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Abstract 

Neurons in putative decision-making structures can reflect both sensory and decision 

signals, making their causal role in decisions unclear. Here, we tested whether rat 

posterior parietal cortex (PPC) is causal for processing visual sensory signals or instead 

for accumulating evidence for decision alternatives. We optogenetically disrupted PPC 

activity during decision-making and compared effects on decisions guided by auditory 

vs. visual evidence. Deficits were largely restricted to visual decisions. To further test 

for visual dominance in PPC, we evaluated electrophysiological responses following 

individual sensory events and observed much larger responses following visual stimuli 

than auditory stimuli. Finally, we measured spike count variability during stimulus 

presentation and decision formation. This sharply decreased, suggesting the network is 

stabilized by inputs, unlike what would be expected if sensory signals were locally 

accumulated.  Our findings argue that PPC plays a causal role in discriminating visual 

signals that are accumulated elsewhere. 

Introduction  

A large body of work has documented neural responses during perceptual decisions 

(Roitman and Shadlen, 2002; Churchland et al., 2008; Rishel et al., 2013; Ding, 2015; 

Hanks et al., 2015). These studies reveal cortical and subcortical structures that might 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 29, 2016. ; https://doi.org/10.1101/066639doi: bioRxiv preprint 

https://doi.org/10.1101/066639
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
	

constitute a brain-wide circuit for transforming raw sensory inputs into plans for action. 

Although transient disruption of activity in these structures could help in assessing their 

causal role in such a circuit, these types of experiments have been performed rarely 

and inconclusively. The importance of causal manipulations is underscored by 

experiments that found no effect of neural disruption on some decisions, even for areas 

in which neurons reflect decision signals (Suzuki and Gottlieb, 2013; Erlich et al., 2015; 

Katz et al., 2016).  

The role of one candidate area, the posterior parietal cortex (PPC) of rodents, remains 

particularly ambiguous because existing work paints conflicting pictures of its role in 

decision-making. Electrophysiological observations demonstrate that PPC is modulated 

during both auditory (Raposo et al., 2014; Hanks et al., 2015) and visual (Harvey et al., 

2012; Raposo et al., 2014) decisions which unfold gradually over about a second. 

These slow-timecourse signals could reflect evidence accumulation either in PPC or in a 

remote area with feedback projections to PPC. If evidence accumulation occurs 

remotely, PPC’s role may instead be to discriminate individual sensory events so that 

they can be subsequently accumulated over time and used to estimate overall rate. 

The ability of individual auditory events to drive PPC neurons has been noted as weak 

(Hanks et al., 2015) but not studied in depth, since recent work has focused on slower 

modulation over the course of the entire decision. Deficits for visual, but not auditory, 
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decisions observed after PPC inactivation hint at a putative role in discriminating visual 

events (Raposo et al., 2014). However, these inactivation studies are not entirely 

conclusive because neural activity was suppressed continuously for 2-3 hours. This 

leaves open the possibility that a role in evidence accumulation, or a role in detecting 

auditory events, might have been missed: 2-3 hours of suppression might permit the 

animal to adjust its strategy, potentially recruiting alternate neural circuits that are not 

typically involved. Further, existing studies have not fully characterized the nature of 

the deficits to visual decisions, leaving it unclear whether inactivation affected sensory 

processing specifically, or instead affected other decision factors. 

Here, we examined PPC’s contribution to decision-making by manipulating and more 

closely measuring neural responses. First, we used a temporally precise optogenetic 

perturbation method to disrupt neural activity. By disrupting activity during both visual 

and auditory decisions, we found specific sensory processing effects but little in the 

way of more general effects on decisions, such as accumulation of evidence or the 

ability to report choices. A probabilistic decision analysis offered insight into effects of 

PPC disruption on non-sensory factors that guide decisions, such as a reliance on 

reward history. Second, we conducted a temporally precise analysis of previously 

collected electrophysiological data to isolate the impact of individual auditory and 

visual events on PPC responses, providing an independent and novel assessment of 
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PPC’s role in auditory and visual processing and decision-making. Finally, we leveraged 

an analysis of trial-to-trial variability that is informative about the underlying 

computations taking place within an area.  All three approaches support the same 

conclusion: PPC’s contribution to decision circuits is to discriminate visual stimuli so 

they can be accumulated elsewhere to guide decision-making. 

Results 

Optogenetic disruption of PPC drives deficits in visual decision-making 

We optogenetically stimulated PPC neurons expressing channelrhodopsin 2 (Boyden et 

al., 2005) (ChR2) in all cell types (Figure 1, Figure Supplement 1). This elevates 

responses of neurons nonspecifically, an approach that is disruptive to the natural 

activity pattern in areas like PPC in which neurons with heterogeneous response 

properties are spatially intermixed (Churchland and Shenoy, 2007; Roberts et al., 2012; 

Rodgers and DeWeese, 2014; Otchy et al., 2015). To probe for a causal role for PPC, 

we utilized a decision task (Raposo et al., 2012; Sheppard et al., 2013; Raposo et al., 

2014) in which freely moving rats judge whether the rate of a 1000 ms series of 

auditory or visual events is high or low compared to an abstract category boundary 

(12.5 Hz; Figure 1B). Stimulation took place throughout the 1000 ms series of events. 

Short-latency changes could be observed in the local field potential (LFP) and the 
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spikes of single, isolated units (Figure 1C-E), confirming expression of ChR2. 

