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Abstract 18 

1. The challenges associated with monitoring low-density carnivores across large 19 

landscapes have limited the ability to implement and evaluate conservation and 20 

management strategies for such species.  Noninvasive sampling techniques and advanced 21 

statistical approaches have alleviated some of these challenges and can even allow for 22 

spatially explicit estimates of density, arguably the most valuable wildlife monitoring 23 

tool.   24 

2. For some species, individual identification comes at no cost when unique attributes (e.g., 25 

pelage patterns) can be discerned with remote cameras, while other species require viable 26 

genetic material and expensive lab processing for individual assignment.  Prohibitive 27 

costs may still force monitoring efforts to use species distribution or occupancy as a 28 

surrogate for density, which may not be appropriate under many conditions.   29 

3. Here, we used a large-scale monitoring study of fisher Pekania pennanti to evaluate the 30 

effectiveness of occupancy as an approximation to density, particularly for informing 31 

harvest management decisions.  We used a combination of remote cameras and baited 32 

hair snares during 2013–2015 to sample across a 70,096 km2 region of western New 33 

York, USA.  We fit occupancy and Royle-Nichols models to species detection-34 

nondetection data collected by cameras, and spatial capture-recapture models to 35 

individual encounter data obtained by genotyped hair samples.   36 

4. We found a close relationship between grid-cell estimates of fisher state variables from 37 

the models using detection-nondetection data and those from the SCR model, likely due 38 

to informative spatial covariates across a large landscape extent and a grid cell resolution 39 

that worked well with the movement ecology of the species.  Spatially-explicit 40 
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management recommendations for fisher were similar across models.  We discuss design-41 

based approaches to occupancy studies that can improve approximations to density. 42 

Key words: density estimation; detection-nondetection data; fisher; noninvasive sampling; 43 

Pekania pennanti; occupancy; spatial capture-recapture   44 
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Introduction 45 

Species distribution and abundance are fundamental quantities in ecology, and serve as the 46 

primary state variables for informing large-scale conservation and management (Jones 2011).  47 

The choice of which state variable to use as a monitoring tool depends on the types of population 48 

inferences regarding variation over time or space needed to meet objectives (Yoccoz, Nichols & 49 

Boulinier 2001).  In practice, the choice is also dictated by logistical constraints.  Noninvasive 50 

survey methods have greatly expanded our capacity to monitor certain wildlife species at large 51 

scales (e.g., terrestrial carnivores; Long et al. 2008), yet the observations required to estimate 52 

abundance as opposed to occurrence can still be more costly and difficult to obtain (Burton et al. 53 

2015).  Thus, monitoring programs may use occurrence as a surrogate for abundance or density 54 

(MacKenzie et al. 2006; Ellis, Ivan & Schwartz 2014), under the assumption that monitoring 55 

objectives can still be achieved. 56 

Relationships between occurrence and abundance have been demonstrated within and 57 

between species at macro-ecological scales, with biological and statistical mechanisms used to 58 

explain variation in the strength of such relationships (Brown 1984; Gaston et al. 2000).  From a 59 

statistical standpoint, a relationship between species occurrence and abundance should result 60 

from the fact that both quantities represent areal summaries of the same spatial point pattern of 61 

individuals on a landscape (Kéry & Royle 2016, pg. 3).  The summaries are equivalent when the 62 

grain (i.e., size of the spatial unit of observation; Wiens 1989) over which the point pattern gets 63 

summarized is small enough such that the maximum number of individuals within a unit is 1.  64 

Conversely, a large grain which results in most units being occupied with ≥1 individual will 65 

produce an occurrence pattern that exhibits no useful relationship with variation in abundance.  66 

Regardless of grain, the intensity and spatial variation in the point pattern will also determine 67 
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how well any summaries of occurrence and abundance match.  In wildlife studies, the true point 68 

pattern of individuals is almost never known and must be sampled, accounting for both spatial 69 

variation and detectability (Pollock et al. 2002).  Thus, the choice of grain will be constrained by 70 

study objectives, species ecology, and possible sampling and analytical frameworks (Wiens 71 

1989).  In continuous landscapes without naturally defined spatial units, this decision can be 72 

especially complicated and have consequences for the inferences derived from sampling.  For 73 

example, the sampling unit definition in an occupancy model (sensu MacKenzie et al. 2002) will 74 

dictate the necessary data collection, affect model assumptions and interpretation, and potentially 75 

alter the relationship between estimated occurrence and true population density (Efford & 76 

Dawson 2012).   77 

One strategy for selecting the grain in an occupancy study for highly mobile species has 78 

been to use previous estimates of home range size as a minimum bound to avoid violating the 79 

“closure” assumption (Karanth et al. 2011; O’Connell & Bailey 2011).  Closure in this case 80 

relates to changes in the occupancy state between surveys at a given site due to animal 81 

movement, which alters the interpretation of occupancy to mean “use” (MacKenzie & Royle 82 

2005) and differentiates instantaneous from asymptotic occupancy (Efford & Dawson 2012).  83 

Selecting a relatively large grain to accommodate wide-ranging, mobile species where movement 84 

between surveys is most problematic makes it nearly impossible to truly survey the entire 85 

sampling unit (Efford & Dawson 2012).  Common noninvasive survey techniques, such as 86 

remote cameras, can have very small sampling “footprints” compared to the movements of target 87 

species (Clare, Anderson & Macfarland 2015).  Even for baited detectors which result in higher 88 

observation rates due to larger effective trapping areas at each site (du Preez, Loveridge & 89 

Macdonald 2014), the actual trapping area for a given site is still mostly unknown.  Finally, 90 
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selecting the grain to accommodate species ecology becomes complex when movement behavior 91 

is sex specific (Sollmann et al. 2011), causing some model assumptions to be violated by 92 

individuals of one or the other sex.  Without understanding how these sampling tradeoffs result 93 

in modified observation processes, the interpretation of what occupancy estimates represent may 94 

be far removed from the truth, reducing the value of occupancy modeling as a proxy for 95 

abundance (Efford & Dawson 2012). 96 

Validation and calibration are important steps in determining the utility of a proxy as a 97 

tool for natural resource management (Stephens et al. 2015).  Previous studies have 98 

demonstrated the statistical relationships between species occupancy and density by simulating 99 

individual point patterns and hypothetical detection surveys (Efford & Dawson 2012; Ellis, Ivan 100 

& Schwartz 2014), providing guidance for the sampling design of large-scale monitoring studies.  101 

These types of simulations and power analyses require previous information on species ecology 102 

that may not always exist, particularly for widespread species with regional variation.  Clare, 103 

Anderson and Macfarland (2015) empirically estimated the point pattern of individuals using 104 

spatial capture-recapture (SCR) modeling (Borchers & Efford 2008; Royle & Young 2008), and 105 

demonstrated a strong relationship between estimates of bobcat Lynx rufus occupancy and 106 

density using species detections and individual encounters, respectively, collected from remote 107 

camera traps.  Given the typical capture-recapture requirement of encounter data from identified 108 

individuals (but see Chandler & Royle 2013), non-invasive sampling applications of SCR have 109 

been limited to species with unique features that can be photographed or to surveys that can 110 

collect genetic samples for genotyping (Royle et al. 2014).  For species without identifiable 111 

features or monitoring programs that cannot afford long-term investment in expensive genetic 112 
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sample processing, a calibration of the occupancy-density relationship could serve to guide 113 

monitoring design. 114 

Here, we used a large-scale monitoring study of fisher Pekania pennanti to evaluate the 115 

effectiveness of occupancy as an approximation to density, particularly for informing harvest 116 

management decisions.  A medium-sized carnivore traditionally valued for its fur, fisher had 117 

been extirpated from much of eastern North America by the early 20th century due to unregulated 118 

trapping and habitat loss; recent population expansions have coincided with furbearer protection 119 

measures and conversion of farmland to forest in the region (Lancaster, Bowman & Pond 2008).  120 

