
Receptive field formation by interacting excitatory1

and inhibitory synaptic plasticity2

3

Claudia Clopath1, Tim P. Vogels2,

Robert C. Froemke3, Henning Sprekeler4

1 Bioengineering Department, Imperial College London, South Kensington Campus

London SW7 2AZ, UK; c.clopath@imperial.ac.uk

2 Centre for Neural Circuits and Behaviour, University of Oxford, Mansfield Road

Oxford OX1 3SR, UK; tim.vogels@cncb.ox.ac.uk

3 New York University, School of Medicine, 540 First Avenue

New York, NY 10016, USA; robert.froemke@med.nyu.edu

4 Dep. for Electrical Engineering and Computer Science, Berlin Institute of Technology

and Bernstein Center for Computational Neuroscience

Marchstr. 23, 10587 Berlin, Germany; h.sprekeler@tu-berlin.de

4

5

Abstract6

The stimulus selectivity of synaptic currents in cortical neurons often shows a co-7

tuning of excitation and inhibition, but the mechanisms that underlie the emergence8

and plasticity of this co-tuning are not fully understood. Using a computational9

model, we show that an interaction of excitatory and inhibitory synaptic plasticity10
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reproduces both the developmental and – when combined with a disinhibitory gate11

– the adult plasticity of excitatory and inhibitory receptive fields in auditory cortex.12

The co-tuning arises from inhibitory plasticity that balances excitation and inhibi-13

tion, while excitatory stimulus selectivity can result from two di↵erent mechanisms.14

Inhibitory inputs with a broad stimulus tuning introduce a sliding threshold as in15

Bienenstock-Cooper-Munro rules, introducing an excitatory stimulus selectivity at16

the cost of a broader inhibitory receptive field. Alternatively, input asymmetries can17

be amplified by synaptic competition. The latter leaves any receptive field plasticity18

transient, a prediction we verify in recordings in auditory cortex.19

Introduction20

The balance of excitatory and inhibitory currents (E/I balance) received by cortical21

neurons (Wehr & Zador, 2003; Monier et al., 2008) is thought to be essential for22

the stability of cortical network dynamics and provides an explanation for the irreg-23

ular spiking activity observed in vivo (van Vreeswijk & Sompolinsky, 1996; Renart24

et al., 2010; Ecker et al., 2010). Although the balanced state is a relatively robust25

dynamical regime in recurrent networks with random connectivity (van Vreeswijk26

& Sompolinsky, 1996), the mechanisms by which it is maintained in the presence27

of synaptic plasticity on virtually all synaptic connections in the mammalian brain28

(Malenka & Bear, 2004) are poorly understood. Activity-dependent Hebbian plas-29

ticity of inhibitory synapses has been suggested as a self-organization principle by30

which inhibitory currents can be adjusted to balance their excitatory counterparts31

(Vogels et al., 2011; Luz & Shamir, 2012).32

E/I balance also shapes responses of single cells to sensory stimulation (de la33
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Rocha et al., 2008; Carvalho & Buonomano, 2009; Froemke et al., 2007; Vogels et al.,34

2011). This control of neuronal output by the interplay of excitation and inhibition35

suggests that through the establishment of E/I balance inhibitory synaptic plasticity36

can in turn exert an influence on excitatory plasticity (Wang & Ma↵ei, 2014).37

Excitatory synaptic plasticity is thought to form the basis of receptive field devel-38

opment in sensory cortices. Stimulus-specific receptive fields require a spontaneous39

symmetry breaking, i.e., an impromptu departure from equally weighted inputs in40

favor of a few strong ones. Such symmetry breaking can be achieved by competitive41

interactions, either between neurons (Kohonen, 1982; von der Malsburg, 1973) or42

between the a↵erent synapses onto a given neuron. Synaptic competition can be43

realized through synaptic learning rules of a simple Hebbian (Linsker, 1986; Miller,44

1995; Wimbauer et al., 1997) or Bienenstock-Cooper-Munro (BCM) type (Bienen-45

stock et al., 1982; Clopath et al., 2010). In the former, synaptic competition is46

often amplified by an additional weight-limiting mechanism. In contrast, BCM rules47

rely on a sliding threshold between potentiation and depression that depends on the48

recent activity of the neuron.49

These theories for receptive field formation have mostly considered purely excita-50

tory networks or do not respect Dale’s law, and thus cannot reproduce the correlated51

stimulus tuning (co-tuning) of excitatory and inhibitory currents that is observed in52

sensory cortices (Wehr & Zador, 2003; Froemke et al., 2007; Anderson et al., 2000;53

Monier et al., 2008; Harris & Mrsic-Flogel, 2013). Here we investigate under which54

conditions neurons can develop stimulus selectivity and E/I co-tuning simultaneously55