Stimulation reduced the animal’s decision accuracy, a reduction that was large and 

significant on visual trials (Figure 2A, left, p=0.0002) and more modest and insignificant 
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Figure 1. Decision making task and strategy for disrupting PPC activity.  
(A) Schematic of optogenetic approach showing unilateral injections of AAV9-CAG-ChR2-GFP into 
PPC. (B) Schematic of decision-making task. Rats initiated trials by inserting their snouts into a nose 
poke spanned by an infrared beam (dark blue trace). After a variable delay, a series of auditory or 
visual events began (green trace). Animals were required to remain in a center port for 1000 ms 
during which these sensory stimuli were presented. Animals were then allowed to withdraw. They 
reported choices (red trace) at either a left or right decision port and were rewarded with a drop of 
water (light blue trace) when correct. Optogenetic stimuli (42Hz, 5-20mW, cyan trace) were 
presented throughout the 1000 ms period on randomly selected trials.  
(C) LFP recorded on laser-on and laser-off trials via a tetrode attached to the stimulating optical 
fiber. (D) Peristimulus time histogram for an example well-isolated single neuron for laser-on (cyan) 
and laser-off (black) trials. (E) Perievent time histogram in which responses are aligned to individual 
pulses of blue light. 
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on auditory trials (Figure 2A, right, p=0.08). The larger effect on visual decisions was 

not due to a difference in baseline performance. Animals’ accuracy on control trials was 

similar for auditory vs. visual decisions: averaged across all stimulus rates, the 

proportion of correct choices was 0.68 correct for auditory trials vs. 0.70 for visual trials, 

a difference which did not reach significance (p=0.08, paired t-test).  The effects of 

stimulation were restricted to decision accuracy and did not affect the animals’ ability 

to engage in the task or to report choices. The proportion of trials that were aborted 

because of an early withdrawal from the center port did not change appreciably with 

stimulation and in fact sometimes decreased, indicating improved task engagement 
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Figure 2. Stimulation drives a strong reduction in visual, but not auditory decisions and largely 
spares movements. (A) Proportion correct for laser on vs. laser off trials for visual (left) and auditory 
(right) trials. Each line illustrates values for a single site; lines of the same color are from the same 
animal. Thick gray line indicates mean (±s.e.m.) for all sites. Dashed line indicates chance 
performance. (B) Response times from an example site were similar following laser on (blue) and 
laser off (black) trials on both visual (left, 183 vs. 184 ms, p=0.16) and auditory (right, 209 vs. 211 ms, 
p=0.67) decisions. (C) Movement durations from an example site were similar following laser on 
(blue) and laser off (black) trials on both visual (left, 588 vs. 578 ms, p=0.15 ms) and auditory (right, 
491 vs. 476 ms, p=0.01) decisions.  
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(Supp. Table 1). Further, the time it took for animals to withdraw from the center port 

once the stimulus had ended was similar on stimulation and control trials (response 

time, Figure 2B and Supp. Table 1). Finally, the time that elapsed between when 

animals left the center port and when they arrived at a reward port was similar on 

stimulation and control trials (movement duration, Figure 2C and Supp. Table 1).  

The reduction in visual accuracy we observed could be due to disruption of any of a 

number steps in the process by which the animal converts incoming sensory signals 

into a decision. To gain insight into which steps in the decision process were disrupted, 

we visualized the stimulation and control data as psychometric functions, in which the 

proportion of correct choices is plotted as a function of the stimulus rate (Figure 3A). 

For visual trials at this example site, the psychometric function on stimulation trials 

(blue) is shallower than that for control trials (black). This means that a given change in 

visual stimulus rate (horizontal axis) had a weaker effect on contralateral decisions 

(vertical axis) on stimulation vs. control trials, a change that contributed to the overall 

reduction in decision accuracy evident in Figure 2A (left).  

To quantify and more deeply understand these changes, and to compare them across 

animals and stimulation sites, we used a probabilistic decision model (Lau and 

Glimcher, 2005; Busse et al., 2011) (Methods).  This model included sensitivity to 
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Figure 3. PPC disruption has a larger effect on visual, compared to auditory, decisions. 
(A) Visual psychometric functions from stimulation in a single location within PPC (Rat 1, 1,624 trials). Smooth 
lines are fits to the data (logistic regression). Error bars reflect the Wilson binomial confidence interval. (B) 
Outcome of a probabilistic model that measures the effect of sensitivity to stimulus rate on decisions. The 
fitted parameter is plotted for stimulation (laser on, vertical axis) vs. control (laser off, horizontal axis) trials. All 
values are positive indicating that increasing stimulus rate led to more high rate decisions. Error bars: 
standard errors.  Dashed line, y = x. Colors: individual rats; multiple points for each animal indicate data 
collected from different optical fibers/depths (sites) within PPC. Black circle indicates the animal shown in (A). 
(C) Same as (B) but for the “success history” parameter. Positive values indicate the rat tended to repeat 
rewarded decisions. (D) Same as (B) but for the “failure history” parameter. Negative values indicate the rat 
tended to switch after unrewarded decisions. (E) Same as (B) but for the “bias” parameter. Zero indicates 
unbiased decisions; negative values indicate an ipsilateral bias. (F) Auditory psychometric functions from the 
same rat/site as in (A) (1,655 trials). (G-J) Same as (B-E) but for auditory trials. 
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stimulus rate, bias, and two additional factors that affect decisions (related to trial 

history, see below). Each factor could in principle be affected by stimulation, offering 

insight into the precise nature of the observed deficits. The most consistent factor 

affected by stimulation was reduced sensitivity, evident in all animals and significant 

overall (Figure 3B, most points below y=x line; p=0.0003; effects were individually 

significant in 7 of 11 sites; p<0.01, t-test). This loss of sensitivity serves to reduce the 

steepness of the psychometric function described above (Figure 3A). To test whether 

the optogenetic stimulation was temporally localized, we examined the sensitivity 

parameter from stimulation trials (just as above) alongside that from control trials that 

immediately followed a stimulation trial (Figure Supplement 2). We saw no effect on 

sensitivity for control trials following stimulation trials (p=0.49), suggesting that the 

effect of optogenetic stimulation was temporally precise, in keeping with the fast offset 

we observed in the LFP (Figure 1C). The restriction of sensitivity effects to the current 

trial confirms that our optogenetic strategy was successful in driving temporally precise 

disruption.  

In addition to a loss of sensitivity, the shallower psychometric functions (and worse 

accuracy) on stimulation trials might be explained by an increased tendency for rats to 

be influenced by the previous trial’s outcome. Because trials are generated 

independently, any influence of the previous trial, such as repeating a successful 
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decision, is deleterious. The probabilistic decision analysis ruled out this explanation. 