An increased interest in expanding harvest opportunities prompted the New York State 121 

Department of Environmental Conservation (NYSDEC) to implement a monitoring program for 122 

fisher to identify the wildlife management units that could sustain regulated trapping (Fuller, 123 

Linden & Royle 2016).  We sampled a large landscape across western New York, USA using 124 

baited camera and hair snare traps and fit occupancy models to species detection-nondetection 125 

data and spatial capture-recapture models to individual encounter data obtained by genotyped 126 

hair samples.  We also used the species detection-nondetection data to estimate abundance 127 

(density) with the Royle-Nichols model (Royle & Nichols 2003), assuming that species 128 

detections were often generated by multiple individuals given the sampling design.  All sets of 129 

models incorporated similar covariates for the observational and ecological processes, with 130 

spatial variation defined on the same raster landscape.  We evaluate the use of occupancy as a 131 

proxy for density and discuss design-based approaches that can improve the approximation for 132 

large-scale monitoring programs. 133 

  134 
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Materials and methods 135 

STUDY AREA AND SAMPLING 136 

Our study area spanned all of western New York, USA, encompassing a 70,096 km2 region 137 

comprised mostly of forest and agriculture (Fuller, Linden & Royle 2016).  As with other 138 

temperate forests of eastern North America, this region was historically occupied by fisher until 139 

extirpation in the early 1900s (Powell & Zielinski 1994; Lewis, Powell & Zielinski 2012).  The 140 

region was delineated by 13 wildlife management unit (WMU) aggregates, 8 of which (totaling 141 

73% of the study area) have been closed to fisher harvest since 1949 while the remaining 5 142 

WMU’s, located near remnant and reintroduced fisher populations in the Adirondack and 143 

Catskill Mountains, have had regulated trapping seasons for >20 years (Fig. S1.1; Fuller, Linden 144 

& Royle 2016). 145 

 Our study design required a discrete representation of the landscape to define sampling 146 

units that could be surveyed for fisher and to quantify landscape attributes that might be 147 

associated with variation in fisher occurrence and density.  Additional details are described in 148 

Fuller, Linden and Royle (2016).  We divided the study area into a grid having 4,400 cells with a 149 

resolution of 15 km2, chosen to match the territory size of a female fisher (Arthur, Krohn & 150 

Gilbert 1989; Powell & Zielinski 1994).  This design was intended to theoretically restrict: 1) the 151 

number of individuals within a grid cell and; 2) the number of grid cells overlapped by any given 152 

individual.  The true maximum for each were unknown and would have depended on differences 153 

in movement between sexes, the amount of inter- and intrasexual overlap of territories, and the 154 

configuration of sampled grid cells.  We selected a subset of available grid cells using a stratified 155 

random approach with clustering (≥ 3 neighboring cells) to accommodate field logistics.  The 156 

initial sampling year in 2013 was restricted to grid cells with >60% forest cover, while sampling 157 
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in 2014 and 2015 included grid cells across a broader range of forest cover values selected in 158 

proportion to landscape availability.  The number of grid cells sampled in each year was 300 in 159 

2013 and 608 in both 2014 and 2015 (Figs. S1.2–S1.4).  Across all years, 826 unique grid cells 160 

were sampled, with replicated sampling across 2 and 3 years for 423 and 129 grid cells, 161 

respectively. 162 

 Sampling stations were located as close to the grid cell center as possible and consisted of 163 

a baited trap with hair snares to capture genetic samples and a remote camera for photographing 164 

species encounters.  Stations were baited with beaver Castor canadensis meat attached to a tree 165 

and surrounded by 9 gun brushes, positioned 1–2 meters above the ground, with an infrared 166 

camera pointed at the bait tree from a location <5 meters away.  Sampling occurred between 167 

January and March of each year, during which active stations were visited approximately weekly 168 

to collect hair samples (stored with silica desiccant) and replace bait as needed; 4 visits were 169 

made to each active station after initial setup in 2013, and 3 visits in 2014 and 2015.   170 

Genetic samples were defined as a cluster of ≥5 hair follicles at a single gun brush.  To 171 

reduce costs, we processed a subset of the samples for genetic data, ensuring that every site-visit 172 

combination that yielded fisher hair was included.  Each processed sample had DNA extracted 173 

for species identification, molecular sexing, and microsatellite genotyping using fluorescent 174 

fragment analysis and DNA sequencers at the Cornell University Institute of Biotechnology 175 

(Ithaca, NY, USA).  Genetic methods are detailed in Appendix S2. 176 

OCCUPANCY MODEL 177 

We fit a single-season site occupancy model (MacKenzie et al. 2002) to estimate the probability 178 

of fisher occurrence in grid cells using species detections from the camera data.  The model used 179 

here was described in Fuller, Linden and Royle (2016) and derived from the model selection 180 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 29, 2016. ; https://doi.org/10.1101/066662doi: bioRxiv preprint 

https://doi.org/10.1101/066662
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

process they used to identify important sources of variation in probabilities of detection and 181 

occupancy.  Since the focus was on spatial variation in occurrence, each grid cell × year 182 

combination was considered a distinct site.  Fisher detection, yjk, at site j during survey k was 183 

considered a Bernoulli random variable: 184 

yjk ~ Bernoulli(zj × pjk) 185 

where zj is the site-specific latent occurrence state indicating whether a site is occupied (zj = 1) or 186 

not (zj = 0), and pjk is the site- and survey-specific detection probability, Pr(yjk = 1 | zj = 1).  We 187 

considered each latent occurrence state a Bernoulli random variable: 188 

zj ~ Bernoulli(ψj) 189 

where ψj is the site-specific probability of occurrence, Pr(zj = 1).  We used logit-link functions 190 

for each probability to examine covariates that varied by site or survey.  Following the top-191 

ranked model structure from Fuller, Linden and Royle (2016), our detection probability model 192 

was a year-specific quadratic function of ordinal date (mean of the survey week) with an effect to 193 

account for increased detection after the first survey occasion (i.e., k = 1 vs. k >1).  The model 194 

for detection probability was therefore: 195 

logit(pjk) = α0 + α2014 + α2015 + αdate,yrdatejk + αdate2,yrdatejk
2 + αk>1 196 

where α2014 and α2015 are additive year effects depending on when site j was surveyed; αdate,yr and 197 

αdate2,yr are the year-specific relationships with survey ordinal date; and αk>1 is the effect of when 198 

survey k >1.  Our logit-linear model for occupancy included year and the 2 landscape covariates 199 

identified by model selection to be important predictors, proportion of coniferous-mixed forest 200 

and road density (Fuller, Linden & Royle 2016): 201 

logit(ψj) = β0 + β2014 + β2015 + βconifconifj + βroadsroadsj 202 
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Similar to the detection probability model, β2014 and β2015 depend on the year for site j.  The 203 

landscape covariates were calculated for each site using freely available GIS data, including the 204 

30-m resolution National Land Cover Database (Fuller, Linden & Royle 2016).  We used square-205 

root and natural-log transformations for conifj and roadsj, respectively, before scaling each to 206 

have zero mean and unit variances. 207 

ROYLE-NICHOLS MODEL 208 

We fit a Royle-Nichols (RN) model (Royle & Nichols 2003) to the species detection data to 209 

examine whether heterogeneity in detection could be attributed to variation in site abundance.  210 

Our sampling design had used prior knowledge of female fisher movement to define sites, yet 211 

overlapping male and female territories or variation in individual movement could lead to sites 212 

being used by multiple individuals.  Additionally, the RN model generates estimates of 213 

abundance or density using the same type of data collected for occupancy estimation, potentially 214 

providing another tool for species monitoring that does not require individual identification. 215 