(Wehr & Zador, 2003; Froemke et al., 2007). To this end, we analyze the dynam-56

ical interaction of excitatory and inhibitory Hebbian plasticity. A combination of57

mathematical analysis and computer simulations shows that the determining factors58
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controlling the dynamics of receptive field development are i) the time scales of exci-59

tatory and inhibitory plasticity, ii) the stimulus tuning width of the inhibitory inputs60

and their excitatory counterparts and iii) possible activity biases in the input.61

We show that plastic inhibitory inputs with a broad stimulus tuning can func-62

tionally serve as a sliding threshold and generate BCM-like behavior. In contrast,63

narrowly tuned inhibitory inputs lead to a detailed balance (Vogels & Abbott, 2009)64

of excitatory and inhibitory currents and thereby exert an equalizing e↵ect on the65

postsynaptic neuronal response rather than the competition induced by the sliding66

threshold. In this case, the simultaneous establishment of a receptive field and E/I67

co-tuning can be induced by small heterogeneities in the inputs. By combining the68

interaction of excitatory and inhibitory plasticity with neuromodulation-induced dis-69

inhibition (Froemke et al., 2007; Dorrn et al., 2010; Letzkus et al., 2011), our model70

reproduces a wide range of dynamical phenomena that arise during receptive field71

plasticity in the auditory cortex (Froemke et al., 2007).72

Results73

We study the interaction of excitatory and inhibitory synaptic plasticity in a sin-74

gle postsynaptic rate-based model neuron receiving both excitatory and inhibitory75

synaptic inputs. Unless otherwise mentioned, the neuron receives a set of sensory76

stimuli, each of which activates a separate presynaptic excitatory neural popula-77

tion. Excitatory synapses are plastic according to a Hebbian rule, i.e., the change78

of the synaptic weight WE
i from excitatory input population i is proportional to the79

product of presynaptic population activity Ei and postsynaptic activity R. Because80

Hebbian plasticity in excitatory synapses is unstable, this rule is combined with81
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a weight-limiting mechanism, in the form of a subtractive or multiplicative weight82

normalization:83

�WE
i / EiR (+normalization) . (1)

Subtractive normalization reduces all excitatory weights by the same amount, such84

that the sum of the weights is held constant, phenomenologically mimicking a com-85

petition of all excitatory synapses for a fixed pool of postsynaptic receptors. Multi-86

plicative normalization scales all weights such that the sum of the squared weights87

is held constant, a mechanism that could be implemented by homeostatic synaptic88

scaling (Turrigiano et al., 1998). As known from previous studies, the choice of the89

normalization can have a strong impact on the learning dynamics, because it de-90

termines the degree of competition between di↵erent excitatory synapses (Miller &91

MacKay, 1994; Dayan & Abbott, 2001).92

The inhibitory synapses onto the neuron are subject to a Hebbian plasticity93

rule that changes their synaptic weight in proportion to presynaptic activity and94

the di↵erence between postsynaptic activity and a target rate ⇢0. This rule has95

previously been shown to balance excitation and inhibition such that the firing rate96

of the postsynaptic cell approaches the target firing rate ⇢0 (Vogels et al., 2011).97

Here, we study the emergence of excitatory and inhibitory receptive fields in98

sensory cortices, as a result of the interaction of excitatory and inhibitory synaptic99

plasticity. We investigate the learning dynamics of this model for di↵erent sensory100

input profiles and relative learning rates of excitatory and inhibitory plasticity.101
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Unspecific inhibition sets a sliding threshold and mediates102

BCM-like receptive field formation103

We first consider a situation in which the inhibitory a↵erents have no stimulus tun-104

ing, but rather constant firing rates (Figure 1A). Inhibitory synaptic plasticity is105

assumed to act more rapidly than excitatory plasticity. Under these conditions, in-106

hibitory plasticity establishes a state of a global E/I balance (Vogels & Abbott, 2009;107

Vogels et al., 2011), in which inhibition balances excitation on average across stimuli.108

Because inhibitory plasticity is rapid, this balance is dynamically maintained in the109

presence of excitatory changes (Vogels et al., 2011).110

For such unspecific inhibition, the interaction of excitatory and inhibitory plas-111

ticity leads to a robust development of a receptive field with high stimulus selectivity112

(Figure 1B, C). The underlying mechanism is similar to that of BCM learning rules113

(Bienenstock et al., 1982). In BCM rules, a sliding threshold in postsynaptic activity114

dictates the sign of plasticity, causing a competition between di↵erent stimuli and115

providing a homeostatic mechanism for the postsynaptic firing rate. In our case, in-116

hibitory plasticity acts as a similar homeostatic mechanism that rapidly adapts the117

strength of the inhibitory input such that the mean firing rate of the postsynaptic cell118

is near the target rate ⇢0 (Figure 1, right). For strong excitatory inputs (Figure 1D,119

histogram below horizontal axis), inhibition will dominate for most stimuli. Only a120

few stimuli that activate su�ciently strong excitatory synapses can evoke postsynap-121

tic activity (Figure 1D, right). Only those synapses will experience coincident pre-122

and postsynaptic activity and will be potentiated by the Hebbian learning rule (Fig-123

ure 1D, blue arrow). All others will be suppressed by the normalization (Figure 1D,124

red arrow). Consequently, stimuli that evoke a strong response are rewarded and125
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all others are punished, resulting in the formation of a strong stimulus selectivity126