Stimulation had a very weak effect on the degree to which the current decision was 

influenced by the previous trial’s success (Figure 3C, p=0.16; 2 of 11 individual sites 

were significant, p<0.01, t-test) or failure (Figure 3D, p=0.04, t-test, 0 of 11 individual 

sites were significant, p<0.01, t-test). These results rule out two “strategy” explanations 

for the stimulation effects, supporting the hypothesis that stimulation drove a loss of 

visual sensitivity. We were unable to find consistent effects of trial history even when 

we examined the effects of previous left and right decisions separately (Figure 

Supplement 3). 

A final effect of stimulation on visual trials was on the animal’s bias. Bias is defined as a 

tendency for animals to favor one side over the other regardless of the strength of the 

sensory evidence. Under the hypothesis that PPC in one hemisphere is preferentially 

involved in computations relevant to the contralateral side (Crowne et al., 1986; Hanks 

et al., 2006) disrupting PPC in one hemisphere should bias the animal away from 

contralateral choices, driving an ipsilateral bias. We observed this ipsilateral bias at a 

number of sites (Figure 3E, most points below y=x line; p=0.013; effects were 

individually significant in 6 of 11 sites; p<0.01, t-test).  

Altogether, the probabilistic choice analysis suggests that the reduced decision 

accuracy on visual trials was largely driven by a reduced sensitivity to visual inputs, 
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sometimes exacerbated by a bias away from contralateral choices.  

To ensure that the effects observed were due to ChR2 activation, we repeated the 

same stimulation protocol in a rat not injected with ChR2 (Figure Supplement 4A-C).  

Similar values were observed on stimulation and control trials for bias (p=0.22, t-test) 

and sensitivity (p=0.20, t-test). This indicates that blue light in the brain does not by 

itself drive the effects we observed.  

Optogenetic disruption of PPC spared auditory decision-making 

We evaluated performance on interleaved auditory trials to determine whether the 

effects reported so far reflected vision-specific sensory deficits, or instead reflected 

more general decision-making deficits. Auditory decisions from the same site and 

sessions as in Figure 3A demonstrate a much weaker effect of stimulation (Figure 3F). 

Some sites (4/11) did have small reductions in sensitivity that reached significance 

(p<0.01; Figure 3G, points below dashed line). Across sites, however, this reduction in 

sensitivity was not significant (Fig. 3G, p=0.13). Further, a site-by-site comparison 

revealed that visual sensitivity was significantly more reduced by stimulation compared 

to auditory sensitivity (Figure Supplement 5A; p=0.0021, t-test).  

No consistent effect was observed on animals’ reliance on trial history, whether it was a 

previous trial’s success (Figure 3H, p=0.16, t-test) or failure (Figure 3I, p=0.28, t-test).  
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The effect on bias was idiosyncratic. As with visual trials, an ipsilateral bias was 

sometimes present, but biases in the opposite direction were also observed (Figure 3J; 

a significant ipsilateral bias (same direction as for visual trial) was evident at 6 of 10 

sites and a significant contralateral bias was evident at 2 of 10 individual sites, p<0.01, 

t-test). No significant change was present overall (Figure 3J, p=0.13, t-test). The 

difference in bias between auditory and visual trials did not reach significance (Figure 

Supplement 5B, p= 0.29, t-test). 

PPC neurons are more strongly driven by individual visual events than by auditory 

events  

The consistent effect of stimulation on visual, but not auditory, sensitivity is evidence 

against a simple model in which auditory and visual signals equally influence PPC 

(Figure 4A). Our results suggest a new class of model in which PPC is a key player for 

translating visual, but not auditory, sensory signals into decisions (Figure 4B,C). To 

provide an independent test of this class of model, we evaluated whether individual 

visual sensory events had a larger impact on PPC responses compared to individual 

auditory sensory events using a previously collected, large scale (N= 101,972 

successful trials) electrophysiological dataset (Raposo et al., 2014). This sensory-evoked 

response is potentially separate from the decision-related responses reported in 

previous analyses (Raposo et al., 2014), which focused on slower signals evolving over 
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an entire 1000 ms decision (Figure 5A) rather than on transient responses following 

individual sensory events. Indeed, a signature of individual events can be obscured 

when trials with events at different times are averaged, especially when the slower 

decision modulation is large (as in Figure 5A), or with wide-filter smoothing (as is often 

used to improve signal-to-noise ratios). We evaluated the impact of individual auditory 

and visual events by aligning electrophysiological responses to individual visual or 

auditory events in single neurons and removing the slow component (Methods). Many 

neurons were driven by individual stimulus events (Figure 5B). This event modulation 

was frequently evident in visual trials (84 of 317 neurons at p<0.01), but only 

occasionally evident in auditory trials (5 of 317 n
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Figure 4. Putative models for PPC’s role in a decision circuit.  
(A) Balanced input model eliminated by the disruption experiment.  (B) Local integration model in 
which visual inputs to PPC are stronger than auditory inputs and evidence over time is integrated 
within PPC. (C) Remote integration model in which visual inputs to PPC are stronger than auditory 
inputs and evidence over time is integrated at a remote location and fed back to PPC. 
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eurons at p<0.01). Modulation was significantly more common due to visual compared 

to auditory events (p<<10-4, χ2 2x2 contingency table). Modulation was also 

significantly stronger for visual compared to auditory events within neurons (Figure 

5C,D, p<<10-4, Figure supplement 6, paired sign test). Importantly, a larger effect of 

visual inputs was evident despite the fact that	 auditory and visual stimuli were carefully 
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Figure 5. Electrophysiological analyses suggest PPC discriminates individual visual events and does not 
act as an evidence accumulator.  
(A) Trial-averaged peristimulus time histogram for an example neuron. Solid traces, low-rate trials; 
dashed traces, high-rate trials; blue traces, visual trials; green traces, auditory trials. Transparent fills 
show s.e.m. The outcome of the decision (dashed vs. solid lines) and the stimulus modality (blue vs. 
green lines) drove slow modulations over the 1000 ms decision. (B) Peri-event histogram for same 
neuron as in (A), aligned to individual visual or auditory events (Methods). Same conventions as (A).  
(C) Modulation strength of each neuron by visual (blue) and auditory (green) events. Example dataset 
shown for low-rate trials only. The two measurements for each neuron are connected by a line. Note 
that after correcting for noise, many neurons had a modulation index of 0. (D) Histogram over neurons 
of the modulation index for visual minus the index for auditory. Same dataset as (C). Neurons with both 
modulation indices equal to 0 were excluded. Arrow shows median (0.68; p<10-10, sign test). (E) VarCE 
computed relative to stimulus onset for auditory (green) and visual (blue) trials. 
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matched so that they had an equivalent effect on decisions (See figure 1c of Raposo et 

al., 2014). These observations, like the disruption effects, support models in which 

visual inputs are dominant in PPC (Figure 4B,C). 

