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Abstract1

The decoding of a sensory or motor variable from neural activity benefits from a known ground truth against2

which decoding performance can be compared. In contrast, the decoding of covert, cognitive neural activity,3

such as occurs in memory recall or planning, typically cannot be compared to a known ground truth. As a4

result, it is unclear how decoders of such internally generated activity should be configured in practice. We5

suggest that if the true code for covert activity is unknown, decoders should be optimized for generalization6

performance using cross-validation. Using ensemble recording data from hippocampal place cells, we show7

that this cross-validation approach results in different decoding error, different optimal decoding parameters,8

and different distributions of error across the decoded variable space. In addition, we show that a minor9

modification to the commonly used Bayesian decoding procedure, which enables the use of spike density10

functions, results in substantially lower decoding errors. These results have implications for the interpreta-11

tion of covert neural activity, and suggest easy-to-implement changes to commonly used procedures across12

domains, with applications to hippocampal place cells in particular.13
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Introduction14

The decoding of neural activity is a powerful and ubiquitous approach to understanding information process-15

ing in the brain. Decoding is typically cast as a mapping from neural data to a sensory or motor variable,16

such as the identity of a visually presented object or the reaching direction of a motor action; the same idea17

can be applied to more abstract or even hidden states such as context or past history. By comparing a de-18

coded (“reconstructed”) variable with the actual value, the contributions of features such as spike timing,19

adaptation, and correlations to decoding accuracy can be quantified (Nirenberg and Latham, 2003; Panzeri20

et al., 2015; Schneidman, 2016). Based on the nature and accuracy of the decoder output under various con-21

ditions, inferences may be drawn about the possible functions of neural populations carrying such signals22

and the circuitry responsible for generating them (Georgopoulos et al., 1986; Bialek et al., 1991; Pillow et al.,23

2008). These decoding approaches share the property that when a known stimulus value is available along24

with neural data, decoding performance can be optimized relative to a known “ground truth” (i.e. the actual25

stimulus value).26

Increasingly so, however, decoding is also applied to brain activity occurring in the absence of any overt27

stimulus or action (Georgopoulos et al., 1989; Johnson et al., 2009; King and Dehaene, 2014). Such inter-28

nally generated activity occurs, for instance, during processes such as planning, deliberation, visual imagery29

and perspective-taking, memory recall and sleep. A well-studied example is provided by studies of hip-30

pocampal activity recorded in rodents, which exhibits internally generated sequences of neural activity that31

appear to depict behavioral trajectories during sleep and wakeful rest (“replay”; Skaggs and McNaughton32

1996; Nadasdy et al. 1999; Davidson et al. 2009; Pfeiffer and Foster 2013), and during the theta rhythm while33

task-engaged (“theta sequences”, Foster and Wilson 2007; Gupta et al. 2012; Chadwick et al. 2015). Replay34

is thought to reflect an off-line consolidation process from a fast-learning, episodic-like short-term memory35

trace in the hippocampus into a semantic-like neocortical knowledge structure (McClelland et al., 1995; Káli36

and Dayan, 2004; Girardeau et al., 2009; Carr et al., 2011), but also plays a role in on-line task performance,37

and can depict trajectories that are not well explained by consolidation processes, such as those towards a38
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behaviorally relevant goal and never-experienced paths (O’Neill et al., 2006; Jadhav et al., 2012; Dragoi and39

Tonegawa, 2013; Ólafsdóttir et al., 2015). Theta sequences may enable one-shot learning, and/or play a role40

in on-line prediction during behavior (Lisman and Redish, 2009; Malhotra et al., 2012; Feng et al., 2015).41

How should we interpret the content of such internally generated activity? The intuition that replay has a42

clear resemblance to activity observed during active behavior can be formalized by simply applying the same43

decoder used to decode activity during overt behavior (Tatsuno et al., 2006; Kloosterman, 2012; Shirer et al.,44

2012). However, in the rodent hippocampus there are also obvious differences between the two types of45

activity, such as the compressed timescale and different instantaneous population firing rates (Skaggs and46

McNaughton, 1996; Lee and Wilson, 2002; Buzsáki, 2015). More generally, there is now overwhelming47

evidence that hippocampal “place cells” are better viewed as encoding many possible stimulus dimensions48

rather than just place; these may include relatively low-level properties such as running speed, information49

about objects and events, and complex history- and context-dependence (Huxter et al., 2003; Lin et al., 2005;50

McKenzie et al., 2014; Allen et al., 2016). Thus, it is unlikely that the mapping between neural activity and51

encoded location (the “encoding model”) remains the same between overt and covert epochs, raising the52

possibility of biases in our ability to decode specific stimulus values, such as different positions along a53

track.54

To address the above issues, we provide several practical improvements to commonly used decoding pro-55

cedures, of particular use for applications to internally generated activity. In acknowledgment of the likely56

different encoding model in force during overt and covert neural activity, we emphasize that decoding per-57

formance should be optimized for generalization performance (i.e. to do well on withheld data not used to58

estimate the parameters of the decoder). We compare different splits of the data, and show that these not59

only result in different overall decoding accuracy, but also in different accuracy distributions over the stim-60

ulus space. In particular, these nonuniformities (biases) in accuracy only become apparent when optimizing61

for generalization to data not included in the training set. Because decoding internally generated activity also62

involves such generalization, the interpretation of decoding such activity should be informed by the known63
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shape of this bias. Finally, we show that regardless of the type of split used, decoding accuracy can be im-64

proved by relaxing the assumption of integer spike counts used in the common Bayesian decoding procedure65

(Zhang et al., 1998; Johnson and Redish, 2007; Pfeiffer and Foster, 2013).66

Materials and Methods67

Overview68

Our aim is to describe how the output of decoding hippocampal ensemble activity depends on the configu-69

ration of the decoder. In particular, we examine two components: (1) the split between training and testing70

data, and (2) the parameters associated with the estimation of firing rates and tuning curves (the encoding71

model). Both are described in the Analysis section. All analyses are performed on multiple single unit data72

recorded from rats performing a T-maze task, described in the Behavior section. Data acquisition, annotation,73

and pre-processing steps are described in the Neural data section.74

All preprocessing and analysis code is publicly available on our GitHub repository, https://github.75

com/vandermeerlab/papers. Data files are available from our lab server on request by e-mail to the76

corresponding author.77

Neural data78

Subjects and overall timeline. Four male Long-Evans rats (Charles River and Harlan Laboratories), weigh-79

ing 439-501 g at the start of the experiment, were first introduced to the behavioral apparatus (described80

below; 3-11 days) before being implanted with an electrode array targeting the CA1 area of the dorsal hip-81
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pocampus (details below). Following recovery (4-9 days) rats were reintroduced to the maze until they ran82

proficiently (0-3 days), at which point daily recording sessions began. On alternate days, rats were water-83

or food-restricted. In parallel with the maze task, some rats (R042, R044, R050) were trained on a simple84