We used the same data structure described earlier for the occupancy model, with sites 216 

defined as grid cell × year combinations.  Fisher detections, yjk, were modeled as Bernoulli 217 

random variables such that: 218 

yjk | Nj ~ Bernoulli(pjk) 219 

where Nj is the latent site abundance and pjk is the species detection probability.  Importantly, 220 

species detection probability was a function of Nj: 221 

   222 

Here, rjk is the per-individual detection probability.  The state process model assumed that site 223 

abundance was a Poisson-distributed random variable with mean λj: 224 

Nj ~ Poisson(λj) 225 

1 (1 ) jN
jk jkp r= − −
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We used the same linear models to describe variation in both the observation and state process 226 

models using appropriate link functions on the relevant parameters: 227 

logit(rjk) = α0 + α2014 + α2015 + αdate,yrdatejk + αdate2,yrdatejk
2 + αk>1 228 

log(λj) = β0 + β2014 + β2015 + βconifconifj + βroadsroadsj 229 

SPATIAL CAPTURE-RECAPTURE MODEL 230 

We used SCR (Borchers & Efford 2008; Royle & Young 2008) to model the individual 231 

encounter data generated by the genotyped hair samples and predict fisher density within the grid 232 

cells in our landscape.  A standard SCR model uses the spatial distributions of individual 233 

encounters at trap locations to jointly estimate the number and location of latent activity centers 234 

(representing population size and individual distribution) and trap- and individual-specific 235 

encounter probabilities.  We assumed that the encounter process for individuals exhibited similar 236 

temporal variation to that identified in the occupancy model, and that fisher density potentially 237 

varied according to the same landscape attributes influencing occurrence. 238 

We modeled the encounter histories, yijk, for individual i at trap j on survey k as Bernoulli 239 

random variables that depended on the location of the individuals latent activity center si = 240 

(si1, si2), such that Pr(yijk = 1 | si) = pijk.  Importantly, encounter probability was a decreasing 241 

function of the Euclidean distance, dij, between activity center, si, and the location for trap j: 242 

pijk = p0,ijkexp(–d2
ij/2σi

2) 243 

Here, p0,ijk is the encounter probability when dij = 0 while σi is the scale parameter of the half-244 

normal distance function.  Both parameters were made functions of covariates: 245 

logit(p0,ijk) = α0 + α2014 + α2015 + αdate,yrdatejk + αdate2,yrdatejk
2 + αbehavCijk + αmalesexi 246 

log(σi) = δ0 + δ2014 + δ2015 + δmalesexi 247 
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The effects for year (α2014, α2014) and ordinal date (αdate,yr, αdate2,yr) were similar to those for 248 

species detection probability; the survey occasion effect was replaced by a trap-specific 249 

behavioral response (αbehav), where Cijk = 1 for all k after the initial encounter of individual i at 250 

trap j, and 0 otherwise.  The model for σi also included year effects, and both models 251 

incorporated an effect for the difference between males (sexi = 1) and females (sexi = 0).  We 252 

treated sex as a random variable and estimated φmale = Pr(sexi = 1) using the likelihood 253 

formulation in Royle et al. (2015).  This allowed us to estimate the sex of both un-encountered 254 

individuals and encountered individuals that could not be assigned a sex due to uncertainty in the 255 

genetic marker. 256 

 To model variation in fisher density, we used an inhomogeneous point process to 257 

describe the distribution of activity centers within our study area (Borchers & Efford 2008).  We 258 

defined a discrete state space representing the possible locations of the realized point process to 259 

coincide with the 4,400 cell raster used for the occupancy model.  To accommodate scales of 260 

movement (σ) that were smaller than the grid cell size, we reduced the resolution of the grid 261 

from 3.873 km × 3.873 km (15 km2) to 0.968 km × 0.968 km (0.938 km2), increasing the total 262 

number of grid cells, G, to 70,400.  Landscape covariates were recalculated at the new 263 

resolution, though a moving-window approach was used to reflect a similar scale (15 km2) for 264 

the features as that assessed by the occupancy model.  We modeled the expected density in a 265 

given grid cell g as the intensity of a point process conditional on a linear model of spatially-266 

varying covariates, such that E(Dg) = μ(g, β), where β are regression coefficients for the linear 267 

model (Royle et al. 2014).  Following the model structure for occupancy, expected density was a 268 

linear function of year and the 2 landscape covariates, here on the log scale: 269 

log(E(Dg)) = β0 + β2014 + β2015 + βconifconifg + βroadsroadsg 270 
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The final component of the SCR model involved defining the distribution of activity centers.  271 

Note that given the discrete state space, activity centers are now referenced by si, a vector with 272 

the grid cell ID (g) for each individual, instead of the two-dimensional coordinates.  For a basic 273 

SCR model having constant density, such that activity centers are distributed uniformly 274 

throughout the state space, the probability of an activity center being located in any given grid 275 

cell would be 1/G.  Since we were modeling variation in density, the probability was a ratio of 276 

the intensity function at a given grid cell, conditional on the coefficients of the linear model and 277 

the spatial covariate values, and the summed intensity function across all grid cells: 278 

   279 

We used a Poisson-integrated likelihood approach (Borchers & Efford 2008; Royle et al. 2014) 280 

to evaluate the likelihood of the SCR model parameters over all possible grid cells for the 281 

activity centers. 282 

MODEL FITTING AND SPATIAL PREDICTIONS 283 

All models were fit using maximum likelihood methods.  For the occupancy and RN models we 284 

used the “occu” and “occuRN” functions, respectively, of the unmarked package (Fiske & 285 

Chandler 2011) in R (R Core Team 2015) to compute the likelihoods and obtain maximum 286 

likelihood estimates (MLEs).  The functions used for computing the SCR likelihood and 287 

obtaining MLEs were written in R with code provided by Sutherland, Fuller and Royle (2015). 288 

 Fuller, Linden and Royle (2016) present additional information regarding model 289 

selection, relative variable importance, and goodness-of-fit in an expanded occupancy analysis of 290 

these fisher detection data from the camera trapping.  For the purposes of our comparisons here, 291 

we conditioned our inferences on a single model structure for each of the model types.  292 

μ( , Pr(s | )
μ( , i

g

gg
g

= =
∑

β)β
β)
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Following MacKenzie and Bailey (2004), we used parametric bootstrapping to assess goodness-293 

of-fit for the occupancy and RN models and calculated an overdispersion parameter (ĉ) to 294 

compare the model types (Appendix S3).  We avoided a fit assessment for the SCR model given 295 

the general lack of guidance on best practices, particularly when using maximum likelihood 296 

approaches, though we were generally less concerned with model fit given the flexibility and 297 

robustness of SCR to deviations from model assumptions (Royle et al. 2014).  We also 298 

considered the SCR model to represent a better approximation to the actual state variable of 299 

interest (i.e., individual fisher distribution) than either model using detection-nondetection data. 300 

 We generated spatial predictions from each model for the 4,400 grid cells in the 301 

landscape of interest.  For the occupancy and RN models, landscape covariates for all grid cells 302 

were transformed and then scaled using the values calculated across the surveyed grid cells.  For 303 

the RN model, we generated spatial predictions of expected fisher density (#/km2) using E(λj)/15, 304 

the expected abundance divided by area for a grid cell.  For the SCR model, expected density 305 

(#/grid cell) was predicted across the high-resolution state space (G = 70,400) using the MLEs 306 

for β, then an aggregate mean density (#/km2) was calculated for each of the 4,400 cells from the 307 

original grid.  Following Fuller, Linden and Royle (2016), we calculated average values for the 308 

grid cells within each of the 13 WMUs to compare how management decisions may differ 309 

between the models.  Finally, we used least-squares regression to examine relationships between 310 

predictions from the models using detection-nondetection data (occupancy and RN) to 311 

predictions from the SCR model.  Values were transformed to the appropriate scale (logit or log) 312 

before fitting the regressions.  Hereafter, we refer to each regression according to the relationship 313 

that was modeled, where “SCR=occupancy” was log(SCR density) ~ logit(occupancy) and 314 
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“SCR=RN” was log(SCR density) ~ log(RN density).  We report the slope coefficient for the 315 