Analysis of trial-to-trial variability suggests sensory signals are accumulated remotely 

Visual inputs to PPC might be integrated locally within the area (Local integration 

model; Figure 4B), or might be integrated in another region which projects back to 

PPC (Remote integration model; Figure 4C). Theory suggests that as integrators 

accumulate evidence, they should also accumulate noise that will vary across trials 

(Churchland et al., 2011).  Thus, trial-to-trial variability should increase during decision 

formation in areas that reflect evidence accumulation. By contrast, in areas that reflect 

sensory inputs or movement preparation, the stabilizing influence of the input or plan 

will drive decreases in trial-to-trial variability over time in a trial (Churchland et al., 2010; 

Rajan et al., 2010). A measure of trial-to-trial variability in neural responses, the 

Variance of the Conditional Expectation (VarCE, Churchland et al., 2011) was designed 

to distinguish these possibilities. In several decision-related brain areas in the monkey, 

the VarCE has been demonstrated to increase over time during evidence accumulation 

decisions (Churchland et al., 2011; Ding, 2015). In the present data, clear decreases in 

VarCE were observed for both auditory and visual trials (Figure 5E).   
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Discussion  

Our results argue that PPC discriminates visual inputs which are accumulated off-site to 

guide decision-making. Three observations support this. First, optogenetic disruption 

of PPC reduces sensitivity on visual decisions but largely spares auditory decisions and 

does not affect movement metrics or behavioral strategies. Second, individual visual 

events drive larger electrophysiological responses in single neurons compared to 

auditory events, even though these events are equally effective in driving behavior. 

Finally, trial-to-trial variability decreases during decisions, suggesting the presence of a 

stabilizing influence from sensory inputs or action planning rather than the destabilizing 

influence of evidence accumulation. Taken together, these findings point to PPC as 

required to discriminate visual signals which are then accumulated remotely (Figure 

4C).  

The experimental design here allowed us to go far beyond previous disruption studies 

because we used temporally precise disruption, included multiple sensory modalities, 

and analyzed the decisions with a probabilistic choice model. This experimental design 

allows us to understand the nature of the deficit with precision, and suggests that the 

rats were deficient in discriminating visual stimuli. This deficit could have arisen 

because of a number of changes in early visual processing circuits, including reduced 

signal-to-noise or a reduction in attention. A role in attention and prioritizing space 
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have long been attributed to PPC in primates (For reviews, see Colby and Goldberg, 

1999; Gottlieb, 2007). Having established that PPC plays a causal role in visual 

decisions, future studies can aim to uncover the computations performed in PPC that 

support these decisions.  

The evidence-accumulation signals apparent in electrophysiological recordings (Hanks 

et al., 2015) may reflect feedback from other areas (Figure 4C). This offers an 

explanation for why inactivation during auditory decisions has little effect (Erlich et al., 

2015) despite strong modulation of PPC neurons during such decisions (Hanks et al., 

2015). This feedback possibility is further supported here by our measure of trial-to-trial 

variability, the VarCE, which is diagnostic of underlying neural computations. VarCE 

increases in areas that reflect accumulation of evidence, such as primate lateral 

intraparietal area (Churchland et al., 2011), caudate nucleus and frontal eye field (Ding, 

2015). By contrast, VarCE decreases in areas that reflect sensory input or motion 

planning (Churchland et al., 2010), since those computations push the network towards 

a more stabilized state (Rajan et al., 2010). The decreasing VarCE observed here may 

likewise indicate stabilization. Future studies will be needed to determine whether this 

stabilization is driven by sensory input, action planning or both. We speculate that the 

sharper decrease in the VarCE seen on visual decisions (Figure 5E, blue) may reflect the 

dual stabilizing influences of visual sensory input and action planning feedback, while 
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the slower and less deep decrease of the VarCE on auditory decisions (Figure 5E, 

green) may reflect only a single stabilizing influence, most likely action planning 

feedback. The idea that PPC neurons reflect, in part, action planning signals is in 

keeping with previous observations that the direction and magnitude of decision-

related tuning does not depend strongly on whether decisions were instructed by 

auditory or visual inputs (Raposo et al., 2014).  

Disrupting neural activity to determine a structure’s role in behavior, as we have done 

here, can lead to challenges in interpretation (Otchy et al., 2015). Fortunately, a 

number of aspects of our experimental design bolstered our ability to interpret these 

disruption experiments. First, we minimized the chance that the rats would detect the 

disruption and adjust their strategy: the disruption was transient and present only on a 

minority of randomly selected trials. This allowed us to rule out that the sparing of 

auditory decisions was explained by reliance on alternate circuits during slow 

timecourse inactivation, a possibility left open by other studies of decisions (Raposo et 

al., 2014; Erlich et al., 2015; Katz et al., 2016). Second, we disrupted activity by 

artificially elevating firing rates, a method that is ideal for disruption of behaviors that 

depend on heterogeneous and time-varying population codes (Churchland and 

Shenoy, 2007; Roberts et al., 2012; Rodgers and DeWeese, 2014; Otchy et al., 2015). 

For such behaviors, optogenetic stimulation offers advantages over optogenetic 
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suppression because it introduces a new, aberrant signal. This may more strongly 

perturb the population code compared to suppression, especially because the overall 

change to the population can be larger than for suppression (which suffers floor 

effects).  