Pavlovian conditioning task in a separate room (data not analyzed).85

Behavioral task. The apparatus was an elevated T-maze, constructed from wood, painted matte black with86

white stripes applied to the left arm (Figure 1) and placed on a metal frame approximately 35 cm in height.87

The distance from the start of the central stem to the ends of the arms was 272 cm (R042) or 334 cm (R044,88

R050, R064; these numbers are subject IDs). 6% sucrose (∼0.1 ml) was dispensed upon reaching the end of89

the left arm, and food (5 pellets of Test Diet 5TUL 45 mg pellets) was dispensed upon reaching the end of90

the right arm.91

Daily recording sessions consisted of (1) a pre-behavior recording epoch, taken as the animal rested on a92

recording pedestal (terracotta pot lined with towels; 20-30 min), (2) approximately 20 trials on the maze, with93

an intertrial interval (30-240 s) on the recording pedestal after each trial, and (3) a post-behavior recording94

epoch (10-20 min). A trial was defined as a run from the starting point at the base of the central stem to95

one of the reward locations; photobeams at the track ends were used to find pairs of crossings defining the96

shortest interval between leaving the base and arriving at an end. Only data from runs on the track were97

analyzed here.98

Because rats were food- or water-restricted, they tended to prefer choosing the arm leading to the reward to99

which their access was limited. On some sessions, access to a preferred arm was blocked with a movable100

barrier to ensure sampling of the non-preferred arm (forced choice). Trials on which the animal turned101

around, or exhibited other disruptive behaviors (climbing on the barrier, extended grooming, etc.) were102

excluded from analysis.103

Electrode arrays and surgery. Subjects were each implanted with a single-bundle microelectrode array104
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Figure 1: Behavioral apparatus. In daily recording sessions, rats ran approximately 20 trials on

an elevated T-maze. Trials were free-choice except for a small number of forced trials in which

access to one of the arms was prevented by a barrier to ensure that at least 5 trials for both left

and right arms were available for each session. Track dimensions were: width 10 cm (A), total

maze height 167 cm (H), total maze width 185 cm (W), total path length 334 cm (white trajectory,

R042 excepted, who had a shorter B segment for a total path length of 285 cm).

targeting the CA1 region of dorsal hippocampus in the right hemisphere (AP -4.0mm, ML +2.5mm). R042105

and R044 were each implanted with a 15-tetrode 1-reference array, and R050 and R064 were each implanted106

with a 16-tetrode 4-reference array. Surgical procedures were as described previously (Malhotra et al., 2015).107

Briefly, the skull was exposed and a ground screw was placed through the contralateral parietal bone. Arrays108

were lowered to the surface of the cortex through a craniotomy, and the remaining exposed opening was109

sealed with a silicone polymer (KwikSil). Then, the arrays were anchored to the skull using small screws110

and acrylic cement. Rats were given a minimum recovery period of four days, during which antibiotics and111

analgesics were administered, before retraining began. Tetrodes were slowly advanced to the CA1 layer112

over a period of 4-9 days. The first recording sessions began no sooner than nine days after surgery. All113

procedures were performed in accordance with the Canadian Council for Animal Care (CCAC) guidelines,114

and pre-approved by the University of Waterloo Animal Care Committee (protocol 10-06).115
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Recording methods. Neural activity from all tetrodes and references was recorded on a Neuralynx Digital116

Lynx SX data acquisition system using HS-36-LED analog buffering headstages tethered to a motorized117

commutator. Local field potentials, filtered between 1-425 Hz, were continuously sampled at 2 kHz. Spike118

waveforms, filtered between 600-6000 Hz, were sampled at 32 kHz for 1 ms when the voltage exceeded an119

experimenter-set threshold (typically 40-50µV) and stored for offline sorting. Acquired signals for all rats120

(except R042, whose data was recorded relative to animal ground) were referenced to an electrode located121

in the corpus callosum, dorsal to the target recording site. A video tracking algorithm recorded the rat’s122

position based on headstage LEDs picked up by an overhead camera, sampling at 30 Hz. All position data123

was linearized by mapping each 2-dimensional position sample onto the nearest point of an ideal linearized124

trajectory on the track, drawn for each session by the experimenter. Position samples further than 25cm from125

this idealized trajectory were treated as missing values.126

Preprocessing and annotation. Signals were preprocessed to exclude intervals with chewing artifacts and127

high-amplitude noise transients where necessary. All spiking data was initially clustered into putative units128

automatically (KlustaKwik, K. D. Harris) and then manually checked and sorted (MClust 3.5, A. D. Re-129

dish). Highly unstable units and units that fired fewer than 100 spikes in a recording session were excluded.130

Recording locations were histologically confirmed to lie in the dorsal CA1 cell layer. A total of 2017 units131

were recorded from 4 rats across 24 sessions (Table 1); 889 of these were units were rated as questionable132

isolation quality by the experimenter and kept separate for later analysis.133

Inclusion criteria. Recording sessions with at least 20 units firing a minimum of 25 spikes during “run”134

epochs (used for tuning curve estimation, described below) for both left and right trials separately were135

included for analysis. This left out five sessions (four from R044, one from R042) resulting in a total of 19136

sessions eligible for analysis.137
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Rat ID Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 Total

R042 22 (13) 74 (39) 107 (40) 64 (43) 73 (40) 59 (31) 399 (206)

R044 17 (11) 13 (9) 43 (21) 53 (26) 50 (27) 41 (22) 217 (116)

R050 72 (42) 94 (40) 72 (28) 113 (44) 128 (36) 112 (46) 591 (236)

R064 121 (59) 136 (47) 116 (52) 162 (45) 178 (68) 151 (60) 864 (331)

Table 1: Total neural units for each rat across each of their six recording sessions. Numbers in

parentheses indicate how many of the numbers listed were units rated as questionable. Sessions

listed in italics were excluded due to insufficient number of recorded units.