SCR=RN regression given that a 1:1 relationship was possible. 316 

Results 317 

Cameras detected fisher at 198/289 (67%) operational traps in 2013 (11 cameras malfunctioned), 318 

310/608 (51%) traps in 2014, and 236/608 (39%) traps in 2015 (Figures S1.2–S1.4).  Hair 319 

deposits confirmed to be fisher were collected at a fraction (range: 0.32–0.45) of sites with 320 

confirmed camera captures (Table 1).  Identity assignment of 178, 281, and 138 successfully 321 

genotyped hair samples resulted in 89, 165, and 90 unique individuals encountered in 2013, 322 

2014, and 2015, respectively (Table 1); the number of spatial recaptures (individuals encountered 323 

in >1 trap) was 8, 9, and 3 in each year.  Observed sex ratio across all years was approximately 324 

even (143 F, 145 M, 56 NA). 325 

 Model estimates for the observation processes of the 3 model types indicated similar 326 

patterns within and between years (Table 2), including a decrease in average detection and 327 

encounter probabilities from 2013 to 2015.  The regression coefficients for observation 328 

covariates were nearly identical for the occupancy and RN models, which was expected given 329 

that they used the same detection-nondetection data.  The directions of most effects in the SCR 330 

model matched those for the other models; the only coefficient that differed (αdate2,2014) was 331 

estimated near zero for each model.  Across years, mean detection probability during survey 1 332 

for the species ranged 0.16–0.49, while that for individuals ranged 0.10–0.29; for surveys >1, the 333 

ranges of mean detection probabilities increased to 0.25–0.62 and 0.16–0.41 for species and 334 

individuals, respectively.  The SCR model indicated a strong local behavioral response (αbehav = 335 

3.842 [SE: 0.366]), suggesting individuals were much more likely to return to a trap after an 336 

initial visit.  The log-linear coefficients for σi indicated that the movement scale was larger in the 337 
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later years (δ2014 = 0.456 [SE: 0.313]; δ2015 = 0.811 [SE: 0.358]) and for males (δmale = 0.298 [SE: 338 

0.341]).  This resulted in mean σi estimates that ranged 3.55–7.98 km for females and 4.78–10.76 339 

km for males, across the years.  The goodness-of-fit statistics indicated some overdispersion for 340 

the models using detection-nondetection data (Appendix S3), more so for the occupancy model 341 

(ĉ = 2.78) than for the RN model (ĉ = 1.59). 342 

 The relationships between the landscape covariates and the ecological processes for each 343 

model type were largely consistent (Table 3), with effects of coniferous-mixed forest proportion 344 

being significantly positive and those of road density being significantly negative.  There was 345 

little support for differences in occupancy and abundance across the years.  Mean fisher 346 

occupancy per 15-km2 grid cell was relatively high (0.69 [95% CI: 0.61–0.76]), while mean 347 

fisher density (#/km2) was relatively low for both the RN model (0.09 [95% CI: 0.07–0.11]) and 348 

the SCR model (0.05 [95% CI: 0.02–0.10]).  The probability of being male was estimated as 0.47 349 

[95% CI: 0.23–0.73] in the SCR model, suggesting a nearly even sex ratio. 350 

 The spatial predictions indicated similar patterns of variation (Figure 1), which was 351 

expected given the consistency in estimated relationships with the landscape covariates.  The 352 

SCR=occupancy and SCR=RN regressions both had R2 values >0.94 (Figure S1.5), though the 353 

slope coefficient for the SCR=RN regression was 2.670 [SE: 0.010].  The slope >1 was 354 

consistent with the smaller estimates for βconif and βroads in the RN model than in the SCR model 355 

(Table 3) and indicated the strengths of association between fisher density and the landscape 356 

covariates were reduced in the RN model.  The spatial distribution of residuals further illustrated 357 

how the SCR=occupancy and SCR=RN regressions generally overpredicted in areas of low 358 

density, and underpredicted in areas of high density (Figure 1B–C).  Mean values across WMUs 359 

exhibited a strong correlation between predictions from the SCR model and those from the 360 
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occupancy and RN models (Figure 2), indicating largely similar inferences regarding variation in 361 

fisher distribution and density at the management-unit level. 362 

Discussion 363 

An understanding of the statistical and ecological relationships between species occupancy and 364 

density can improve the design of monitoring programs that aim to make inferences on wildlife 365 

populations at large scales.  Complete knowledge on the distribution of individuals would 366 

provide the necessary information for management and conservation, but such data almost never 367 

exist, particularly for wide-ranging terrestrial species such as carnivores.  Therefore, the 368 

distribution of individuals must be sampled and statistically summarized, with limitations for 369 

each step being determined by the selected study design and the ecology of the focal species.  370 

Sampling a collection of sites for species occurrence is typically easier and less cost prohibitive 371 

at large scales than sampling and identifying individuals, yet the resulting data summary may not 372 

provide an adequate approximation to the information of interest.  We presented empirical 373 

evidence that models of occupancy and density can generate similar predictions and management 374 

recommendations when species movement ecology is considered in the sampling design, even 375 

when some modeling assumptions are violated. 376 

 Our study currently represents one of the largest applications of spatial capture-recapture 377 

modeling in terms of both landscape extent and coverage.  Obbard, Howe and Kyle (2010) have 378 

the only comparable extent (across Ontario, Canada) for an SCR study, but their sampling was of 379 

distinct populations and did not involve contiguous landscape predictions.  A benefit to our 380 

comprehensive effort was that spatially-explicit density estimates could be used to evaluate the 381 

ability of occupancy models to guide wildlife management decisions at regional scales (Clare, 382 

Anderson & Macfarland 2015; Fuller, Linden & Royle 2016).  Our evaluation suggests that 383 
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detection-nondetection data can be a useful tool for indexing density and addressing large-scale 384 

monitoring needs under certain conditions.  The estimates of average fisher occupancy and 385 

density were highly correlated at the WMU scale (Figure 2) and would likely lead to similar 386 

management decisions regarding expanded harvest opportunities (Fuller, Linden & Royle 2016). 387 

The correspondence among model types was largely due to the strong associations 388 

between the estimated state variables and the two landscape attributes that exhibited wide 389 

variation across the region.  The positive effect of coniferous-mixed forest and negative effect of 390 

road density are consistent with previous knowledge on fisher ecology (Powell 1993; Powell & 391 

Zielinski 1994).  Interestingly, the models using detection-nondetection data had relatively 392 

smaller effect sizes for each covariate, though this result could have been expected.  The 393 

occupancy model involves a logistic regression of latent occurrence, a binary random variable, 394 

yet the number of individual fisher occurring within or using a grid cell could be >1.  Therefore, 395 

the coefficients in the logit-linear model should underestimate the effects of covariates if 396 

variation exists among grid cells with ≥1 individual.  Estimates from the SCR model indicated 397 

that individual movement for both sexes was large enough to encompass multiple grid cells and, 398 

combined with intersexual territory overlap (Powell 1993), would have resulted in many sampled 399 

grid cells having >1 individual in areas of relatively high density.  The RN model was 400 

specifically designed to deal with abundance-induced heterogeneity in detection probability 401 

(Royle & Nichols 2003) and had a lower estimate of overdispersion than the occupancy model, 402 

suggesting a potentially superior fit. Both models of detection-nondetection data struggled to 403 

explain the number of observed detection histories that were all 1s or all 0s (Appendix S3), 404 

suggesting unmodeled heterogeneity.  Given sex-specific differences in movement and 405 

individual differences in the location of activity centers, the assumption of equal per-individual 406 
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detection probability for the RN model was clearly violated, as was the assumption of 407 

independence between sites for the occupancy model.  Despite these limitations, each model of 408 

detection-nondetection data served as an adequate index for density, as estimated by SCR. 409 