A final aspect of our experimental design that aids interpretation of effects is that we 

studied decisions guided by two different sensory modalities. This allowed us to rule 

out some alternatives to the possibility that PPC disruption reduces visual sensitivity. 

For instance, one alternative explanation for the deficits during visual decisions is that 

PPC stimulation activated neurons in downstream areas, disrupting circuits that plan 

the actions needed for decision reporting. We can rule out these “off target” effects 

(Otchy et al., 2015) because auditory decisions, which would rely on the same motor 

circuits, were largely spared. However, one off-target effect we cannot fully rule out is 

on primary visual cortex. If PPC has denser feedback projections to primary visual 

cortex than to primary auditory cortex, PPC stimulation might have stronger off-target 

effects on primary visual cortex neurons, explaining the largely visual deficits we 

observed. Fortunately, an independent support for a role of PPC in discriminating 

visual events is provided by our observation from electrophysiology that visual inputs 

more strongly drive the temporally precise PPC responses that are needed to 

discriminate visual inputs. 
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An additional caveat is that the extent of the disruption due to direct activation is not 

known with absolute precision. This is because although we measured neural activity 

during stimulation, the spatial coverage of our electrodes was insufficient to determine 

at what distance from the stimulating electrode the blue light ceased to activate 

neurons. Fortunately, for optogenetic disruption, the spatial extent of activation is 

primarily determined by parameters of the stimulation: wavelength, fiber diameter, 

numerical aperture, and laser power. This is unlike chemogenetic inactivation in which 

the spatial extent of activation depends on the spread of viral infection; this is also 

unlike pharmacological disruption, in which the spatial extent of activation depends on 

diffusion of the reagent. To estimate light spread, and thus the spatial extent of our 

disruption, we used published calculators (Methods). The measurements made to 

estimate light spread using these calculators are extensive, including measurements 

both in vivo (Guo et al., 2014) and in slice (Aravanis et al., 2007; Huber et al., 2008).  

One possibility that these calculations deem unlikely is that the blue light (and thus the 

direct activation) spread to primary visual cortex (V1). Our stimulating fiber was 

positioned at 3.8 mm posterior to Bregma. According to the calculations from the Brain 

Light Tissue Transmitter, the irradiance at 1.15 mm away from the fiber is expected to 

be 0.5 mW/mm2, too weak to drive neurons (Guo et al., 2014). This distance would be 

~4.9 mm posterior to Bregma, at which the very most anterior tip of V1 is 1.5 mm 
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lateral to where we positioned our optetrode (Paxinos and Watson, 2007). Even if a 

small number of V1 neurons were somehow affected, our full-field stimulus would only 

have altered the response of a few V1 neurons representing the extreme lower nasal 

edge of one hemifield. Activation of V1 neurons is therefore very unlikely to be 

responsible for our behavioral effects. 

Although we think it unlikely that our results were due to direct stimulation of V1 

neurons, it is essential to acknowledge that outstanding questions remain in 

understanding the relationship between PPC, classically defined by its thalamic inputs 

(Chandler et al., 1992; Reep et al., 1994), and the secondary visual areas that are 

observed via anatomical tracing (Coogan and Burkhalter, 1990; Montero, 1993). The 

shallower psychometric functions we observed on stimulation trials (Figure 3A) are 

reminiscent of those seen during inactivation of extrastriate regions in monkey (See 

Figure 2c of Katz et al., 2016). One possibility is that rat PPC shares features with 

monkey extrastriate regions, such as a causal role in processing raw visual inputs 

(Newsome and Pare, 1988; Katz et al., 2016). Alternatively, rat PPC may be akin to 

monkey PPC (Brody and Hanks, 2016), and the extrastriate-like deficits we observed 

are present because the PPC coordinates used by us and others (Whitlock et al., 2012; 

Raposo et al., 2014; Erlich et al., 2015) encompass separate, more extrastriate-like 

areas. Challenges in distinguishing a candidate structure from its nearby neighbors 
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have long been acknowledged. The present results make clear that at least some of 

this cortical territory is causally involved in visual decision making. However, improved 

resolution of areas and their borders using methods such as widefield retinotopic 

mapping (Schuett et al., 2002; Andermann et al., 2011; Garrett et al., 2014; Glickfeld et 

al., 2014) and noise analyses (Kiani et al., 2015) combined with high-density recordings 

may inform further experiments narrowing down the key areas for decision making in 

cortex.  

In conclusion, we demonstrate that PPC plays a causal role specifically in visual 

decision-making. Our results are in keeping with previous inactivation studies, but 

allowed us to more deeply probe the effects of inactivation by ruling out alternative 

explanations for the deficits to visual decision-making. Further, our analysis of 

electrophysiological responses provides independent evidence of a dominant role for 

vision in PPC. By establishing PPC as part of a circuit for visual decision-making, we 

pave the way for future studies that will reveal how visual signals within PPC are 

transformed as they are passed to subsequent areas. 

Materials and Methods 

Animal subjects 

All experimental procedures were in accordance with the National Institutes of Health’s 
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Guide for the Care and Use of Laboratory Animals and approved by the Cold Spring 

Harbor Animal Care and Use Committee. Adult male Long Evans rats (200-250g, 

Taconic Farms) were housed with free access to food and restricted access to water 

starting from the onset of behavioral training. Rats were housed on a standard (non-

reversed) light dark cycle; experiments were run during the light part of the cycle. Rats 

were pair-housed initially, but were singly housed once they received injections or 

implants (below). 

Behavior 

Four rats were trained on a rate discrimination task (Figure 1B) described previously 

(Raposo et al., 2012; Sheppard et al., 2013). Briefly, rats were trained to judge whether 

the overall rate of a repeating auditory (click) or visual (flash) stimulus was high or low 

compared to a learned category boundary (12.5 events/second). Three of the four rats 

were trained that rightwards choices were rewarded following high rate stimuli and 

leftwards choices were rewarded following low rate stimuli; one rat was trained with the 

opposite contingency. Stimuli were presented over 1000 ms during which time the rats 

had to remain in a central port. After this time, rats indicated their choice on each trial 

by moving to a left or right reward port. Response time (Figure 2B) is the time between 

when the stimulus ended and when the rat departed the port. Movement time (Figure 

2C) is the time between exiting the center port and entering a reward port. Movements 
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to the correct reward port yielded a drop of water (10-25μL).  