Analysis138

Overview. Our main approach is to employ a standard memoryless Bayesian decoder, common to all anal-139

yses and described below. We will vary first, the nature of different splits in the data between “training” and140

“testing”, and second, parameters associated with the estimation of input firing rates (spike density functions)141

and input tuning curves (the “encoding model”). In all these cases, the output of the decoding procedure is,142

for each time bin, a probability distribution over (linearized) position, given the observed spiking activity.143

Bayesian decoding. We use the canonical Bayesian decoder (Brown et al., 1998; Zhang et al., 1998),144

specifically the one-step, “memoryless” version with a uniform spatial prior. This procedure (reviewed in145

detail elsewhere; Johnson et al. 2009; van der Meer et al. 2010; Kloosterman et al. 2014), along with the key146

parameters varied in this study, is illustrated in Figure 2. The decoded location x̂ for a given time bin we took147

to be the mode of the posterior (location with the highest probability; maximum a posteriori). A decoding148

error can then be defined as the distance to the true position Ebins(t) = |x(t)− x̂(t)|. Because x has the unit149

of bins, this quantity is converted into a worst-case error in centimeters as follows: Ecm(t) = Ebins ∗ b+ b
2 ,150

where b is the bin size in cm (we used 3 cm for the results reported here, and a time bin τ = 25 ms). Both151

the estimation of tuning curves (the encoding model, described below) and the decoding of spike data were152
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Figure 2: Schematic of the Bayesian decoding scheme. The overall workflow follows the canonical

procedure based on the common assumptions of Poisson-distributed spike counts around mean

firing rates given by stable tuning curves, and independence between neurons. Crucial variables

in the results reported here are (1) the split in the data between trials used for estimating tuning

curves (“encoding spikes”) and trials used for decoding (“decoding spikes”; see Figure 3 for a

detailed explanation), (2) the width of the Gaussian kernel σTC used to smooth the tuning curves

(the empirically determined mapping from location to firing rate for each recorded neuron), and (3)

the width of the Gaussian kernel σQ used to obtain the spike density functions used as the input to

the decoder.

restricted to data when the animal was running (≥ 5 cm/s).153

We use this decoding procedure here because it has become the de facto standard in the hippocampal place154

cell literature (Kloosterman et al., 2014; Silva et al., 2015; Grosmark and Buzsaki, 2016); however, the155

manipulations in the present study (discussed below) are general and can be straightforwardly applied to156

other decoding methods such as optimal linear decoding, regression-based methods and general-purpose157
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classifiers such as support vector machines, et cetera (Pereira et al., 2009; Pillow et al., 2011; Deng et al.,158

2015).159

Cross-validation. The data used for the estimation of the encoding model (tuning curves; “training data”)160

may be the same as the data used for decoding and error estimation (“testing data”), but this need not be161

the case (Figure 3). We systematically compare different splits between training and testing data, focusing162

on three specific cases: same-trial decoding (decode each individual trial based on tuning curves obtained163

from that same trial; Figure 3A), next-trial decoding (decode each individual trial based on tuning curves164

from the next trial; Figure 3C) and leave-one-out decoding (decode each trial based on tuning curves from165

all trials except the one being decoded; Figure 3D). Decoding errors reported are always for a specific split166

and this will be reported in the text; note that for all splits used here, each trial is decoded separately, using167

tuning curves obtained from a set of encoding trials specific to the trial being decoded (this is unlike all-to-all168

decoding, Figure 3B, in which the same set of all encoding trials is used for every decoding trial). Left and169

right trials were always treated separately, i.e. only left trials are used to decode left trials, and the same for170

right trials.171

Firing rate estimation. Strictly speaking, Bayesian decoding based on the assumption that firing rates are172

Poisson-distributed requires integer spike counts for the estimation of P (s|x) (Figure 2). However, this173

means that there will be effects of binning, which will become more prominent as the time window (bin) size174

τ becomes smaller. For instance, if bins only contain 0 or 1 spike, then which side of a bin edge a spike falls175

on can potentially have a large effect. This issue is prominent in many aspects of spike train analysis, and is176

typically addressed by convolving the raw spike train to obtain a spike density function (SDF), an estimate177

of firing rate which varies continuously in time (Cunningham et al., 2009; Kass et al., 2014).178

To make the standard Bayesian decoding equations compatible with non-integer spike density functions,179

we note that the denominator ni! does not depend on x and can therefore be absorbed into a normalization180

constant C which guarantees that
∑

x P (ni|x) = 1 (Eq. 36 in Zhang et al. 1998). For the results presented181
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Figure 3: Schematic of different splits between data used for estimating the encoding model (tun-

ing curves, “training data”) and data used for evaluating decoding accuracy (“testing data”). Data

splits in the top row are “tautological” in that tuning curves are estimated on the same data used for

decoding. In contrast, data splits on the bottom row measure generalization performance (cross-

validation) in the sense that the decoding data was not included in the data used for estimating the

encoding model. Black cells in the matrices shown indicate trials used to estimate the encoding

model. Thus, for instance, the left column in C shows that to decode trial 1, tuning curves were

estimated from trial 2.

here, we obtain spike density functions by convolving raw spike trains with a Gaussian kernel with SD σQ,182

discretized at a resolution of 25 ms (the τ in Figure 2).183

A possible side effect of using this procedure on the decoding spikes only (i.e. not on the spikes used to184

estimate the tuning curves, described below) is that firing rate-stimulus combinations that are inconsistent185

across the ensemble become more likely, e.g. for every individual location xi in space, there is at least one186

neuron that assigns P (xi|n) = 0 (such cases result in the white areas in Figure 4; only sessions in which at187

least 80% of samples could be decoded were included, except when indicated explicitly in the text). This can188
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be avoided by simply convolving all spikes with the same kernel σQ; here we did not do so in order to show189

the effects of convolving the decoding spikes independently of the encoding model estimation. Smoothing190

the tuning curves, as described in the next section, is another effective method of avoiding this issue.191

Encoding model estimation. Bayesian decoding requires an estimate of P (s|x), the probability of observ-192

ing a firing rate vector s for a given stimulus value x. As in previous work, we assume firing rates are193

independent between neurons and Poisson-distributed around some mean rate λ; this simplification means194

that we only need to know the mean firing rate as a function of the stimulus variable, λ(x), for each neuron.195