Additional model complexity may have improved our use of the detection-nondetection 410 

data, for example, by incorporating a spatial dependence structure (Johnson et al. 2013).  The 411 

size of our grid cells in comparison to the observed animal movement and the clustered pattern 412 

of sampled cells may have warranted some type of autoregressive function.  Johnson et al. 413 

(2013) present an approach that is computationally efficient for large landscapes and, 414 

importantly, addresses concerns with possible confounding between latent spatial effects and 415 

landscape or habitat covariates (Hodges & Reich 2010).  For many species, this approach may be 416 

particularly useful when ecological or observational processes exhibit spatial correlation and 417 

have the potential to affect inferences.  In our application of occupancy modeling, the latent 418 

spatial process that likely caused overdispersion problems was related to individual distribution – 419 

the very state variable that is estimated by SCR.  Depending on the scale and extent of the study, 420 

SCR represents a more comprehensive approach for making inferences about species distribution 421 

in continuous landscapes than that which can be estimated by detection-nondetection data 422 

(Efford & Dawson 2012). 423 

An ideal monitoring program for wide-ranging, low-density species such as carnivores 424 

involves a study design that can collect individual encounters across a large landscape and allow 425 

for fitting the data to spatial capture-recapture models.  Unfortunately, the associated costs and 426 

logistical difficulties will limit the application of such designs in many situations (Efford & 427 

Dawson 2012; Ellis, Ivan & Schwartz 2014), particularly when the species cannot be easily 428 

identified using distinguishable individual features (Sollmann et al. 2011; Clare, Anderson & 429 
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Macfarland 2015).  While noninvasive genetic sampling can solve the identity problem for 430 

species without unique markings, a drawback is the often low amplification rates due to poor 431 

quality DNA (e.g., from hair follicles), resulting in data with fewer useable individual encounters 432 

than the species detections that could be obtained by other means.  Integrated approaches allow 433 

opportunities to calibrate inferences from detection-nondetection data by periodically including 434 

more expensive or intensive sampling to obtain individual encounters (Chandler & Clark 2014), 435 

and may represent the best compromise for designing robust monitoring programs that can make 436 

inferences across time and space.  When occupancy alone is chosen as a cost-effective state 437 

variable for monitoring, simulation and sensitivity analyses should be used to understand how 438 

inferences from detection-nondetection data will be affected by aspects of study design and 439 

species ecology (Ellis et al. 2015). 440 

Acknowledgments 441 

We thank the following NYSDEC staff for coordinating and conducting field surveys: K. 442 

Baginski, M. Clark, E. Duffy, L. Durfey, R. Holevinski, A. MacDuff, M. Putnam, A. Rothrock, 443 

B. Schara, and S. Smith.  We thank B. Swift, M. Schiavone, and P. Jensen for project support 444 

and H. Borchardt-Wier for genotyping.  We thank R. Holevinski for assistance in obtaining 445 

relevant GIS databases and for helping to coordinate field efforts. This work was supported in 446 

part by Federal Aid in Wildlife Restoration Grant W-173-G.  Any use of trade, firm, or product 447 

names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 448 

Data accessibility 449 

Data will be archived with Dryad Digital Repository.  450 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 29, 2016. ; https://doi.org/10.1101/066662doi: bioRxiv preprint 

https://doi.org/10.1101/066662
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

References 451 

Arthur, S.M., Krohn, W.B. & Gilbert, J.R. (1989) Home range characteristics of adult fishers. 452 

Journal of Wildlife Management, 53, 674-679. 453 

Borchers, D.L. & Efford, M.G. (2008) Spatially explicit maximum likelihood methods for 454 

capture-recapture studies. Biometrics, 64, 377-385. 455 

Brown, J.H. (1984) On the relationship between abundance and distribution of species. American 456 

Naturalist, 124, 255-279. 457 

Burton, A.C., Neilson, E., Moreira, D., Ladle, A., Steenweg, R., Fisher, J.T., Bayne, E. & 458 

Boutin, S. (2015) Wildlife camera trapping: a review and recommendations for linking 459 

surveys to ecological processes. Journal of Applied Ecology, 52, 675-685. 460 

Chandler, R.B. & Clark, J.D. (2014) Spatially explicit integrated population models. Methods in 461 

Ecology and Evolution, 5, 1351-1360. 462 

Chandler, R.B. & Royle, J.A. (2013) Spatially explicit models for inference about density in 463 

unmarked or partially marked populations. Annals of Applied Statistics, 7, 936-954. 464 

Clare, J.D.J., Anderson, E.M. & Macfarland, D.M. (2015) Predicting bobcat abundance at a 465 

landscape scale and evaluating occupancy as a density index in central Wisconsin. 466 

Journal of Wildlife Management, 79, 469-480. 467 

du Preez, B.D., Loveridge, A.J. & Macdonald, D.W. (2014) To bait or not to bait: A comparison 468 

of camera-trapping methods for estimating leopard Panthera pardus density. Biological 469 

Conservation, 176, 153-161. 470 

Efford, M.G. & Dawson, D.K. (2012) Occupancy in continuous habitat. Ecosphere, 3, 32. 471 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 29, 2016. ; https://doi.org/10.1101/066662doi: bioRxiv preprint 

https://doi.org/10.1101/066662
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

Ellis, M.M., Ivan, J.S. & Schwartz, M.K. (2014) Spatially explicit power analyses for 472 

occupancy-based monitoring of wolverine in the U.S. Rocky Mountains. Conservation 473 

Biology, 28, 52-62. 474 

Ellis, M.M., Ivan, J.S., Tucker, J.M. & Schwartz, M.K. (2015) rSPACE: Spatially based power 475 

analysis for conservation and ecology. Methods in Ecology and Evolution, 6, 621-625. 476 

Fiske, I.J. & Chandler, R.B. (2011) Unmarked: An R package for fitting hierarchical models of 477 

wildlife occurrence and abundance. Journal of Statistical Software, 43, 1-23. 478 

Fuller, A.K., Linden, D.W. & Royle, J.A. (2016) Management decision making for fisher 479 

populations informed by occupancy modeling. The Journal of Wildlife Management, doi: 480 

10.1002/jwmg.21077. 481 

Gaston, K.J., Blackburn, T.M., Greenwood, J.J.D., Gregory, R.D., Quinn, R.M. & Lawton, J.H. 482 

(2000) Abundance-occupancy relationships. Journal of Applied Ecology, 37, 39-59. 483 

Hodges, J.S. & Reich, B.J. (2010) Adding spatially-correlated errors can mess up the fixed effect 484 

you love. American Statistician, 64, 325-334. 485 

Johnson, D.S., Conn, P.B., Hooten, M.B., Ray, J.C. & Pond, B.A. (2013) Spatial occupancy 486 

models for large data sets. Ecology, 94, 801-808. 487 

Jones, J.P.G. (2011) Monitoring species abundance and distribution at the landscape scale. 488 

Journal of Applied Ecology, 48, 9-13. 489 

Karanth, K.U., Gopalaswamy, A.M., Kumar, N.S., Vaidyanathan, S., Nichols, J.D. & 490 

MacKenzie, D.I. (2011) Monitoring carnivore populations at the landscape scale: 491 

occupancy modelling of tigers from sign surveys. Journal of Applied Ecology, 48, 1048-492 

1056. 493 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 29, 2016. ; https://doi.org/10.1101/066662doi: bioRxiv preprint 

https://doi.org/10.1101/066662
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

Kéry, M. & Royle, J. (2016) Applied hierarchical modeling in ecology: Analysis of distribution, 494 

abundance and species richness using R and BUGS, Vol. 1. Academic Press, San Diego, 495 