(Figure 1C).127

A mathematical analysis of the learning dynamics makes this intuition explicit.128

Assuming a linear output neuron with rectification, the cell can only be active when129

the total excitatory inputRE =
P

i W
E
i Ei exceeds the total inhibitory input ✓ = W II130

(where W I is the total inhibitory synaptic strength and I the constant activity of131

the inhibitory input). Because the Hebbian learning rule Eq. 1 for the excitatory132

weights requires postsynaptic activity, excitatory plasticity is e↵ectively thresholded133

by the activity-limiting inhibitory input and can be written as:134

@tW
E
i / Ei

⇥
RE � ✓

⇤
+
(+normalization) . (2)

The threshold ✓ is sliding, because the inhibitory plasticity perpetually adjusts the135

inhibitory weights such that the mean output rate of the cell is equal to the target136

rate ⇢0 (see SOM for a mathematical derivation).137

The e↵ective learning rule Eq. 2 has the form of a BCM rule in that synap-138

tic changes are proportional to the product of presynaptic activity and a nonlinear139

function of the total excitatory drive. There are also di↵erences to BCM theory.140

In particular, BCM rules induce synaptic depression below the threshold, while the141

e↵ective learning rule Eq. 2 has no explicit depression component (Figure 1D). In-142

stead, depression is a side-e↵ect of the synaptic weight normalization. Nevertheless,143

the mechanism by which the system establishes the receptive field is the same as144

in BCM rules: a sliding threshold that introduces a temporal competition between145

stimuli. This mechanism does not rely on the assumption of constant inhibitory146

input rate, it also applies when the inhibitory input is pooling over all excitatory147
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inputs (Figure 1 - Supplement 1). Furthermore, the normalization procedure does148

not alter these results.149

Egalitarian e↵ects of stimulus-specific inhibition150

Experimental evidence from di↵erent sensory systems indicates a stimulus co-tuning151

of excitatory and inhibitory currents (Wehr & Zador, 2003; Froemke et al., 2007;152

Anderson et al., 2000; Monier et al., 2008), which cannot be achieved with unspecific153

inhibition. We thus introduced stimulus-specific inhibitory inputs to investigate the154

formation of co-tuned receptive fields (Figure 2). We first studied a situation in which155

every excitatory input has an inhibitory counterpart with the same time-dependent156

firing rate (Figure 2A). Again, inhibitory plasticity is assumed to act more rapidly157

than excitatory plasticity.158

For this highly stimulus-specific inhibition, all excitatory weights converge to the159

same value, and no receptive field emerges (Figure 2B, C). The inhibitory plasticity160

rule aims to establish a stimulus-specific detailed balance, with mean firing rates161

that are close to the target rate ⇢0 for all stimuli individually (Vogels et al., 2011).162

For rapidly-acting inhibitory plasticity, this state is perpetually maintained in spite163

of (slower) synaptic changes in excitation. Mathematically, we can thus replace the164

postsynaptic firing rate in the excitatory learning rule by the target rate. This leads165

to an e↵ective excitatory learning rule (see SOM for a more precise mathematical166

derivation):167

@tW
E
i / Ei⇢0 . (3)

Because inhibitory plasticity forces the output of the neuron to the target rate ⇢0, the168

dependence of the learning rule Eq. 1 on postsynaptic activity, and thus the Hebbian169
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nature of the learning process is e↵ectively lost and excitatory synaptic plasticity170

is driven by presynaptic activity only. If all input neurons fire at the same mean171

rate, all synapses undergo the same change on average. For a multiplicative nor-172

malization, which reduces large weights more than small weights (Figure 2D), this173

causes all excitatory synapses to converge to the same value. This is supported by a174

mathematical analysis (see SOM) showing that the homogeneous weight configura-175

tion is stable for a multiplicative normalization and changes only gradually when the176

firing rate of one individual input signal is increased (SOM, Figure 5 - Supplement177

1). Thus, the interaction of excitatory and inhibitory plasticity on stimulus selective178

excitatory and inhibitory inputs does not favor the emergence of a receptive field.179

Interestingly, receptive field formation can nevertheless be reached in a subtractive180

normalization scheme, as shown below.181

E↵ects of the relative learning rates of excitation and inhibi-182

tion183

The e↵ective learning rules Eqs. 2 and 3 were based on the assumption that the in-184

hibitory plasticity is faster than its excitatory counterpart. As previously shown, this185

does not lead to the emergence of a receptive field when inhibition is stimulus-specific186