These are the tuning curves, which taken together across all neurons can be thought of as an encoding model,196

i.e. the mapping from stimulus values to neural activity. We estimate tuning curves non-parametrically from197

the data by (1) restricting the data to intervals when the animal was running on the track (≥ 5 cm/s; encod-198

ing spikes in Figure 2), (2) linearizing the position data and binning in bins of 3 cm, (3) obtaining a firing199

rate histogram by dividing spike count by occupancy for all bins, and (4) optionally smoothing the resulting200

tuning curve with a Gaussian kernel of standard deviation σTC (with units in cm).201

Inventory of behavioral and neural measures used. Figure 9 shows the distribution, across locations, of a202

number of behavioral and neural measures which we relate to decoding accuracy. We explain how these are203

computed in turn.204

• Occupancy (in seconds; time spent at each location on the track) is computed simply by binning video205

tracking samples and multiplying the sample counts by the length of each video frame (1/30 s).206

• Place fields are detected based on session tuning curves, when a contiguous area of at least 15cm is207

associated with a minimum firing rate of 5 Hz, and a mean firing rate of no more than 10 Hz. For each208

field (contiguous area) the location of the field is taken to be the neuron’s maximum firing rate in in209

the field.210
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• Tuning curve variability across trials (Figure 9E-F) is obtained by taking the standard deviation, across211

trials within each session, of single-trial tuning curves.212

• Bootstrapped tuning curve variability (Figure 9G-H) is computed by generating a distribution of 1000213

resampled tuning curves, with each sample using a random 90% of the position and spiking data.214

Specifically, every spike is assigned to the position sample closest in time. Then, after selecting a ran-215

dom 90% of position samples, those samples and the associated spikes are removed before computing216

a tuning curve. A measure of tuning curve variability is then obtained by taking the standard deviation217

across the distribution of resampled tuning curves.218

• Population vector (PV) correlations are obtained by correlating, for each location on the track, the219

tuning curve firing rates (across cells) either between tuning curves obtained from each pair of trials220

(Figure 9I-J) or between tuning curves from a single trial and the complementary tuning curve of all221

trials except that one (Figure 9K-L).222

Results223

We sought to determine how different configurations of the commonly used one-step Bayesian decoder224

(Brown et al., 1998; Zhang et al., 1998) relate to the decoding accuracy of position based on ensembles of225

hippocampal place cells. In particular, we applied different splits to the data, partitioning it into “training”226

data from which tuning curves were estimated, and “testing” data from which decoding accuracy was de-227

termined (a type of cross-validation). In addition, we varied parameters associated with the estimation of228

tuning curves and firing rates (σTC and σQ in Figure 2).229

Our motivation for exploring different data splits is the question of how internally generated sequences (e.g.230
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“replays”) of neural activity can be decoded in a principled manner. For such sequences, the true mapping231

from neural activity to stimulus space is generally unknown; after all, there is no true stimulus value to which232

decoded output can be compared. Under these conditions, decoders should be optimized for generalization233

performance, i.e. performance on “testing” data not used to “train” the decoder. In statistics and machine234

learning, such cross-validation is routinely used to prevent overfitting (Hawkins, 2004; Alpaydin, 2014).235

Applied to the problem of decoding covert sequences, this concept suggests that we choose the decoder236

which performs best on input data from trials not included in the estimation of tuning curves. Thus, we use237

data from withheld trials as a proxy for internally generated sequences, such that we can estimate how well238

various decoders are likely to perform on actual covert sequences.239

Specifically, applied to decoding neural data collected across a number of repeated trials, as is the case here240

in rats running a T-maze task (Figure 1), a number of different splits between testing and training data are241

possible, illustrated in Figure 3. A commonly used approach in the hippocampal place cell literature is to242

not perform any split at all, i.e. to estimate tuning curves based on the full data set, and use those to decode243

the full data set (Figure 3B, Johnson and Redish 2007; Karlsson and Frank 2009; Pfeiffer and Foster 2013;244

Zheng et al. 2016). We refer to this approach as “tautological” because the same data is used for both. It245

is possible to do this at different levels of granularity, for instance going down to the single trial level by246

decoding each individual trial based on tuning curves from that trial (Figure 3A), while maintaining the247

property that the same data is used for tuning curve estimation and decoding.248

Overall effects of different decoding configurations on accuracy249

We found that the best outright decoding performance (as quantified by the error relative to true location)250

was obtained using such tautological decoding. “Same-trial” decoding performed best of all data splits tested251

(Figure 4A; average decoding error 5.42± 1.02 cm for the best-performing parameters; standard error across252

subjects). However, if the goal is to optimize decoding performance on trials not included in the training set,253
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the picture changes. Decoding using the next trial resulted in a decoding error ∼4-fold worse than the same-254

trial decoding (19.19 ± 2.85 cm; Figure 4B). Leave-one-out decoding was intermediate between these two255

(11.25 ± 1.58 cm; Figure 4C), a pattern that held across a wide range of decoding parameters (see also256

Figure 5 for specific comparisons).257

Figure 4: Decoding accuracy for different data splits (left: same trial, middle: next trial, right:

leave-one-out) and decoder parameters (vertical axis: standard deviation of Gaussian kernel (in s)

used to convolve spike trains, horizontal axis: standard deviation of Gaussian kernel used to con-

volve tuning curves (in 3 cm bins). Grayscale shows the mean decoding error (in cm) for different

parameter and data split combinations. Note that decoding accuracy for some parameter combina-

tions cannot be estimated if temporal smoothing results in decoding spike counts inconsistent with

the encoding model (empty data points; see Methods for details). Results shown were obtained

with a decoding time bin size (τ ) of 25 ms; only sessions with at least 20 cells for both left and right

trials on the T-maze were included, averaging across left and right trials (19 sessions total). The

white asterisk indicates the parameter combination resulting in the lowest mean decoding error;

this is the value reported here for each data split, along with the standard error over subjects (n =

4).