Animal training typically began 2-3 weeks following viral injection of ChR2; the training 

period lasted 5-6 weeks and was completed before implanting the 

stimulation/recording assembly (see Viral Injection and Implants for Electrophysiology, 

below).  

General surgical procedures 

All rats subject to surgery were anesthetized with isoflurane and administered 5 mg / 

kg ketoprofen before surgery for analgesia. Isoflurane anesthesia was maintained by 

monitoring respiration and foot pinch responses throughout the surgical procedure. 

Ophthalmic ointment was applied to keep the eyes moistened throughout surgery. 

Lidocaine solution (~0.1 mL) was injected below the scalp to provide local analgesia 

prior to performing scalp incisions. 0.05 mg / kg buprenorphine was administered daily 

for post-surgery analgesia (usually 2-3 days). 

Viral injection 

We induced ChR2 expression in the left PPC of 3 rats using adeno-associated virus 

(AAV, serotype 9) carrying the gene ChR2 fused with green fluorescent protein (GFP) 

under the control of the CAG promoter (AAV9-CAG-ChR2-GFP). This promoter induces 

the expression of ChR2 in all cell types. Unilateral injections of this construct were 
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made in the left PPC of 4-6 week old rats. We made 2-3 separate penetrations along 

the medial-lateral axis with the goal of maximizing expression in PPC and minimizing 

the spread outside of this area. Stereotactic coordinates (relative to Bregma) for Rats 1 

and 2 were −3.8 mm AP, −2.2 /−3.2 /−4.2 mm ML; and for Rat 3 were −3.8 mm AP, 

2.2/3.7 mm ML. We made a small craniotomy and positioned a calibrated glass pipette 

within the craniotomy, perpendicular to the brain’s surface. For the injection, we 

applied pressure to a syringe that was attached to the pipette via plastic tubing. 

Injections were made at 400, 600 and 800 μm below the pial surface. At each depth, 

140 nL was injected. We refrained from deeper injections to avoid viral spread to 

subcortical structures. Histology obtained at the end of the experiment (Figure 

Supplement 1) indicated robust virus expression. 

Note that because all injections were in the left hemisphere, lateralized effects are 

referred to as “ipsi” or “contra” because these mean the same for all animals. Because 

we trained different animals to associate the left vs. right port with low rate choices, all 

behavioral data is plotted relative to the injected hemisphere. This convention makes it 

possible to distinguish biases towards a particular side from biases towards a particular 

rate because “high rate” trials are not always associated with the same side.   

 

Implants for electrophysiology 
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Rats were implanted with custom optetrode (Anikeeva et al., 2012) implants that were 

prepared in-house.  Each assembly contained up to 8 independently moveable 

tetrodes (Nickel/chrome alloy wire, 12.7 μm, Sandvik–Kanthal). Tetrodes were 

connected to an EIB-36 narrow connector board (Neuralynx) mounted on the implant 

assembly. Six to eight of the tetrodes were attached to optical fibers used for 

delivering light (Anikeeva et al., 2012; Znamenskiy and Zador, 2013). Optical fibers 

were 62.5 μm in diameter with a 50-μm core. In 2 of the rats, fiber tips were sharpened 

to a point with a diamond wheel to improve tissue penetration and increase the 

angular spread of the light exit cone. Each optical fiber was glued to a tetrode; the pair 

was mounted on an independently moveable microdrive. The assembly was secured 

within a plastic enclosure prior to implanting. Tetrodes were gold-plated to 300-700 kΩ 

at 1 kHz; one additional tetrode was used as an internal reference for 

electrophysiological recordings and plated to ~100 kΩ.  

For implantation during surgery, we followed procedures described previously (Raposo 

et al., 2014). Briefly, we positioned the entire optetrode assembly so as to center it 

relative to the previously made injections (-3.8 mm AP and 2.5 mm ML). A durotomy 

was performed and the implant assembly was lowered until the tetrodes just 

penetrated the pial surface. 2% agarose solution was applied to cover the tetrodes and 

craniotomy, and dental acrylic (Lang Dental) was applied to secure the implant to the 
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skull. The incision was closed around the base of the implant using 1-2 Vicryl sutures 

anterior and posterior to the implant. Following surgery, tetrodes were advanced in 

increments of 40-80 µm until action potentials were encountered. 

Optogenetic stimulation 
 
We used blue light (473 nm) with intensity ranging from 5-20mW at the fiber tip. To 

estimate the spread of light, we used a well-established method, the Brain Light Tissue 

Transmitter, which estimates light spread based on wavelength, fiber diameter, 

numerical aperture and power. We elected to use this method for three reasons. First, 

the estimates of light spread are accurate and reliable because the systematic way in 

which the measurements were collected to generate the calculator (multiple 

measurements at each of many distances from fiber tip). Second, the estimates from 

the calculator are in accordance with many additional published measurements for blue 

light spread in rodents, both in vivo (Guo et al., 2014) and in slice (Aravanis et al., 2007; 

Huber et al., 2008). The measurements in slice afford a very precise estimate because 

experimenters can directly measure light spread by placing the slice over the 

photodetector of a power meter. Finally, the use of published measurements is 

justified because the spread of light is likely to be homogeneous across animals; light 

spread mainly depends on the properties of brain tissue. As a result, judging the extent 

of stimulation is more straightforward compared to judging the spread of 
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chemogenetic disruption. In chemogenetic disruption (Rogan and Roth, 2011), all 

infected neurons are activated with equal probability by the ligand to a synthetic 

receptor delivered by a virus. Therefore the extent of stimulation is determined mainly 

by the extent of viral spread, so quantifying the spread is essential. Indeed, we 

estimated spread of effect in just this way in our previous paper (Raposo et al., 2014). 