(Figure 3A-C). We wondered if a receptive field could emerge if the excitatory learn-187

ing rate is increased, such that an excitatory stimulus selectivity is formed before188

inhibitory plasticity can establish a detailed balance and equilibrate the output to189

the target rate ⇢0. Indeed, a stimulus-specificity emerges in the receptive field with190

increasing excitatory learning rate, but it is not stable. Instead, the weights start to191

show oscillations around the homogeneous state (Figure 3D-F), with an oscillation192

amplitude that increases with the excitatory learning rate (Figure 3D/F vs. G/I).193
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This instability generates an intermittent turn-over of transient receptive fields (Fig-194

ure 3G-I). In summary, with increasing excitatory learning rates, the synaptic weight195

configuration starts to show the emergence of transient receptive fields, at the cost196

of decreasing stability and precision of the detailed balance (Figure 3J).197

The mechanism behind the observed oscillation is a delayed negative feedback198

loop on the stimulus selectivity that is introduced by the inhibitory plasticity. Af-199

ter the excitatory weights have converged to a selective state, inhibitory plasticity200

gradually establishes a detailed E/I balance and thereby “equilibrates” the neural201

responses to the di↵erent stimuli at the target firing rate ⇢0. Once the postsynaptic202

response loses its stimulus selectivity, however, it can no longer support the existing203

receptive field and the neuron starts to fall back to the homogeneous weight con-204

figuration. In particular, the excitatory synaptic weights for the preferred stimulus205

start to decrease. Because the slow inhibitory plasticity lags behind, the associated206

inhibition remains strong, such that the previously preferred stimulus now becomes207

the least e↵ective. As a result, a di↵erent stimulus is selected, albeit only until the208

inhibitory inputs for this stimulus have become su�ciently strong. These observa-209

tions are supported by a linear stability analysis of the homogeneous, i.e., unselective210

weight configuration, which shows that the learning dynamics undergo a Hopf bifur-211

cation as the ratio of the excitatory and inhibitory learning rates is increased beyond212

a critical value (see SOM).213

Broadened inhibitory tuning supports formation of receptive214

fields and broadened co-tuning215

Unspecific inhibition supports receptive field emergence, but it can only generate a216

global E/I balance (Figure 1), which is inconsistent with the experimentally observed217
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stimulus (co-)tuning of the inhibitory currents (Wehr & Zador, 2003; Froemke et al.,218

2007; Anderson et al., 2000) . On the other hand, inhibitory plasticity of stimulus-219

specific inhibition, which does in principle allow a detailed E/I balance, generates a220

rate homeostasis for individual stimuli that hinders the emergence of a receptive field221

(Figure 2). Although the preferred stimuli for excitation and inhibition are similar222

in various sensory systems, the width of the inhibitory tuning varies substantially223

(Harris & Mrsic-Flogel, 2013). Hence, we hypothesized that inhibitory inputs with224

a stimulus tuning that is finite but broader than their excitatory counterparts – as225

is encountered, e.g., in visual cortex (Kerlin et al., 2010; Hofer et al., 2011) – could226

support both the formation of a receptive field and an (albeit degraded) detailed227

balance. To test this hypothesis, we assigned Gaussian input tuning curves to both228

the excitatory and inhibitory inputs, with tuning widths �E and �I , respectively229

(Figure 4). By controlling the inhibitory tuning width �I , we can emulate the cases230

of highly specific inhibition (�I  �E, Figure 4A-C), as well as cases of intermediate231

(�I ⇡ �E, Figure 4D-F) and unspecific inhibition (�I � �E, Figure 4G-I). Narrow232

inhibition (�I = �E = 1) allows a detailed balance, so that all weights converge to233

the same strength (Figure 4B, C), as expected from the earlier results. For very234

broad inhibition (�I = 100), the excitatory weights show a spontaneous symmetry235

breaking, such that only few weights are large and most are zero (Figure 4H, I).236

For intermediate inhibitory tuning width, a receptive field emerges in the excitatory237

weights, and the inhibitory weights adjust in order to reach an approximation of a238

detailed balance (Figure 4E, F). Because of the broader input tuning in the inhibition,239

the stimulus tuning of the inhibitory currents remains broader than that of the240

excitatory current (Figure 4F), similar to physiological findings in primary visual241

cortex (Liu et al., 2011). Although the final tuning of the excitatory and inhibitory242
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input currents is relative wide, the resulting firing rate tuning of the cell (i.e., the243

rectified di↵erence of the excitatory and inhibitory currents) is relatively narrow,244

due to an ’iceberg’ e↵ect in which excitation supersedes inhibition only in a small245

stimulus range (Figure 4F, dashed line).246

Increases in inhibitory tuning width have only a minor impact on the stability247

of the final synaptic configuration, but introduce a relatively sharp transition to the248

emergence of a receptive field at the cost of a reduced precision of the E/I balance249