Several other features of Figure 4A-C are worth noting. First, performing no smoothing at all on either the258

spike trains or the tuning curves (0/0, the data point on the top left of each panel) results in large decoding259

error. Previous results manipulating the width of the time window indicated minimum error for a time260

window in the ∼0.5-1s range (Zhang et al., 1998) this is confirmed here by the error minimum at 0.2 or 0.5261
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s SD smoothing kernels. Surprisingly however, even very minimal temporal smoothing of the spike trains262

to be decoded (e.g. a kernel with 5 ms SD) can result in substantial improvements in decoding performance263

compared to no temporal smoothing (up to 2-fold; see Figure 5 for a close-up of this effect). Second,264

best decoding accuracy almost invariably required some smoothing of the tuning curves, even when the265

leave-one-out procedure ensured many trials were used for tuning curve estimation. Third, the parameters266

yielding optimal decoding accuracy differed between data splits; note for instance how the dark gray area267

(corresponding to low decoding error) is shifted towards the top left for Figure 4A compared to Figure 4C.268

Thus, different data splits interact with decoding parameters to produce overall decoding accuracy.269

To show more clearly the data in Figure 4 for selected parameter combinations of interest, we plotted sep-270

arately the raw decoding error (Figure 5A-C) and decoding error normalized to same-trial decoding within271

each recording session (Figure 5D). Including units with questionable isolation quality decreased decoding272

error across all conditions (compare Figure 5A-B; see Methods and Table 1 for unit counts), and we there-273

fore used the full set of units including questionable units for all other analyses. Regardless of the set of274

units used, however, Figure 5 illustrates clearly the large improvement in decoding accuracy of very minimal275

smoothing (e.g. light dashed line, 5 ms kernel) compared to no smoothing (dark dashed line). Also evident is276

the performance improvement of the leave-one-out data split over the next-trial data split; this improvement277

was particularly large for larger smoothing (for which, in turn, overall decoding accuracy was better), for no278

or minimal smoothing, next-trial and leave-one-out decoding tended not to differ.279

Effect of trial numbers on decoding accuracy280

Given that leave-one-out decoding performed as well or better than next-trial decoding, we can ask how this281

effect depends on the number of trials included in the leave-one-out procedure. This can be of practical282

importance in determining the number of trials of behavioral sampling will be sufficient for decoding dur-283

ing internally generated activity. Leave-one-out and next-trial decoding can be seen as opposite ends of a284
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Figure 5: Decoding error for selected parameter and data combinations. Panels A and B show

decoding error run on all sessions (n = 24, i.e. without requiring a minimum number of cells to

be active) to compare decoding error when only well-isolated units are used (A) or when units of

questionable isolation quality are included (B). Panels C and D are replots of the same data as in

Figure 4, i.e. for sessions with at least 20 cells that met inclusion criteria (n = 19; see Methods).

For panel D, decoding error is normalized on a single-session basis to the same-trial decoding.

Errorbars indicate SEM over subjects (n = 4).

spectrum along which the number of trials used to estimate tuning curves is systematically varied. Overall,285

decoding performance increased as more trials were included, with diminishing returns for larger numbers286

of trials (Figure 6). As expected from the results in the previous sections, these overall performance gains287

in absolute and relative decoding accuracy depended on the amount of smoothing, with the largest gains for288

larger smoothing.289

The results up to this point raise an obvious question: why does decoding performance depend on the way the290

data is split between encoding and decoding (training and testing) sets? There are two major possibilities.291

18

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 24, 2017. ; https://doi.org/10.1101/066670doi: bioRxiv preprint 

https://doi.org/10.1101/066670
http://creativecommons.org/licenses/by-nd/4.0/


Figure 6: Raw decoding error (A) or within-session normalized decoding error (to next-trial decod-

ing error, B) as a function of the number of trials included in the cross-validation. Overall, decoding

error tended to decrease as more trials were included, but the magnitude of this effect depended

on the degree of smoothing used, with stronger smoothing (associated with lower decoding error)

benefiting more from including more trials.

The first one is overfitting, which assumes that estimating encoding models from a single trial includes292

fitting a certain amount of noise which generalizes poorly to other trials. In this scenario, including more293

trials would lead to averaging out of some of this noise, improving performance as shown above (Figure294

6). However, a further, non-exclusive possibility is that the encoding model (the mapping between position295

along the track and neural activity) is not constant across trials. To test this idea, we plotted single-trial296

decoding performance as a function of the “distance” between the encoding and decoding trials (this can297

be visualized by shifting the matrix in Figure 3C horizontally, away from its shown configuration with a298

distance of one trial to distances of multiple trials).299

Figure 7 shows that both raw and relative decoding error (normalized within-session to same-trial decoding)300

tended to increase with larger distance between the encoding and decoding trial (linear mixed model with301

subject-specific intercepts; effect of trial distance F = 10.13, p = 0.0017 for parameters with the smallest302

effect). In other words, decoding was more accurate when using tuning curves estimated from a “near” trial,303
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compared to using tuning curves from a “far” trial. However, it should be noted that pinpointing the source304

of this effect is challenging, given that aspects of behavior such as average running speed and path stereotypy305

tend to change over the course of a session, in a manner likely correlated with trial distance (elapsed time) in306

this experiment. In attempt to control for such changes, we fitted linear mixed models with subject-specific307

intercepts to the data with decoding error as the dependent variable for each pair of trials (a decoding “target”308

trial, and an encoding “source” trial). For each such pair we included not only (1) the trial distance (number309

of trials) and (2) the time difference (between trial start times) as the key regressors of interest, but also310

(3) the difference in distance run, and (4) the difference in length (in time) between the trials in the pair.311

Even after the behavioral variables (3) and (4) were included in the model, either trial distance (1) or time312

difference (2) dramatically improved model fits (nuisance variables only log likelihood -595.2, pseudo-R2
313

0.22; trial distance added -566.39, pseudo-R2 0.40, time difference added -563.71, pseudo-R2 0.42; all314

model comparisons p < 0.001 for parameters with the smallest effect). This effect suggests that individual315

trials are associated with distinguishable ensemble firing patterns, potentially reflecting trial-unique aspects316

of experience (consistent with results from Manns et al. 2007; Mankin et al. 2012; Allen et al. 2012; Ziv317

et al. 2013). In turn, this observation raises the possibility that a given covert sequence may be best decoded318

by an encoding model associated with a specific trial.319

Decoding accuracy for different locations320

The overall decoding error measure examined so far averages across different stimulus (location) values.321

However, it is possible that different data splits and decoding parameters differentially affect decoding accu-322

racy for specific locations. Testing whether any such nonuniformity exists in the data is crucial when making323

comparisons between decoding covert variables (replay) across different stimulus ranges, such as different324

parts of a track. To test if this occurs, we computed the decoding error as a function of location on the track325

