects these two components (predetermined set and threshold finding) have130

been mixed together such that each predetermined clip was followed by a clip used131

1The survey can be reached at http://groups.inf.ed.ac.uk/worms/index.html
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to detect the threshold. The participants were not told in advance of these two132

underlying components to eliminate possible cognitive biases.133

134

To gather responses to the survey, we emailed 47 experts (PIs identified from135

publications on C. elegans behaviour) inviting them and their laboratory members136

to participate. The survey was also advertised through the social media presence137

of the OpenWorm project.138

Selection of predetermined clips139

To select the 20 predetermined clips, the eigenshape annotator (ESA) was used [3].140

In brief ESA is an unsupervised behavioural annotator that produces a probabilis-141

tic annotation. Events were selected that are labeled as Omega turns, but had142

a high entropy (0.75Hmax ≤H), i.e. Omega events were selected that had a high143

classification uncertainty. 158 events met this criteria and from this set 20 were144

selected randomly, see the online Supplementary videos to watch the clips.145

Adaptive threshold finding146

To deploy an adaptive threshold finding technique, it was necessary to have a single147

metric by which Omega turns could be ranked. We developed a ‘tightness’ metric148

score based on the Omega turn detection algorithms in the literature. Most Omega149

turn detection algorithms recognise such events when a certain feature exceeds a150

user defined threshold. Features that are commonly associated with Omega turns151

are solidity, midbody angle, head-tail distance and midbody bend. For a visual152

explanation for each of these features see Figure 1.153

154

For each Omega event the peak amplitude of these features were measured.155

Across all events the z-score was calculated for each feature peak and the tight-156

ness score of each event is the mean z-score across the four features. This procedure157

ranks the Omega-like events from wide amplitude turns to the sharper, more ‘char-158

acteristic’ Omega turns. It is not claimed that the tightness score captures every159

variation of Omega like events. However it quantifies the sharpness of coils that160

is the key feature of turning behaviours. For a demonstration of the resulting161

ranking see the online Supplemental Video 1.162

163

A truncated staircase method was used to estimate an expert’s omega detection164

threshold (measured on tightness score) [13]. The equation to select the next clip165

is166

Tn+1 = Tn − δ(2Rn − 1) + z, (3)
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where δ is a fixed step size (in tightness score), Tn is the tightness of the clip167

shown at the nth step and Rn is the nth response (Rn = 1 is the answer is yes and168

Rn = 0 if the answer is no) and z is a small random variation to avoid repetitions.169

In this process the sequence of clips has either increasing or decreasing Tn until a170

switch in the subject’s response (from yes to no, or no to yes) for successive clips171

occurs. In this case the step direction is reversed and again the stimulus strength172

(Tn) monotonically increases or decreases until the next switch in response. To173

estimate the threshold, the average Tn at the points where the subject switched174

responses is taken.175

3 Results176

3.1 Consistency of Omega detection algorithms177

The consistency of four Omega turn detection algorithms was quantified. In Table178

1 the precision, sensitivity and F-score of the methods are presented relative to179

each other. The scores are calculated first using the prameter settings originally180

provided, and then when the parameters of two methods were tuned for optimal181

match in outputs (results given in brackets; for details of the tuning procedure182

see the Threshold tuning section). Without tuning, the results show little consis-183

tency, with an average F-score of 0.3. Even with tuning to find the best match,184

the F-score frequently stays below 0.5, indicating poor consistency in classification.185

186

The Omega detection threshold was also estimated for each algorithm using187

the same methodology as for expert annotations (see Adaptive threshold finding).188

The results are shown on Figure 2B, for this figure the original parameters from189

the publications were used. Note that in agreement with Table 1 there is overlap190

in the confidence intervals, but there is no clear consensual threshold.191

192

The algorithm by [4] produces the worst match to the other algorithms. This193

is due to the method only picking out the sharpest of Omega turns, hence it iden-194

tifies many fewer events compared to the other methods. It is not argued that any195

of the methods assessed is worse or better than the others, but rather the point196

is that results could differ significantly depending on which method a particular197

analysis uses.198

199
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3.2 Consistency of expert annotation200

Overall 27 survey responses were collected in the period 2016 May 30 - June 14.201

For the results presented here we have discarded the responses whose confidence202

in detecting Omega turns was below 4, so only expert annotation is analysed (19203

participants in total).204

205

As described in the Methods ,the survey had two components: a set of prede-206

termined clips and an adaptive threshold finding procedure. Figure 2A shows the207

distribution of answers for the predetermined clips, which had been selected for208

high classification uncertainty according to an unsupervised behavioural annotator209