(Figure 4J). At the transition point, both the E/I balance and the stability is slightly250

reduced, because the homogenous weight configuration loses stability through an os-251

cillatory bifurcation, i.e., the synaptic weights oscillate in a small range of inhibitory252

tuning widths around the transition point (not shown). When the inhibitory input253

tuning is wider than the excitatory tuning, the output neuron can under certain con-254

ditions develop a periodic tuning with respect to the input channel, reminiscent of255

periodic receptive fields that have been found in the hippocampal formation (Haft-256

ing et al., 2005). Finally, broadened inhibition removes the oscillatory instability257

that was observed for high excitatory learning rate for stimulus-specific inhibition258

(Figure 4K).259

Co-tuned receptive fields can emerge from a competitive nor-260

malization and input inhomogeneities261

It is well-known that di↵erent normalization schemes for the excitatory weights sup-262

port the emergence of stimulus selectivity to a di↵erent degree (Miller & MacKay,263

1994). In particular, a subtractive normalization gives rise to stronger competition264

between synapses than the multiplicative normalization we have used to far (Dayan265

& Abbott, 2001). However, with subtractive normalization we observed qualitative266
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di↵erences only for specific inhibition and rapid inhibitory plasticity. In this case,267

the excitatory weights don’t converge to equal strength (cf. Figure 2), but perform a268

random walk that generates an unstructured, temporally fluctuating receptive field269

(Figure 5A, B). These dynamics arise because, on average, the e↵ective learning rule270

Eq. 3 introduces weight changes that are immediately reverted by the normaliza-271

tion (Figure 5C), such that all possible weight configuration are marginally stable.272

Changes in the relative learning rates of excitatory plasticity and the relative tuning273

widths of the excitatory and inhibitory inputs had qualitatively similar e↵ects as for274

the multiplicative normalization (Figure 5D, E).275

A mathematical analysis (Eq. 3 and SOM) suggests that this random walk be-276

havior requires that all excitatory inputs have exactly the same mean firing rates.277

If one excitatory input has a higher mean firing rate than the others (+10% in our278

simulations), its weights will increase more rapidly, leading to a “tilt” in the vector279

field (Figure 5H). The synaptic weight of the input with the highest firing rate will280

thus outgrow all others, leading to the formation of a stimulus-selective excitatory281

receptive field that is balanced by precisely co-tuned inhibition (Figure 5F, G). The282

increased firing rate of one input did not change the dependence of the dynamics on283

the relative learning rates of excitatory and inhibitory plasticity (Figure 5I) or the284

relative tuning widths of excitation and inhibition (Figure 5J).285

In summary, the interaction of excitatory and inhibitory plasticity, combined with286

a competitive weight normalization, can amplify small input inhomogeneities and287

lead to the development of receptive fields with a precise co-tuning of excitation and288

inhibition, similar to the receptive fields that are found in auditory cortex (A1). We289

therefore studied whether the model can also reproduce other dynamical phenomena290

that are observed during receptive field plasticity in A1 (Froemke et al., 2007).291
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Stimulus-selective inhibition with subtractive normalization292

explains auditory receptive field shape and plasticity293

Neurons in primary auditory cortex often have bell-shaped tuning curves with respect294

to the frequency of pure tones, both in terms of their firing rate and their excitatory295

and inhibitory input currents (Wehr & Zador, 2003). Their excitatory and inhibitory296

tuning functions are often co-tuned, an e↵ect that gets more pronounced during297

development and seems to be driven by sensory experience (Figure 6A) (Dorrn et al.,298

2010). Moreover, in adult animals, Froemke et al. (2007) have shown that both299

excitatory and inhibitory tuning functions remain stable in the presence of pure tone300

stimulation (Figure 6B) unless the tones are paired with neuromodulatory input, e.g.,301

from nucleus basalis (NB), the main source of cortical acetylcholine (Figure 6C). In302

response to paired NB and pure tone stimulation, the excitatory tuning curve of A1303

neurons shifts its maximum (i.e., its preferred frequency) to that of the presented304

tone (Figure 6C, middle). This stimulation paradigm initially leaves the inhibitory305

tuning unchanged. However, in the presence of auditory stimulation the inhibitory306

tuning curve gradually shifts to the new preferred frequency of excitation, until a307

new state of co-tuning is reached after a few hours (Figure 6C, right). Interestingly,308

over even longer periods, both the excitatory and the inhibitory tuning curves revert309

back the original preferred frequency (Figure 6D).310

To investigate whether an interaction of excitatory and inhibitory synaptic plas-311