(Figure 8A-B). Apart from the overall difference in raw decoding error across data splits, there were clear326

differences in how error was distributed across locations: for next-trial and leave-one-out decoding, error327
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Figure 7: Decoding error as a function of the distance (in number of trials) for single-trials decod-

ing. A trial distance of 0 means that the same trial is used for encoding (estimating tuning curves)

and decoding; a trial distance of +1 means that the next trial is used for encoding, and so on. Raw

decoding error (A) and decoding error normalized within sessions to same-trial decoding error (B)

tended to increase with larger trial distances. C and D show the same data but for absolute dis-

tance, i.e. previous and next-trial decoding are both distance 1. In order to have sufficient numbers

of trial pairs to perform this analysis, trial pairs on which at least 20% of samples could be decoded

were included (unlike the 80% threshold used for all other results; see Methods).

tended to increase at the start and end of the track. In contrast, for same-trial decoding, this effect was not328

apparent at the start of the track. Smaller differences between the same-trial and leave-one-out were also ap-329

parent, such as an increase in decoding error around the choice point. Next, we plotted the confusion matrix330

of actual and decoded locations for the different data splits (Figure 8C). Apart from the overall difference in331

decoding accuracy, visible as the width of the diagonal, distortions are visible for the leave-one-out case in332

particular. The point indicated by the white arrow shows relatively poor decoding at the choice point of the333

T-maze, an effect not apparent for the other data splits.334
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Figure 8: Average decoding error, by location along the track, for the best-performing decoding

parameters (starred in Figure 4). Column layout is as in Figure 4), with same-trial decoding on

the left, next-trial in the center, and leave-one-out on the right. A shows the raw decoding error, B

shows within-session Z-scored (across space) error. Importantly, these distributions are different;

for instance, the next-trial and leave-one-out distributions show increases in error at the start and

end of the track not seen in the same-trial distribution. C: confusion matrices for actual and de-

coded position, averaged across sessions. Note the distortion away from the diagonal apparent in

the leave-one-out distribution (white arrow) not present in the same-trial case.

In general, there are a number of obvious potential explanations for non-uniform distributions of decod-335

ing accuracy, such as differences in the density of place fields and variability in behavior. However, these336

would be expected to affect both tautological and cross-validated decoding, when the results show strikingly337

different patterns of decoding accuracy for those cases (Figure 8B). To determine what aspects of the data338

could help account for the observed nonuniformity in cross-validated decoding, we plotted several quantities339

related to behavior and neural activity as a function of location (Figure 9). Both average occupancy and340
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its variability across trials were non-uniform (Figure 9A-B) with more sampling around the midpoint of the341

track compared to the start and end. The average firing rate of neurons with place fields and the number of342

place fields across the track also showed distributions that did not seem clearly related to decoding accuracy343

(Figure 9C-D).344

Based on the intuition that cross-validated decoding accuracy depends on the degree of consistency in be-345

havior and neural activity across trials, we computed a number of measures designed to quantify this: (1) the346

variability in single-trial tuning curves, estimated across trials for each cell individually and then averaged347

(Figure 9E-F), (2) the variability in entire-session tuning curves, as estimated by a resampling (bootstrap)348

procedure (Figure 9G-H), and (3) the population vector correlation (i.e. mean firing rates across all cells for349

a given location), either across single-trial tuning curves or between single-trial tuning curves and the com-350

plementary leave-one-out set of tuning curves (Figure 9I-L). These measures showed different distributions351

across the track, with variability in estimating session tuning curves (Figure 9G-H) showing a distribution352

most similar to the observed cross-validated decoding accuracy (Figure 8B). Thus, although multiple factors353

contribute to decoding accuracy, tuning curve variability (as obtained by a bootstrap) may underlie decoding354

accuracy differences specific to cross-validated decoding.355

Discussion356

This study contributes two advances to the methodology for decoding internally generated neural activity.357

First, we show that using different data splits for the estimation of the encoding model (tuning curves) and the358

decoding of hippocampal place cell activity affects decoding performance. Specifically, although same-trial359

decoding was the clear winner in terms of absolute decoding error, single-trial decoding generalizes poorly,360

leading to large decoding errors when applied to trials other than the one used to obtain tuning curves. Best361

generalization performance is obtained with leave-one-out cross-validation. These observations are in line362

with standard practice in the fields of machine learning and statistics (Bishop, 2006); here we explore the363
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Figure 9: Among several behavioral and neural measures, tuning curve variability as estimated

by a bootstrapping procedure is most similar to cross-validated decoding accuracy. A: Normal-

ized occupancy (time spent) and its standard deviation across trials within each session (B). C:

Mean firing rate of all cells with at least one place field, and distribution of place field peaks (D).

E: Standard deviation of single-trial tuning curves, computed across trials within a session (raw) or

normalized by the mean (F). G: Entire-session tuning curve variability, estimated by a bootstrap-

ping procedure (raw) or normalized by the mean (H). I: Raw, and z-scored (J) population vector

correlation between tuning curves estimated across every pair of trials. K: Raw, and z-scored (L)

population vector correlation between tuning curves estimated from each trial and the complemen-

tary leave-one-out tuning curves.

implications for the interpretation of covert activity. Specifically, different data splits did not affect decoding364

performance uniformly across different positions, resulting in biases that need to be taken into account when365

interpreting decoded “replay” data. The second contribution of this study is that for all data splits, decoding366

error can be substantially reduced by relatively minimal smoothing, an observation well known in other367
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fields, but not yet systematically applied to hippocampal data.368

Both these contributions help address the question of how we should decode and interpret internally gen-369

erated, covert activity such as occurs in hippocampal “replay” during rest and offline states. The analyses370

presented here were performed on data from rats running on a T-maze, rather than on covert activity directly.371

However, the crucial conceptual connection between these two is the following: because the true mapping372

from neural activity to decoded locations that applies to internally generated activity is typically unknown373