(see Methods). None received a unanimous consensus, and only 6 were judged the210

same by more than 75% (at least 15 out of 19) of the experts. Almost half the211

clips produced a split of 12:7 or worse.212

213

The estimated decision thresholds for each expert and the corresponding 95%214

confidence intervals are shown on Figure 2B. Note the different size of confidence215

intervals reflects the number of samples to estimate the threshold, which depends216

on the number of switch points from yes to no for each subject in the sequence of 20217

presentations (see Adaptive threshold finding). It is nevertheless also an indicator218

of the subject’s (internal) consistency as more switch points, and hence smaller219

C.I., suggests the staircase quickly converged to oscillate around a specific value.220

It is clear that the estimated thresholds spread widely, with no region where the221

majority cluster, or all confidence intervals overlap.222

4 Discussion223

In this paper we have shown that both automated and expert annotations of224

C. elegans ’s Omega turns are surprisingly divergent. First the implications for225

worm research are discussed. Then some general comments regarding supervised226

behavioural analysis is presented. Finally we speculate whether the observed an-227

notation inconsistency is a more general feature of behavioural studies.228

229

Characterising C. elegans behaviour often involves an estimate of Omega turn230

probability [3–7,9]. It is important to check whether the algorithms used to detect231

Omega turns are consistent, otherwise it is difficult to make cross-publication com-232

parisons. It was found that the four Omega turn detection algorithms we tested233

produce a surprisingly divergent annotation even after their respective parameters234

have been adjusted for optimal match.235

236
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One way to overcome the inconsistency problem would be if the community237

adopted the same platform for behavioural analysis. There is a range of publicly238

available packages [3–5], however, each comes with its own strengths and weak-239

nesses, hence it is difficult to see the whole community adopting any one of these240

methods. A potential solution would be an open-source software that is devel-241

oped and maintained not by a single laboratory, but rather by the whole research242

community. This way each lab would have ownership and the cross talk between243

laboratories could lead to a deeper appreciation of the limitations of each analysis244

technique.245

246

A potential source of the inconsistency we have observed is that the Omega turn247

is not a distinct behaviour, but rather a part of a spectrum of turning behaviours.248

We have previously argued for this possibility based on the high proportion of249

uncertain classification of behavioural events [3]. Others have also supported this250

hypothesis based on the geometry of locomotion states [14] and based on the con-251

tinuous neuronal representation of motor sequences [15].252

253

A major limitation of our work, in both our earlier paper and the current publi-254

cation, is that events could not be analysed where the worm was intersecting itself255

for an extended period (see Methods). Recently a method was developed that256

can resolve coiling postures [11]. Their analysis of eigenworm amplitudes found a257

multi-modal distribution that could be used as a data driven definition of Omega258

turns. Furthermore this study reports that ‘beyond’ Omega turns there is another259

sharper turning behaviour, the Delta turn.260

261

However one should note that in this study the experimental conditions were262

not identical to ours. In the CBD data (used here) worms are browsing in food,263

while in this study worms were analysed off food. The 1st and 3rd eigenworms264

switch position (sorted by eigenvalues) in these two conditions indicating that265

the behaviour is altered (off food the first two eigenworms are associated with266

locomotion and the 3rd one is associated with turns, on food the 1st eigenworm267

corresponds to the turning postures) [5,16]. Therefore the results may or may not268

generalise to other experimental conditions.269

270

Our analysis of expert annotation has general implications for supervised ap-271

proaches to behavioural analysis. The common element to these methods is that272

they take an investigator labeled dataset and then an algorithm learns to repro-273

duce the expert annotation [1]. As a consequence, supervised methods can be only274

as consistent as their training data. Therefore prior to using supervised methods275

we would urge investigators to first examine the variability of expert opinion. Fur-276
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thermore we note that unsupervised methods are often evaluated against a human277

produced ‘ground truth’ dataset. This evaluation process imposes subjective fac-278

tors and hence leads to similar problems as with the supervised methods. The279

validation of unsupervised methods is a complex issue that raises many philosoph-280

ical questions as well [17,18].281

282

Although we have only analysed one specific behaviour of one model organ-283

ism, the observed inconsistencies in behavioural annotations (both expert and284

automated) seem likely to be more widespread. For example there is an analo-285

gous uncertainty about how to define the behavioural states of larval Drosophila286

melanogaster [3, 19–22]. Different publications use different ways of defining the287

behavioural states, most likely due to the difficulty in finding an unambiguous288