In the current study, extent of expression is less informative because neurons 

expressing ChR2 that are beyond the range of the blue light will be unaffected. Even if 

we had expressed ChR2 non-specifically across the brain, we still would have achieved 

specificity because of the natural restriction of the blue light. Indeed, studies routinely 

achieve specificity by performing optogenetic stimulation in animals expressing ChR2 

brain-wide (e.g. Guo et al., 2014). 

 

Based on the diameter of the fiber (50μm) and its numerical aperture (0.22), we 

estimate (http://web.stanford.edu/group/dlab/optogenetics/, 2015) that at a distance 

of 0.5 mm away, irradiance was 24.8 mW/mm2 and at a distance of 1.15 mm away from 

the fiber, irradiance was below 0.5 mW/mm2. Given that 0.5 mW/mm2 has been shown 

to be the minimal required intensity to induce spiking intensity in awake animals (Guo 

et al., 2014), we infer that our stimulation mainly affected ChR2 expressing neurons 

within this range. In all animals, we confirmed that stimulation elicited a clear change in 
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the LFP on at least one tetrode (Figure 1C) although typically, responses were 

observed on multiple tetrodes. 

On a subset of randomly selected trials (“stimulation trials”, 15–25%) we delivered blue 

light to activate ChR2-expressing neurons in PPC, using a 473 nm diode-pumped solid-

state (DPSS) laser. On these trials the laser was triggered at the beginning of the 

stimulus presentation (visual or auditory) and was kept on throughout the entire 

decision formation period (1000 ms), delivering light pulses at a rate of 42 Hz (Figure 

1D). On the remaining trials (“control trials”, 75–85%) no optical stimulation occurred. 

We used two techniques to minimize the rats’ ability to detect the optical trials by 

seeing the blue light. In Rats 1 and 2, we covered the implant with black insulating tape 

before beginning each session. To ensure that no light was emitted, the experimenter 

would deliver light into the laser while it was connected to the animal in a dark booth 

and visually inspect the implant for any escaping light. A second method was 

developed because adding and removing tape from the implant daily reduced the 

integrity of the implant and sometimes resulted in premature explantation. In this 

second method, the implant was not covered in tape, but we also used a second 

optical fiber in a ferrule not implanted in the brain (that is, light from this laser was 

blocked from entering the brain). Light from this second fiber was still visible and thus 

served to mask the light from the stimulation. The second fiber was illuminated on 
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every trial (control trials and stimulation trials). As a result, the presence of blue light 

would be difficult to use to detect optical stimulation trials.  

We typically collected data from a single “site” (stimulation on one fiber at a particular 

depth) for 5-8 days; behavioral data were pooled over those days. We then either 

stimulated on a different tetrode or advanced the current optetrode at least 200μm. 

 

Analysis of stimulation effects 

We measured the effects of stimulation on multiple aspects of behavior. First, to 

systematically determine the effects of stimulation on four factors contributing to the 

animal’s decision, we used a probabilistic decision model (Busse et al., 2011): 

      eq. 1 

where p is the probability of making a rightward decision, r is the stimulus strength (its 

rate relative to the 12.5 Hz category boundary; the true range of -3.5 to 3.5 events/s 

above and below the boundary were scaled so that values ranged from -1 to 1),  hsuccess 

indicates whether the previous trial was a success (1 if the right side was rewarded, -1 if 

the left side was rewarded; 0 otherwise) and hfail indicates whether the previous trial 

was a failure (1 if the failure followed a decision to the right side, -1 if the failure 

followed a decision to the left side; 0 otherwise). The coefficients were fit in Matlab 

(Mathworks, Natick MA) using glmfit and a logit linking function. The observer’s 

!!
ln p

1− p
⎛
⎝⎜

⎞
⎠⎟
= β0 +β1r +β2hsuccess +β3hfail

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 29, 2016. ; https://doi.org/10.1101/066639doi: bioRxiv preprint 

https://doi.org/10.1101/066639
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
	

decision was predicted as a combination of four factors, so the values of the fitted 

coefficients (𝛽0−3) provide insight into how much each parameter of the model 

influences the decision on any given trial. Stimulation (laser-on) and control (laser-off) 

trials were fitted separately so that the coefficients could be compared. In principle, 

only the rate (r) should influence the rat’s decision because this determines the reward 

contingency, but previous work has shown that in practice, side bias and reward history 

bias are influential. If animals were to rely more on reward history bias on stimulation 

trials, this would have reduced their overall performance since the correct response for 

the current trial is independent of the previous trial. Therefore, this analysis afforded a 

deeper insight into the factors reducing the rat’s accuracy on stimulation trials.  

To assess significance of differences in the fitted coefficients (Figure 3B-E,G-J; Figure 

supplement 4B,C), two tests were performed. First, we conducted one-sided paired t-

tests for each site separately. The effect of stimulation was evaluated for each of the 

four fitted parameters: bias, sensitivity, success history and failure history. The t-statistic 

for each was computed directly using the values of the fitted parameters and their 

associated standard error returned by glmfit (computed from the square root of the 

diagonal values of the covariance matrix). The standard error on the difference was 

calculated by propagating the error associated with the stimulation and no-stimulation 
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values of each parameter. Second, we conducted one-sided paired t-tests for the data 

pooled across all sites and animals.   

We also measured the effect of stimulation on other behavioral measures. First, we 

determined whether stimulation changed the animal’s ability to remain in the center 

port for the required 1000 ms duration.  We used a χ2 test to evaluate whether the 

proportion of trials in which the animal withdrew early differed for stimulation versus 

control trials (Supp. Table 1). Second, we evaluated the time that elapsed between 

when the stimulus ended and when the animal exited the center port (response time). 

We used an unpaired, one-sided t-test to evaluate whether response times differed for 

stimulation and control trials (Figure 2B, left, Supp. Table 1). Finally, we evaluated the 

time that elapsed between when the rat left the center port and when it arrived at one 

of the two side ports (movement duration). We used an unpaired, one-sided t-test to 

evaluate whether movement duration differed for stimulation and control trials (Figure 

2C, right, Supp. Table 1). 