CA. 496 

Lancaster, P.A., Bowman, J. & Pond, B.A. (2008) Fishers, farms, and forests in eastern North 497 

America. Environmental Management, 42, 93-101. 498 

Lewis, J.C., Powell, R.A. & Zielinski, W.J. (2012) Carnivore translocations and conservation: 499 

Insights from population models and field data for fishers (Martes pennanti). Plos One, 7. 500 

Long, R.A., MacKay, P., Ray, J. & Zielinski, W. (2008) Noninvasive survey methods for 501 

carnivores. Island Press, Washington, DC, USA. 502 

MacKenzie, D.I. & Bailey, L.L. (2004) Assessing the fit of site-occupancy models. Journal of 503 

Agricultural Biological and Environmental Statistics, 9, 300-318. 504 

MacKenzie, D.I., Nichols, J.D., Lachman, G.B., Droege, S., Royle, J.A. & Langtimm, C.A. 505 

(2002) Estimating site occupancy rates when detection probabilities are less than one. 506 

Ecology, 83, 2248-2255. 507 

MacKenzie, D.I., Nichols, J.D., Royle, J.A., Pollock, K.H., Hines, J.E. & Bailey, L.L. (2006) 508 

Occupancy estimation and modeling: Inferring patterns and dynamics of species 509 

occurrence. Elsevier, San Diego, California, USA. 510 

MacKenzie, D.I. & Royle, J.A. (2005) Designing occupancy studies: general advice and 511 

allocating survey effort. Journal of Applied Ecology, 42, 1105-1114. 512 

O’Connell, A.F. & Bailey, L.L. (2011) Inference for occupancy and occupancy dynamics. 513 

Camera traps in animal ecology, pp. 191-204. Springer. 514 

Obbard, M.E., Howe, E.J. & Kyle, C.J. (2010) Empirical comparison of density estimators for 515 

large carnivores. Journal of Applied Ecology, 47, 76-84. 516 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 29, 2016. ; https://doi.org/10.1101/066662doi: bioRxiv preprint 

https://doi.org/10.1101/066662
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 
 

Pollock, K.H., Nichols, J.D., Simons, T.R., Farnsworth, G.L., Bailey, L.L. & Sauer, J.R. (2002) 517 

Large scale wildlife monitoring studies: statistical methods for design and analysis. 518 

Environmetrics, 13, 105-119. 519 

Powell, R.A. (1993) The Fisher: Life history, Ecology, and Behavior. University of Minnesota 520 

Press, Minneapolis, MN, USA. 521 

Powell, R.A. & Zielinski, W.J. (1994) Fisher. The scientific basis for conserving forest 522 

carnivores, American marten, fisher, lynx and wolverine in the Western United States 523 

(eds L.F. Ruggiero, K.B. Aubry, S.W. Buskirk, L.J. Lyon & W.J. Zielinski), pp. 38-73. 524 

U.S. Department of Agriculture, Forest Service. 525 

R Core Team (2015) R: A language environment for statistical computing. R Foundation for 526 

Statistical Computing, Vienna, Austria. 527 

Royle, J.A., Chandler, R.B., Sollmann, R. & Gardner, B. (2014) Spatial capture-recapture. 528 

Academic Press, Waltham, MA, USA. 529 

Royle, J.A. & Nichols, J.D. (2003) Estimating abundance from repeated presence-absence data 530 

or point counts. Ecology, 84, 777-790. 531 

Royle, J.A., Sutherland, C., Fuller, A.K. & Sun, C.C. (2015) Likelihood analysis of spatial 532 

capture-recapture models for stratified or class structured populations. Ecosphere, 6, 22. 533 

Royle, J.A. & Young, K.V. (2008) A hierarchical model for spatial capture-recapture data. 534 

Ecology, 89, 2281-2289. 535 

Sollmann, R., Furtado, M.M., Gardner, B., Hofer, H., Jacomo, A.T.A., Torres, N.M. & Silveira, 536 

L. (2011) Improving density estimates for elusive carnivores: Accounting for sex-specific 537 

detection and movements using spatial capture-recapture models for jaguars in central 538 

Brazil. Biological Conservation, 144, 1017-1024. 539 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 29, 2016. ; https://doi.org/10.1101/066662doi: bioRxiv preprint 

https://doi.org/10.1101/066662
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

Stephens, P.A., Pettorelli, N., Barlow, J., Whittingham, M.J. & Cadotte, M.W. (2015) 540 

Management by proxy? The use of indices in applied ecology. Journal of Applied 541 

Ecology, 52, 1-6. 542 

Sutherland, C., Fuller, A.K. & Royle, J.A. (2015) Modelling non-Euclidean movement and 543 

landscape connectivity in highly structured ecological networks. Methods in Ecology and 544 

Evolution, 6, 169-177. 545 

Wiens, J.A. (1989) Spatial scaling in ecology. Functional Ecology, 3, 385-397. 546 

Yoccoz, N.G., Nichols, J.D. & Boulinier, T. (2001) Monitoring of biological diversity in space 547 

and time. Trends in Ecology & Evolution, 16, 446-453. 548 

 549 

 550 

  551 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 29, 2016. ; https://doi.org/10.1101/066662doi: bioRxiv preprint 

https://doi.org/10.1101/066662
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 
 

Table 1.  Results from baited hair snares during the winters (Jan–March) of 2013–2015 used to 552 

detect fisher in western, New York. 553 

 554 

   Traps  Fisher specimens 

Year Total Fisher haira  Total Genotypedb Individuals 

2013 300 82  377 178 89 

2014 608 141  425 281 165 

2015 608 76  455 138 90 

 555 

a Number of unique traps with ≥1 hair sample confirmed to be fisher. 556 

b Successfully genotyped specimens defined as having ≤3 missing loci of the 9 total loci used to 557 

determine individual genotypes. 558 

  559 
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Table 2.  Parameter estimates from the observation process components of the occupancy, 560 

Royle-Nichols (RN), and spatial capture-recapture (SCR) models.  The parameters describe the 561 

logit-linear model (α) of trap-specific encounter probability for individuals (RN, SCR) or species 562 

(occupancy), and the log-linear model (δ) of the half-normal distance function in SCR. 563 

 564 

   Occupancy  Royle-Nichols  Spatial capture-recapture 

Parameter Mean SE  Mean SE  Mean SE 

α0 –0.056 0.131  –0.886 0.168  –4.475 0.457 

α2014 –0.538 0.165  –0.498 0.226  –0.383 0.416 

α2015 –1.579 0.192  –1.284 0.258  –1.196 0.518 

αdate,2013 0.147 0.030  0.139 0.030  0.644 0.150 

αdate,2014 0.113 0.023  0.112 0.022  0.166 0.081 

αdate,2015 –0.020 0.022  –0.021 0.022  –0.107 0.087 

αdate2,2013 –0.031 0.008  –0.028 0.007  –0.317 0.101 

αdate2,2014 0.002 0.007  0.004 0.007  –0.027 0.068 

αdate2,2015 0.049 0.007  0.044 0.007  0.264 0.083 

αk>1 0.548 0.088  0.512 0.081  –  – 

αbehav – –  – –  3.842 0.366 

αmale – –  – –  –0.425 0.420 

δ0 – –  – –  1.267 0.242 

δ2014 – –  – –  0.456 0.313 

δ2015 – –  – –  0.811 0.358 

δmale – –  – –  0.298 0.341 
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Table 3.  Parameter estimates from the ecological process components of the occupancy, Royle-565 