characterisation. As a result, a similar inconsistency of the various analysis tech-289

niques should be a cause for concern in reproducibility of maggot research. We290

hope that with our analysis we have inspired investigators to carefully look at the291

issue of consistency for other model organisms as well.292

Acknowledgements293

The authors would like to express their gratitude for Aidan Rocke for his initial294

work on this project. Furthermore we would like to thank Andre Brown, Emanuel295

Busch and members of the Insect Robotics group for their feedback on the survey296

prototype. This work was supported by grants EP/F500385/1 and BB/F529254/1297

for the University of Edinburgh School of Informatics Doctoral Training Centre298

in Neuroinformatics and Computational neuroscience from the UK Engineering299

and Physical Sciences Research Council (EPRSC), UK Biotechnology and Biolog-300

ical Sciences Research Council (BBSRC), and the UK Medical Research Council301

(MRC), and the FP7 program MINIMAL.302

Author contributions303

BS conceived the study, developed the code, analysed the data and wrote the arti-304

cle. TS developed the web implementation of the Omega event selection algorithm305

and maintained the survey’s website. BW has supervised the project and helped306

to write the manuscript.307

9

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 29, 2016. ; https://doi.org/10.1101/066787doi: bioRxiv preprint 

https://doi.org/10.1101/066787


Figures308

θ

d(head-tail)

A B

C D

Figure 1: Visual explanation of the features that have been used construct the
tightness score. Panel A shows the midbody angle θ, which is the angle between the
head-middle and middle-tail vectors. Note that π − θ is the angle of reorientation
of the event [6]. Panel B shows the head-tail distance. C illustrates worm bending
that is measured using the supplementary angles to the bends formed along the
skeleton. The bend angle (α) is the difference in tangent angles at each point;
or, alternatively phrased, the supplementary angle (α) with respect to the angle
formed by any three consecutive points (β). To detect Omega turns the midbody
bend is calculated, which is the mean supplementary angle along the middle 1/3 of
the worm’s body (image and caption is taken from [5]). Finally panel D introduces
solidity, a measure of the overall concavity. It is defined as the ratio of the image
(the worm’s body in grey) and the area of the convex hull (shown in white).
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Figure 2: Outcomes of the Omega turn community survey. The data was filtered
to exclude non-expert annotations, see the Consistency of expert annotation for
details. Top panel shows the split of experts (green: ‘yes, it was an Omega’; red:
‘not an Omega’) for the set of 20 predetermined clips, ordered by the proportion
of experts who agreed it was an Omega turn, which ranged from 8/19 to 18/19.
Panel B shows the results of the threshold determination procedure. Each data
point is one expert’s estimated tightness threshold to detect Omegas with the cor-
responding 95% confidence interval, ordered by increasing tightness. Inset shows
the estimated threshold and confidence intervals for the Omega detection algo-
rithms. Blue numbers next to the y-axis indicate what percentage of the data (all
potential Omega events, see Survey structure) falls between tightness z-scores (e.g.
19% of the events had a tightness z-score between 0.5 and 1). This shows wide
divergence in how many events different experts would classify as an Omega turn.
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Tables309

Huang 2006 Yemini 2013 Salvador 2014 Laurent 2015

Huang 2006 1/1/1 0.40/0.46/0.43 0.28/0.15/0.20 0.13/0.67/0.22
(0.64/0.65/0.65) (0.52/0.38/0.43) (0.79/0.69/0.74)

Yemini 2013 0.46/0.4/0.42 1/1/1 0.45/0.22/0.29 0.05/0.21/0.08
(0.66/0.67/0.67) (0.66/0.43/0.51) (0.92/0.69/0.79)

Salvador 2014 0.15/0.28/0.20 0.26/0.5/0.34 1/1/1 0.12/0.1/0.11
(0.48/0.52/0.43) (0.47/0.71/0.56) (0.62/0.83/0.77)

Laurent 2015 0.68/0.13/0.22 0.22/0.05/0.1 0.62/0.1/0.13 1/1/1
(0.64/0.79/0.74) (0.7/0.93/0.8) (0.83/0.72/0.77)

Table 1: Consistency of Omega turn detection algorithms. The top of each col-
umn shows which algorithm was taken as reference and the rows correspond to the
algorithm being compared to it. In each cell the Precision/Sensitivity/F −score
are reported, for a description of these measures see the section Consistency quan-
tification. The numbers in parentheses in each cell report the same statistics with
thresholds tuned for optimal match, see the section Threshold tuning for further
details.
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