ticity can reproduce these rich dynamics of receptive field plasticity, we interpreted312

the di↵erent input channels as auditory frequencies. Again, one of the excitatory in-313

puts has a higher firing rate and the excitatory weights are subject to a subtractive314

normalization. Under these conditions, the interplay of excitatory and inhibitory315
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plasticity in the presence of sensory stimulation leads to the development of bell-316

shaped tuning curves for both excitatory and inhibitory currents, peaking at the317

same input channel (Figure 6E!F). After this co-tuning has been established, stim-318

ulation of an individual input channel causes only small changes in both excitatory319

and inhibitory tuning curves (Figure 6F!G), as observed in the experiment. This320

stability arises from the detailed balance established by the inhibitory plasticity that321

leads to low firing rates close to the target rate ⇢0, and from small learning rates.322

It has been hypothesized that cholinergic inputs as evoked by NB stimulation cause323

a transient disinhibition of cortical pyramical cells (Froemke et al., 2007; Letzkus324

et al., 2011). Hence, we mimicked NB stimulation by a transient suppression of325

the firing rate of the inhibitory inputs. Pairing such an “NB stimulation” with the326

activation of a non-preferred input channel shifts the peak of the excitatory tuning327

curve to the stimulated input channel, while leaving the inhibitory tuning curve un-328

altered (Figure 6G!H). The shift in the excitatory tuning curve is caused by high329

postsynaptic firing rates during disinhibition, while inhibitory plasticity is reduced330

by the small firing rates of the inhibitory input neurons. Subsequent random stimu-331

lation of all input channels causes the same gradual re-balancing dynamics that are332

observed in A1 (Figure 6H!I)(Vogels et al., 2011). On an even longer time scale,333

both the excitatory and inhibitory tuning curves slowly revert back to the original334

preferred frequency, due to the higher firing rate of the corresponding input channel335

(Figure 6I!J). In summary, the interaction of excitatory and inhibitory Hebbian336

plasticity seems to be su�cient to reproduce the rich dynamics of receptive field337

plasticity in A1.338
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Discussion339

Our analysis suggests that concurrent excitatory and inhibitory Hebbian plasticity340

can generate a rich repertoire of receptive field dynamics. In particular, we identified341

two essential factors that control their interaction: The stimulus-specificity of the342

inhibitory inputs and the relative degree of plasticity of excitatory and inhibitory343

synapses. Unspecific, but plastic feedforward inhibition generates a sliding thresh-344

old for neuronal activity that leads to the formation of a receptive field with high345

stimulus-selectivity, by a mechanism that is similar to that of BCM rules (Bienen-346

stock et al., 1982). This observation could be relevant in the context of the search for347

a biophysical basis of the sliding threshold of BCM theory (Cooper & Bear, 2012). In348

place of a direct dependence of the excitatory plasticity rule on previous activity, our349

analysis suggests that a sliding threshold can be implemented indirectly, by adaptive350

inhibition that changes how a postsynaptic neuron responds to a given excitatory351

input (Miller, 1996; Triesch, 2007).352

Our analysis also suggests that for stimulus-specific inhibitory inputs, the homeo-353

static action of the inhibitory plasticity rule applied here (Vogels et al., 2011) equili-354

brates the firing rates to di↵erent stimuli and therefore does not favor a spontaneous355

formation of stimulus selectivity. This democratic tendency can be broken in di↵er-356

ent ways. Increases in the tuning width of the inhibitory inputs favor the formation357

of a receptive field, at the cost of a less precise E/I co-tuning. Alternatively, receptive358

field formation can be promoted by competitive weight limiting mechanisms (such359

as subtractive normalization), which can amplify slight asymmetries in the input360

statistics.361

The model further supports the hypothesis that disruptions of the E/I balance362

(specifically, transient increases of excitation or decreases of inhibition) could serve363
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as a gate for the induction of plasticity. This idea is in line with observations that364

the E/I balance is less precise in young animals (Dorrn et al., 2010), with the hy-365

pothesis that the maturation of inhibition controls the duration of developmental366

critical periods (Hensch, 2005; Kuhlman et al., 2013) and with the apparent need for367

disinhibition for receptive field plasticity in mature animals (Froemke et al., 2007;368

Kuhlman et al., 2013). In our simulations, the detailed E/I balance that is estab-369

lished by inhibitory plasticity provides a default state in which the gate for the370

induction of synaptic plasticity is closed. Perturbations of this balance, e.g., by se-371

lective disinhibition, open the gate. Of course, our model captures only one aspect of372

the wide range of neuromodulatory e↵ects. Neuromodulators are likely to influence373

synaptic plasticity through other pathways, e.g., by directly a↵ecting the biophysical374

machinery of synaptic plasticity (Pawlak et al., 2010) or the electrical properties of375

neuronal arborizations (Tsubokawa & Ross, 1997; Wilmes et al., 2016).376

We concentrated our analysis on a relatively simple and largely linear model377

that is amenable to mathematical analysis. However, we expect that many of the378

dynamical phenomena will generalise to other neuron models and learning rules.379