(see the section below for further discussion), this mapping should be optimized for generalization perfor-374

mance. Operationally, we mimic the decoding of such covert sequences by pretending that we do not know375

the true encoding model for specific trials on the track – by leaving out these trials in our analysis – essen-376

tially treating them as covert sequences, but with the advantage that in this case, we can go back and evaluate377

decoding performance.378

To provide a specific example of how insights obtained from this procedure apply to the interpretation of379

decoding internally generated activity: suppose we used such decoded locations to detect sequences de-380

picting coherent trajectories along the track. We may find that these “replays” preferentially included the381

decision point at the middle of the track, rather than the ends of the track. We may be tempted to report382

this as a finding of interest, perhaps with an interpretation emphasizing prioritized replay as a mechanism383

useful for reinforcement learning (Schaul et al., 2015; Gershman and Daw, 2017). However, Figure 8 should384

make it clear that, in the data set used here, such a bias is a straightforward consequence of the increase in385

cross-validated decoding error at both ends of the track. Crucially, if we had used same-trial decoding error386

instead, there would not be any indication of a bias favoring the decision point.387

Similar to the above example, it is common to use decoding analyses to support a comparison between “re-388

play” of different experimental conditions or spatially distinct areas on the track, such as the left and right389

arms of a T-maze (Gupta et al., 2010; Bendor and Wilson, 2012; Ólafsdóttir et al., 2015). In such compar-390

isons, it is crucial to ensure that differences of interest in decoded trajectory counts cannot be attributed to391
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intrinsic differences in ability to decode such sequences (e.g. as a result of different distributions of firing392

fields across locations, firing rates, etc). A common way to control for this is to compare decoding accuracy393

during behavior across the conditions to be compared; our results show that such measures can differ sub-394

stantially when based on tautological or cross-validated decoding. Thus, in this setting, as in the previous395

example, the cross-validated decoding error provides an important null hypothesis: the distribution of replay396

content expected from the decoder’s ability to generalize to neural activity not in the training set.397

Note that we are not suggesting any changes to the decoding of “replay” activity itself: this can be done398

with tuning curves obtained from the full set of behavioral data, because replay activity is not included in399

the tuning curves. Rather, we point out that the interpretation of the replay decoding results should take the400

cross-validated, not tautological, decoding accuracy during behavior on into account. Whether or not any401

observed bias in cross-validated decoding error presents a problem depends on the alternative hypothesis402

to be tested against the potentially non-uniform null hypothesis provided by cross-validated decoding error.403

Following the example above: the observed bias in cross-validated decoding error to be lower around the404

choice point of the T-maze casts doubt on the alternative hypothesis that uniform experience is transformed405

into preferential replay of choice points. However, this same bias may not matter for determining whether406

there exists a difference between the number of observed “left” and “right” replays.407

We found that generalization error depends on the number of trials used to estimate the encoding model, with408

trial numbers up to the 10 tested generally resulting in lower error. This is intuitive, as a noisy, corrupted409

tuning curve will lead to a less effective decoder than an accurate one. Note that this implies that when410

comparing replay content across conditions as in the examples above, the amount of data used to estimate411

tuning curves should be equalized to eliminate bias due to this effect. As the number of trials used for cross-412

validation becomes larger, the difference with all-to-all decoding becomes proportionally smaller. Thus, the413

importance of reporting cross-validated error is especially key when smaller numbers of encoding trials are414

used, a situation we expect to become more common due to factors such as more complex environments415

that limit behavioral sampling, and limitations in imaging time due to photobleaching of reporter molecules416
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(Rubin et al., 2015; Malvache et al., 2016).417

More trials do not always make for a better encoding model, however; this is illustrated by our observation418

that decoding error increased when using trials that occurred further apart in time (Figure 7). As we could419

not explain this effect based on changes in behavioral variables, this suggests a certain amount of trial-unique420

content, as has been shown previously with different analyses (Manns et al., 2007; Mankin et al., 2012; Ziv421

et al., 2013). If the contribution of time, or trial-unique features more generally, to internally generated422

sequences is large (Takahashi, 2015; Schwindel et al., 2016), then averaging across many trials may limit423

and/or bias the detection of trial-specific replay content. As it is not yet clear to what extent internally424

generated sequences reflect trial-unique experience, it is difficult to convert this possibility into specific425

recommendations when interpreting decoded replay data. A conservative approach would be to verify the426

robustness of a decoding result against variations in the encoding model used (e.g. by using different subsets427

of trials for decoding; we thank one of the referees for this suggestion).428

Finally, beyond the comparison of different data splits discussed above, we show that regardless of split,429

decoding error can be reduced substantially by decoding spike density functions (SDFs) rather than binned430

spike counts. Such temporal smoothing has been shown to improve decoding of arm reaching direction from431

motor cortex activity (Cunningham et al. 2009; see also Kass et al. 2003; Shimazaki and Shinomoto 2010;432

Prerau and Eden 2011 for a more general treatment of statistical issues in spike rate estimation) but to our433

knowledge this approach has not been used in studies of hippocampal place cell activity. Although numerous434

studies have examined the effects of the size of the time window on decoding accuracy (τ ; e.g. Wilson and435

McNaughton 1993; Zhang et al. 1998; Resnik et al. 2012; Chen et al. 2016), this is different from our spike436

density function (SDF) estimation approach: the Gaussian kernel width used in SDF estimation can be ma-437

nipulated independently from the window size. Thus, for a given window size, such as the 25 ms used here,438

a variable amount of smoothing can be applied. This modification can be straightforwardly accommodated439

in commonly used Bayesian decoding procedures (Zhang et al., 1998). Remarkably, decoding performance440

improves even when estimating SDFs with very narrow kernels (e.g. with a standard deviation of 2 or 5 ms).441
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Using narrow kernels is particularly important for applications in decoding covert activity, which in the case442

of hippocampal place cells is temporally compressed relative to behavioral experience (Nadasdy et al., 1999;443

Lee and Wilson, 2002; Dragoi and Buzsáki, 2006; Buzsáki, 2015).444

Limitations445

Our suggestion that decoders intended for covert neural activity should be optimized for cross-validated446

(generalization) performance is based on the assumption that the “true”, correct decoder for such activity447

is unknown. Clearly, the approach taken here cannot itself determine the true mapping from covert neural448

activity to stimulus space. Demonstrating the nature of this mapping is a challenging problem, which may449

require grounding in experimental observations. Two promising directions may include (1) obtaining access450

to a brain-internal decoder, such as a downstream projection target, making it possible to determine what as-451

pects of presynaptic activity are distinguished at a next processing stage (Ji and Wilson, 2007; Lansink et al.,452