 
We performed two additional analyses of electrophysiological responses from a 

previously collected dataset (Raposo et al., 2014). We used these instead of the 

electrophysiological dataset associated with optogenetic stimulation because of its 

large size (n=101,972 trials). Although we did record well-isolated neurons with the 

optetrodes used here (Figure 1C), the population size did not provide the statistical 
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power needed for the relevant analyses. Because the previous dataset was trained on 

rats performing an identical task, the data was ideally suited to these analyses.   

 
 

1. Analysis of the effect of single stimulus events on neural responses 

For the first analysis (Figure 5B-D), we wished to determine whether single flash or click 

events modulated firing rates at fast timescales independent of overall condition 

modulation (the tuning captured in a typical peri-stimulus time histogram). To do so, 

we considered all successful trials of the highest or lowest rates, separately. We first 

smoothed each trial’s firing rate with an acausal Gaussian (15 ms SD). We then made 

peri-event time histograms (PETHs) for low-rate trials. The first three events of every 

trial were discarded to reduce the effects of onset transients and adaptation. To 

remove the slower tuning component, we performed a linear detrending of this PETH 

using 1.5 cycles of the stimulus. Use of 1.5 cycles helped reduce slope bias when fitting 

a periodic waveform. Next, as a raw estimate of modulation (mraw), we computed the 

standard deviation of this waveform over one cycle. However, this estimate is biased: 

noisier PETHs will tend to produce higher SDs. To correct for this, we assumed that the 

observed spiking was the sum of the “true” underlying fluctuations in the firing rate 

plus a noise process (Shadlen and Newsome, 1998; Nawrot et al., 2008; Churchland et 

al., 2011). Conveniently, the variance of the noise process at any time point is simply 

the square of the s.e.m (denoted smean
2). Correcting for the noise exactly is a 
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challenging problem in Cox process inference, but since event modulation was 

typically small compared to total firing rate, we could easily obtain a reasonable 

approximation of the total noise by averaging the s.e.m. over time points. Since 

variances add for the sum of independent random processes, our modulation index 

was therefore: 

 𝑚 = 𝑚$%&
' − 𝜎*+%,'        eq. 2 

For neurons where 𝑚$%&
' < 𝜎*+%,', we assigned m = 0. To obtain the modulation 

index for high-rate trials, the same process was repeated using events from high-rate 

trials. Note that values of exactly 0 were excluded from the histograms in Figure 5D 

and Figure Supplement 6, and thus the histograms for high-rate trials (which elicited 

much less modulation) contain far fewer points. 

To assess significance for each neuron, we wished to know how often we 

underestimated the noise process such that the measured modulation was actually no 

larger than the noise. Since our modulation measure is based on the standard 

deviation, the relevant comparison is with the standard error of the standard deviation 

of the noise process. For a Gaussian random process, this is: 𝑆𝐸 𝜎 = 𝜎' 2/𝐷𝑂𝐹, 

where DOF is the number of degrees of freedom and here 𝜎 = 𝜎*+%,. Since our trace 

was smoothed, DOF ¹ N–1. Instead, we used a common estimator for DOF of a 
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smoothed series: Tr(Sl), where Sl is the linear smoothing matrix and Tr(×) indicates 

taking the trace of a matrix. Using this approximation, for a Gaussian smoothing kernel, 

𝐷𝑂𝐹 ≈ 6
789::;<=>? @A

         eq. 3 

To obtain a p-value for each neuron, we performed a one-tailed Z-test of the neuron’s 

modulation index against the Gaussian distribution with mean 0 and standard deviation 

𝑆𝐸(𝜎*+%,) for that neuron. By inspection of individual neurons, event modulation was 

almost always greater for low-rate trials, so only low-rate trials were tested for 

significance. These p-values were not corrected for multiple comparisons because the 

goal was to obtain an estimate of the number of modulated neurons, not to determine 

whether any neurons were modulated. We also tried using a Bonferroni-corrected p-

value threshold for the latter purpose: at a significance level of p<0.05/317, 45 neurons 

were significant for visual and 2 for auditory. 

 
2. Analysis of trial-to-trial variance to provide insight on neural computation  
 
To understand how trial-to-trial variability evolved over the course of auditory and 

visual decisions, we computed a measure of spike count variability, the variance of the 

conditional expectation (VarCE, Churchland et al., 2011; Brostek et al., 2013; Marcos et 

al., 2013; Ding, 2015). Briefly, this measure assumes that the total measured spike 

count variance can be divided into 2 components using the law of total variance for 

doubly stochastic processes: (1) variance of counts that would be produced by a 
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stochastic point process with a given rate (“spiking noise”), and (2) the variance of the 

rates that would produce those counts (“conditional expectation”). The VarCE isolates 

the second of these components and is therefore informative about underlying 

mechanism. In principle, the VarCE is computed by subtracting an estimate of the first 

component from the total spike count variance:       

𝑠 E=
' = 𝑠E=

' − 𝜙𝑁H          eq. 4 

where 𝑁H is a vector of spike counts for a given neuron and given condition in time 

window i, 𝑠E=
' is the sample variance of those spike counts, 𝑁H is the mean spike count 

of a neuron across trials of a given condition in time window i, and f is a constant that 

approximates the degree to which spike count variability scales with firing rate (Geisler 

and Albrecht, 1995; Nawrot et al., 2008). In practice, as in previous work, we computed 

f separately for each neuron in the dataset by taking the minimum of the measured 

Fano factor across all conditions and time points. To make it possible to combine data 

from multiple conditions, we estimated 𝑠E=
' using the residuals — that is, by 

subtracting from each sample count the mean for all trials sharing its condition. The 

VarCE plotted in Figure 5e is the variance of the union of residuals from all conditions, 

minus the weighted average of the stochastic variance (𝜙𝑁)(see eq. 6, Churchland et 

al., 2011). A sliding time window with a width of 100 ms was used for the traces in 

Figure 5E. Longer (150 ms) and shorter (60 ms) windows yielded similar results. 
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