Nichols (RN), and spatial capture-recapture (SCR) models.  The parameters describe the linear 566 

model (β) of species occurrence probability on the logit scale (occupancy) or abundance on the 567 

log scale (RN, SCR).  The intercept represents the mean for a 15-km2 grid cell (occupancy, RN) 568 

or a 0.938-km2 grid cell (SCR).  The SCR model includes the logit-scale probability of being 569 

male (φmale). 570 

 571 

   Occupancy  Royle-Nichols  Spatial capture-recapture 

Parameter Mean SE  Mean SE  Mean SE 

β0 0.789 0.172  0.281 0.109  –3.159 0.407 

β2014 –0.382 0.209  –0.143 0.147  –0.250 0.511 

β2015 –0.172 0.268  –0.197 0.176  –1.004 0.562 

βconif 0.435 0.081  0.223 0.037  0.583 0.088 

βroads –0.302 0.094  –0.103 0.043  –1.174 0.282 

φmale – –  – –  –0.120 0.556 

 572 

  573 
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Figure 1.  Spatial predictions from the models of fisher occupancy and abundance in western 574 

New York, including: A) expected fisher density (#/km2) on the log scale as predicted by the 575 

SCR model; B) standardized residuals from the SCR=occupancy regression; and C) standardized 576 

residuals from the SCR=RN regression.  Blue values in (B,C) represent grid cells where the 577 

detection-nondetection data overpredicted density, while red values represent underpredictions. 578 

 579 

580 
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Figure 2.  Mean (± 2 SE) predicted occupancy and density for wildlife management unit (WMU) 581 

aggregates in western New York, 2013–2015, comparing estimates from the SCR model to those 582 

from the occupancy model (A) and the RN model (B).  The trapping status for each WMU 583 

indicates whether fisher harvest is open (gray), closed (white), or being proposed for opening 584 

(yellow).  Red line in (B) indicates 1:1 relationship. 585 

 586 
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Appendix S1. Additional figures 
 

Figure S1.1.  Map of study area in western New York, USA, outlined in bold with delineations 

for aggregated wildlife management units that were open (gray) and closed (white) to fisher 

trapping as recently as 2016. 
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Figure S1.2.  Grid cells noninvasively sampled for fisher in 2013 in western New York, USA, 

that resulted in 0 detections (light orange) or ≥1 detections (dark orange). 
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Figure S1.3.  Grid cells noninvasively sampled for fisher in 2014 in western New York, USA, 

that resulted in 0 detections (light orange) or ≥1 detections (dark orange). 
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Figure S1.4.  Grid cells noninvasively sampled for fisher in 2015 in western New York, USA, 

that resulted in 0 detections (light orange) or ≥1 detections (dark orange). 
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Figure S1.5.  Grid-cell relationships between link-scale predicted values from the models for 

detection-nondetection data, including the occupancy (A) and Royle-Nichols (B) models, and 

predicted values from the spatial capture recapture model.  The red dashed line in (B) represents 

a 1:1 relationship between the log-scale density predictions. 
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Appendix S2. Technical details of fisher genetic methods 
 

Genotyping included mitochondrial DNA for species determination, a Y chromosome marker for 

sex determination, and autosomal microsatellite markers for individual identification.  

Genotyping for 2013 and 2014 samples initially targeted the specimen from each unique visit to 

a trap site (hereafter, site-visit) that had the greatest number of hairs with follicles.  It was 

required that samples had  ≥5 hairs.  Subsequently, we increased sampling by processing samples 

from an additional gun brush at site-visits where the first did not amplify DNA (2013) or for 

every site-visit with ≥5 hairs on a second gun brush (2014).  Total number of samples collected 

in 2015 were fewer than in previous years, so no subsampling was conducted.  DNA extraction 

used DNeasy 96 plates (Qiagen) following the manufacturer’s protocol for tissue, except for 

addition of 20 ul of 1M DTT at the ATL/Proteinase K step.  

 

Samples were determined to be fisher based on NCBI blastn comparisons of a segment of 

mitochondrial D-loop amplified and sequenced with primers designed to work for mustelid 

species.  We designed general mustelid primers directed at mitochondrial tRNA-proline and 

control region, 15409Md-F: 5’-CCCAAAGCTGAYATTCTAA-3’ and 15657Md-R: 5’-

TTGMTGGTTTCTCGAGGC-3’ (names based on Genbank Accession HM106322.1, Neovison 

vison complete mitochondrion genome).  The PCR reactions were 20 ul total volume and 

contained 1 ul DNA, 0.2 mg/ml BSA, 0.1 mM each dNTP, 2.5 mM MgCl2, 0.2 uM each primer, 

0.4 U taq DNA polymerase and 1x vendor’s PCR buffer (Invitrogen).  PCR cycling started with 

95º C for 2 min, then 31 cycles of 95º C for 1 min, 57º C for 1 min, 72º C for 1 min, followed by 

72º C for 5 min.  Amplicons were cleaned with ExoSAP-IT (Fisher Scientific) and sequenced 

with BigDye 3.1 (Applied Biosystems) on one strand.  Resulting sequences were blasted to the 

NCBI GenBank database and even partial sequence provided unambiguous identification of 

species. 

 

Sex was assigned based on co-amplification of an intron segment in the Y-linked DBY7 gene 

and a mitochondrial DNA internal positive control.  Amplification of the Y chromosome was 

from intron 7 of the DBY7 gene using primers DBY7.2F: 5’-

TTAGTTGGGACCTTTCTTTCTAAACAG-3’ and DBY7.2R: 5’-
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TGGTATCGGGTCCCACAT-3’.  PCR reactions included 2 ul of DNA template in a 20 ul total 

volume with 0.2 mg/ml BSA, 0.2 mM dNTPs, 2.5 mM MgCl2, 0.5 uM each DBY7.2 primer, 1 

unit of Platinum hot start taq with 1x vendor’s buffer (Invitrogen).  In addition, 0.05 ul each of 

mitochondrial primers 15409MdF and 15657MdR (see above) were used as an internal positive 

control (IPC).  Thermocycling conditions were 95º C for 15 minutes, touchdown PCR of 95º C 

for 30 s, 65–55º C for 30 s, 72º C for 30 s for 20 cycles, dropping 0.5º C per cycle, followed by 

20 cycles of 95º C for 30 s, 55º C for 30 s, 72º C for 30 s, with a final extension of 72º C for 5 

min.  Amplicons from at least 3 replicate PCRs were scored in 2.5% agarose gels with ethidium 

bromide staining.  Specimens were scored as female if only the IPC amplified (fragment size = 

250 bp) for all 3 replicates, male if the DBY7.2 fragment (size =190) amplified in at least 2 

replicates, or unknown if the gel patterns were inconsistent across replicates. 

 

Nine previously characterized microsatellite loci were amplified in three multiplexes: GGU101, 

MP0055, MP0084, MP0100, MP0182 (Jones et al. 2007), MA1 (Davis & Strobeck 1998), 

MVIS072 (Fleming et al. 1999), LUT604 (Dallas & Piertney 1998), and RIO20 (Beheler et al. 

2005).  Forward primers were fluorescently labeled and reverse primers were pigtailed with the 

sequence GTTTCTT to reduce incomplete adenylation in PCR (Table S2.1).  PCR was initially 

conducted for 3–4 replicates on each specimen.  Based on a consensus genotype from the initial 

replicates, specimens amplifying at <5 loci were culled from the analysis.  Missing data in the 

remaining specimens, if any, triggered up to 3 additional replicates.  Optimized PCR reactions 

included 2 ul DNA, 0.2 mg/ml BSA, 1.5 mM MgCl2, 0.2 mM each dNTP, 0.16 uM each primer, 

0.4 U Platinum hot start taq (Invitrogen) and 1.5x vendor’s PCR buffer in 10 ul total volume.  

Negative and positive control samples were included in every PCR setup, and all PCR reactions 

were assembled in a separate pre-PCR lab, under a hood after UV treatment of materials.  

Thermocycling parameters for three multiplexes were 94º C for 2 min; 94º C for 30 s; 58º C for 

45 s; 72º C for 45 s for 40 cycles; followed by a 30-minute final extension at 72º C. 