2009; Ólafsdóttir et al., 2016; Jadhav et al., 2016); and (2) applying experimental manipulations contingent453

on decoded content, such that any behavioral effects relative to an appropriate control would constitute ev-454

idence that the decoder captures something relevant (clusterless decoding is a promising approach for this;455

Kloosterman et al. 2014; Deng et al. 2015). A different approach is to construct generative models in an456

attempt to reproduce experimentally observed activity (Johnson et al., 2008; Pfeiffer and Foster, 2015; Chen457

et al., 2016). In the limit of a perfect match between the model output and the experimentally observed data,458

then the optimal decoder can be determined from what is now a known ground truth (the generative model).459

However, these approaches are not yet mature, and may remain impractical for the purpose of determining460

the most suitable decoder in any given experiment. Thus, we provide more practical recommendations in the461

final section.462

A different limitation of this study is that although encoding model parameters can be optimized for decoding463

error when the true location is known, it is unclear how the parameters obtained in this way should be applied464
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to decoding covert activity. Estimates of the temporal compression in internally generated vs. overt activity465

range from 7-20x (Lee and Wilson, 2002; Davidson et al., 2009; Buzsáki, 2015), thus a practical starting466

point would be to simply reduce the σQ found to be optimal for decoding overt behavior by a factor in that467

range. For the data set used here this would suggest a value of σQ = 5 ms to be a conservative estimate.468

Future work could provide a more principled estimate of this parameter by, for instance, using generative469

models as outlined above.470

Similarly, our current estimation method for tuning curves uses a relatively ad hoc approach of non-parametrically471

obtaining firing rates from the data, followed by smoothing. Other work has used parametric approaches such472

as fitting Gaussians or Zernike polynomials (Barbieri et al., 2002); such methods are completely compatible473

with the approach we take here. Our goal in this study was not to determine which method for tuning curve474

estimation works best; rather, the main purpose of not using raw, unsmoothed tuning curves here was to pre-475

vent inconsistent combinations of spike counts. Looking forward, however, there are clearly opportunities476

for improving the estimation of tuning curves, such as propagating uncertainty about estimated firing rates477

throughout the decoding procedure, correcting for the blurring effects of theta phase precession (Lisman and478

Redish, 2009), and taking the presence of different gamma oscillations into account (Zheng et al., 2016).479

Finally, the results provided here are based on one specific data set. However, we emphasize that the specific480

optimal parameters and decoding error distributions found here are not meant to be imported verbatim to481

analysis of other data sets for which they may or may not work well; if this was the purpose of the study it482

would indeed be important to test how consistent the inferred optima are. Rather, these results illustrate the483

importance of choosing parameters and data splits in a principled manner, and suggests specific steps that484

can be applied to other data sets to find parameters appropriate for that data.485

More generally, although we used hippocampal place cell data from rodents, the ideas developed here can486

also be applied to other systems in which covert activity can be meaningfully decoded. In rodents, these487

include the head direction system (Peyrache et al., 2015), areas involved in the processing of decision vari-488
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ables such as orbitofrontal cortex and ventral striatum (Stott and Redish, 2014), and internal representations489

of time (Pastalkova et al., 2008; MacDonald et al., 2013; Mello et al., 2015). Non-human primate studies490

prominently explore the generation of motor activity related to upcoming reaching movements (Wu et al.,491

2006; Yu et al., 2009), and ensemble recording and analysis methods are becoming increasingly common in492

studies of decision making (Rich and Wallis, 2016). In human subjects, MEG studies have started to explore493

the fast dynamics of thought (King and Dehaene, 2014; Bellmund et al., 2016; Kurth-Nelson et al., 2016),494

and MVPA has revealed structure in internally generated activity in a wide range of domains (Reddy et al.,495

2010; Brown et al., 2016). The present study suggests that the analysis of internally generated sequences496

of hippocampal activity in rodents can interact productively with statistical approaches developed across497

domains.498

Summary: three practical guidelines for the decoding and interpretation of internally gener-499

ated neural activity500

The use of cross-validation for decoding is commonplace in human neuroimaging studies (Pereira et al.,501

2009; Shirer et al., 2012; Varoquaux et al., 2016). Several studies performing position decoding on rodent502

hippocampus data have used a split between training and testing data (e.g. Zhang et al. 1998; Rutishauser503

et al. 2006; Davidson et al. 2009; Resnik et al. 2012; Agarwal et al. 2014), but this practice has not been504

consistently applied in this field. Moreover, the motivation for reporting decoding errors based on cross-505

validation, and its particular importance for the interpretation of internally generated activity, is typically not506

made explicit. For the decoding of hippocampal place cell data for this purpose, we suggest the following:507

• Report cross-validated, not tautological, decoding error on “running” data. This is good practice in508

general, but particularly crucial when using decoding accuracy to reveal possible bias in the ability to509

decode different conditions or trajectories. The cross-validated decoding error distribution should be510

viewed as a null hypothesis for comparison with alternative hypotheses about the decoded content of511
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internally generated activity, such as replay.512

• Because cross-validated decoding error depends (1) on the amount of data (e.g. number of trials) used513

to estimate tuning curves, and (2) temporal distance between trials used to estimate tuning curves and514

the time of decoding. Thus, these factors should be equalized, either by design or by subsampling,515

when comparing replay content across conditions.516

• Even very mild smoothing of the spike trains to be decoded, such as a 5 ms Gaussian kernel for spike517

density functions, and a 3 cm kernel for tuning curves, can substantially improve decoding perfor-518

mance. However, due to the compression of hippocampal replay relative to behavioral experience,519

excessive smoothing is discouraged.520
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Ólafsdóttir, H. F., Barry, C., Saleem, A. B., Hassabis, D., and Spiers, H. J. (2015). Hippocampal place cells construct reward related648

sequences through unexplored space. eLife, 4:e06063.649

Ólafsdóttir, H. F., Carpenter, F., and Barry, C. (2016). Coordinated grid and place cell replay during rest. Nature Neuroscience,650

19(6):792–794.651

O’Neill, J., Senior, T., and Csicsvari, J. (2006). Place-selective firing of CA1 pyramidal cells during sharp wave/ripple network652

patterns in exploratory behavior. Neuron, 49(1):143–155.653

Panzeri, S., Macke, J. H., Gross, J., and Kayser, C. (2015). Neural population coding: combining insights from microscopic and654

mass signals. Trends in cognitive sciences, 19(3):162–72.655
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