We have observed similar dynamics when the excitatory learning rule was replaced380

by a rate-based triplet rule that includes long-term depression (Pfister & Gerstner,381

2006; Clopath et al., 2010), as long as the threshold rate between potentiation and382

depression in the triplet rule was lower than the target rate of the inhibitory plasticity.383

If this threshold was higher than the target rate, however, all excitatory weights384

converged to zero. For rapid inhibitory plasticity, the same dynamics are observed for385

the interaction of the inhibitory plasticity rule with classical BCM rules (Bienenstock386

et al., 1982), because the rate homeostasis of the inhibitory plasticity keeps the387

sliding threshold of the BCM rule largely constant, thereby e↵ectively reducing the388
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BCM rule to a triplet rule without sliding threshold. Because nonlinearities in the389

learning rule are closely related to nonlinearities in the neuronal transfer function,390

we also expect a qualitatively similar behavior for nonlinear neuron models. From391

a more abstract perspective, the presently analyzed model can be interpreted as392

a linearization around a homogenous state in which all excitatory and inhibitory393

weights are equal. Our results on the stability of this state will apply locally and394

provide an indication of whether a neuron will develop a receptive field or remain395

unselective.396

Our analysis is limited to feedforward networks, although the co-tuning of excita-397

tory and inhibitory inputs in early sensory areas could in principle arise from either398

stimulus-selective feedforward inhibition or feedback inhibition. Feedback inhibition399

appears as a natural candidate to explain the observed E/I co-tuning in cortical400

areas with a topographical organization (Harris & Mrsic-Flogel, 2013). However,401

the dissociation of the excitatory and inhibitory tuning curves induced by Froemke402

et al. (2007) indicates that a component of stimulus-selective feedforward inhibition403

is present in auditory cortex. We suspect that our results could generalize to net-404

work architectures with recurrent inhibition, provided that a su�ciently rich pool405

of sensory tuning curves is present in the inhibitory population. However, an anal-406

ysis of receptive field dynamics in recurrent networks is considerably more di�cult,407

because both forms of synaptic plasticity would change not only the postsynaptic408

tuning function, but also that of the inhibitory inputs.409

To limit the complexity of the system, we ignored temporal aspects of neuronal410

and synaptic integration as well as the spike timing dependence of synaptic plastic-411

ity. In particular, inhibitory synapses tend to have slower dynamics than excitatory412

synapses (Wehr & Zador, 2003). Rapid stimulus transients therefore cannot be bal-413
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anced and cause reliably timed onset spikes (Vogels et al., 2011). Synaptic dynamics414

thus impose limits on the precision of the E/I balance that can be reached by in-415

hibitory plasticity. In combination with excitatory spike timing-dependent plasticity,416

this is likely to introduce a selectivity of the neuron to temporal input features (Kle-417

berg et al., 2014; Sterling & Sprekeler, 2014).418

Unfortunately, the experimental characterization of inhibitory synaptic plasticity419

is less advanced than that of excitatory plasticity, and earlier work has drawn a420

somewhat diverse picture (Woodin &Ma↵ei, 2010; Vogels et al., 2013). In part, this is421

likely due to the diversity of inhibitory cell types (Markram et al., 2004; Klausberger422

& Somogyi, 2008; DeFelipe et al., 2013) and their largely unresolved functional roles.423

However, a recent study of inhibitory plasticity in auditory cortex supports our core424

assumption that Hebbian inhibitory plasticity aids in establishing an E/I balance425

(D’amour & Froemke, 2015; Kirkwood, 2015), and parvalbumin-positive interneurons426

are emerging as potential mediators within the cortical microcircuit (Xue et al.,427

2014). We tested a few variants of the inhibitory learning rule. As long as the428

rule remained Hebbian, i.e., coincident pre- and postsynaptic activity predominantly429

caused potentiation, and inhibitory weights decayed in the absence of postsynaptic430

activity, the rule established an approximate balance of excitation and inhibition431

(Luz & Shamir, 2012). However, the democratic aspect of the presently studied rule432

may be less pronounced for other rules, potentially facilitating the emergence of a433

receptive field even for specific inhibition.434
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Conclusion435