 

Many samples in 2015 showed very poor amplification success rates based on Qiagen 

extractions, so for those that had been identified as fisher and had remaining hair (n = 108) we 

performed additional replicate PCRs using Phire Tissue Direct PCR Master Mix (Thermo Fisher, 

cat no F-170L), following the dilution protocol with 1–2 hairs.  A total of 23 samples were 
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analyzed with 3–4 replicates of both Qiagen and Phire PCR and only 1.3% allelic mismatches 

were found between consensus genotypes, indicating comparability of data from the two 

methods.  

 

Automated calling of genotypes was done with Genemapper 4.0 (Applied Biosystems) followed 

by manual checking of call accuracy.  A consensus genotype for each specimen was determined 

using the comparative multiple-tubes approach of Frantz et al. (2003) in which heterozygotes 

require two observations and homozygotes require three to be called.  Ambiguous genotypes 

(e.g., insufficient replication accomplished) were scored as missing, and ≤3 loci were missing 

out of 9 in the final analyzed samples.  Any replicated observation of ≥3 alleles at a locus caused 

the specimen to be dropped from analysis (possible contamination). 

 

A PI(sib) threshold of 0.005 was applied to filter specimens with lower information content in 

their multilocus genotypes, and then this same threshold was applied pairwise (match 

probability) to create provisional transitive recapture clusters.  The PI(sib) thresholding follows 

Creel et al. (2003) and Sethi et al. (2014) to remove multilocus genotypes with low confidence in 

distinguishing siblings.  Allele frequencies for PID calculations were estimated from 2013–2015 

specimens that differed from all other specimens by ≥4 allelic differences (n = 302).  To combine 

two or more specimens into provisional recapture groups, we required that they have an observed 

pairwise PI(sib) (match probability based on all identical loci) <0.005.  Subsequent error-

informed manual adjustments to the provisional PID recapture groups were based on the higher 

information content in recapture groups.  A recapture group was combined with a provisional 

singleton specimen if the number of locus mismatches to the group consensus was ≤2.  

Provisional groups based solely on the PI(sib) match probability threshold were split (one 

specimen removed) if they contained specimens with false allele differences to the consensus in 

≥2 loci and allelic dropout in ≥1 additional locus, or any combination of ≥4 locus differences. 
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Table S2.1: Primer sequences and multiplex groups for 9 microsatellite loci used in the NY 

fisher study. 

 

Primer Sequence 5’ to 3’ Multiplex groups 
Ma1 F: FAM-ATTTTATGTGCCTGGGTCTA 

R: GTTTCTTTTATGCGTCTCTGTTTGTCA 

FM1b 

Mvis072 F: NED-CTGCAAAGCTTAGGAATGGAGA 

R: GTTTCTTCCACTACACTGGAGTTTCAGCA 

FM1b 

MP0055 F: HEX-GCCCCATGCCTGGTTTAT 

R: GTTTCTTGCTGGTCTAGAACCACCACAC 

FM1b 

Lut604 F: NED-TATGATCCTGGTAGATTAACTTTGTG 

R: GTTTCTTTTTCAACAATTCATGCTGGAAC 

FM3 

RIO20 F: HEX-CTAGCTCTGCCACCTAACCAG 

R: GTTTCTTACAGCGTGGTCCTGACCTT 

FM3 

MP0182 F: FAM-TTTGCTGTATGGGATGTTGC 

R: GTTTCTTGAACTGACCCTATAAACCTAACAGGA 

FM3 

MP0100 F: FAM-CTGGGACAACTGAACAACCA 

R: GTTTCTTATCTTATCAGGGGCCCATTC 

FM4 

MP0084 F: FAM-GCTGGACCTGATGCTTGTAGA 

R: GTTTCTTGAATCCAAAACCAACGTGCT   

FM4 

Ggu101 F: NED-GCATTTATTACCTATTTGGAG 

R: GTTTCTTGGTGTAGAATTGTATTTAAGTG 

FM4 
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Appendix S3. Goodness-of-fit for models of detection-nondetection data 
 

We assessed the goodness-of-fit for the two models using detection-nondetection data 

(occupancy and Royle-Nichols) according to methods described by MacKenzie and Bailey 

(2004) for site occupancy models.  The approach involves calculating a Pearson’s chi-square fit 

statistic to the observed and expected frequencies of detection histories for a given model.  

Parametric bootstrapping is used to approximate the distribution of the fit statistic by simulation, 

accounting for likely deviations from the theoretical distribution under small sample sizes with 

low expected frequencies.  An overdispersion parameter (ĉ) is calculated as the ratio of the 

observed fit statistic to the mean of the simulated distribution, with values >1 indicating 

overdispersion (variance > mean). 

 

For the occupancy model, we used the “mb.gof.test” function in the AICcmodavg package 

(Mazerolle 2015) in R (R Core Team 2015).  This function can handle occupancy models 

produced by the “occu” function in unmarked (Fiske & Chandler 2011) to calculate the observed 

and expected frequencies of the detection histories.  For the RN model that we fit using the 

“occuRN” function we needed to modify the source code of the fit test to accommodate the 

altered likelihood structure.  This additional functionality may be added to “mb.gof.test” in 

future updates (M. Marzerolle, personal communication).  We simulated 1,000 bootstrap samples 

for each fit assessment. 

 

The goodness-of-fit comparison indicated that the observed detection history data were 

overdispersed for both models, more so for the occupancy model (ĉ = 2.78) than the RN model 

(ĉ = 1.61).  The fit of individual detection histories differed markedly between the models (Table 

S3.1), likely due to the additional uncertainty introduced by having to integrate over possible 

values of N given an observed detection history for the RN model.  Despite individual detection 

histories having larger discrepancies between observed and expected frequencies for the RN 

model, the observed data appeared to be a closer realization to the expected distribution under 

the RN model, thus indicating a lower ĉ estimate than that for occupancy.  More simulation 

testing is necessary to fully explore the adequacy of such a fit assessment for the RN model 

(MacKenzie & Bailey 2004). 
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Table S3.1.  Distribution of observed and expected frequencies under both the occupancy and 

Royle-Nichols models for the most common cohorts of detection histories (>90%) from the 

detection-nondetection data collected at camera traps in the NY fisher study. 

 

   Occupancy   Royle-Nichols 
History Cohort Observed Expected Chi-square Expected Chi-square 
0000 0 74 69.53 0.29 33.57 48.69 
0001 0 18 12.09 2.89 23.35 1.23 
0010 0 11 10.86 0.00 22.09 5.57 
0011 0 7 14.77 4.09 17.04 5.92 
0100 0 15 9.62 3.01 20.43 1.44 
0101 0 5 13.20 5.10 15.80 7.38 
0110 0 5 13.04 4.96 15.73 7.32 
0111 0 17 19.00 0.21 13.53 0.89 
1000 0 13 4.85 13.72 11.91 0.10 
1001 0 7 6.66 0.02 9.17 0.51 
1010 0 6 6.84 0.10 9.37 1.21 
1011 0 5 9.89 2.42 7.96 1.10 
1100 0 8 6.84 0.20 9.28 0.18 
1101 0 5 9.75 2.31 7.84 1.03 
1110 0 3 10.51 5.37 8.24 3.33 
1111 0 34 15.54 21.92 7.70 89.91 
000NA 1 627 619.33 0.09 517.92 22.97 
001NA 1 116 113.25 0.07 175.62 20.24 
010NA 1 105 103.93 0.01 164.37 21.45 
011NA 1 96 94.02 0.04 71.95 8.04 
100NA 1 61 61.81 0.01 105.82 18.98 
101NA 1 21 51.90 18.40 44.48 12.39 
110NA 1 37 50.66 3.68 43.31 0.92 
111NA 1 84 52.10 19.53 23.53 155.42 
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