Our study provides a theoretical underpinning for the joint emergence of excita-436

tory and inhibitory receptive fields in sensory cortices and adds a developmental437

aspect to the discussion of how the stimulus specificity of interneurons is related438

to the tuning properties of excitatory cells (Harris & Mrsic-Flogel, 2013). What’s439

more, it provides a mechanistic description of the experimentally observed gating of440

experience-dependent plasticity in adult animals by disinhibitory and neuromodula-441

tory mechanisms.442

Experimental Procedures443

Neuron model and network structure444

We study a feedforward network consisting of a single neuron receiving both exci-445

tatory and inhibitory inputs. To keep the system simple and allow an analytical446

treatment of the learning dynamics, we study a threshold-linear neuron and concen-447

trate on a rate-based description of neural activity. When we refer to input activity448

or synaptic weights, we thus mean firing rates of neural populations and total synap-449

tic connection strengths between input populations and the output neuron. Given450

time-dependent activities Ei(t) and Ij(t) of NE excitatory and NI inhibitory inputs,451

respectively, the output rate of the model neuron is given by452

R(t) =

"
NEX

i=1

WE
i Ei(t)�

NIX

j=1

W I
j Ij(t)

#

+

, (4)
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where WE
i and W I

j denote the synaptic weights of the excitatory and inhibitory453

synapses, respectively, and [·]+ denotes a rectification that sets negative values to454

zero, to avoid negative firing rates. To comply with the notion of excitation and455

inhibition, all synaptic weights are constrained to be positive. In all simulations, we456

model NE = 10 excitatory input populations. For the simulations with unspecific457

inhibition, the neuron receives a single inhibitory input NI = 1, in all other simu-458

lations there are as many excitatory as inhibitory input channels: NI = NE = 10.459

Note that this is a statement about how many functionally di↵erent populations of460

inhibitory neurons project to the output cell, not about the number of presynaptic461

cells, which will in general be di↵erent for excitation and inhibition.462

Input signals463

The excitatory and inhibitory input signals Ei and Ij are generated assuming that464

the inputs each have a tuning to sensory stimuli. These stimuli are modeled as465

N = 10 di↵erent sensory stimulus channels with time-dependent activities sj(t)466

(which could, e.g., be sound amplitude at di↵erent frequencies). The activity of467

input neuron i is calculated by a sum of the stimulus channels, weighted with tuning468

strengths TE/I
ij : Ei(t) =

P
j T

E
ij sj(t) and Ii(t) =

P
j T

I
ijsj(t). The input tuning is469

Gaussian: TE/I
ij / exp

⇣
�(i� j)2/2�2

E/I

⌘
and normalized such that

P
j Tij = 1 for470

all i. The parameters �E/I denote the tuning widths for excitation and inhibition,471

respectively. In the limit of very small tuning width, the input signals are exact472

copies of the activity in the sensory stimulus channels; for very large tuning widths,473

they are an average thereof.474

The activities si(t) of the stimulus channels are generated from independent475

Ornstein-Uhlenbeck processes with a time constant of 50 ms by subtracting a con-476
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stant c, setting all negative values to zero and then rescaling the signal to have a477

mean firing rate of 1 (arbitrary units). The constant c controls the lifetime sparseness478

(Franco et al., 2007) of the signals. For our choice of c, we obtained a lifetime sparse-479

ness of a = hsii2t/hs2i it = 0.146, where h·it denotes a temporal average. The results480

are robust to the precise value of the sparseness of the input signals, which mainly481

controls how well the output neuron can di↵erentiate between the input signals. It482

thereby indirectly controls the convergence of the learning dynamics. The sparser483

the input signals, the higher the learning rate can be chosen before the dynamics484

become obstructed by the noisy dynamics of the online learning rule.485

In the case of unspecific inhibition, we simulate a single inhibitory input channel,486

the activity of which is constant in time. The dynamics do not change when, instead,487

the inhibitory input is an average of the activities of the excitatory inputs (i.e.,488

�I ! 1): I(t) = N�1
E

P
i Ei(t) (see SOM for mathematical analysis).489

In simulations where the subtractive normalization amplifies di↵erences in input490

firing rates (Figs. 5 and 6), one of the stimulus channels sj was multiplicatively scaled491

up by 10%.492

Excitatory synaptic plasticity493

We study a simple Hebbian learning rule for the excitatory synapses494

@tW
E
i = ⌘EEj(t)R(t) , (5)

where ⌘E denotes the excitatory learning rate, which is 10 times smaller than the495

inhibitory learning rate, unless specified otherwise. Excitatory plasticity is inher-496

ently unstable, so this rule has to be complemented by a weight-limiting mecha-497
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nism. Because previous work has shown that the specific form of the weight limiting498

mechanism is important for the learning dynamics (Miller & MacKay, 1994), we499

study both multiplicative and subtractive weight normalization. A multiplicative500

normalization is vaguely inspired by homeostatic synaptic scaling (Turrigiano et al.,501

1998). Note that an activity-dependent homeostatic control of the excitatory synap-502

tic weights (rather than a weight-dependent mechanism as used here) is problematic503

in a situation where inhibitory synapses are also plastic, because neuronal activity504

and excitatory weights are only weakly coupled. For example, both excitatory and505

inhibitory weights could diverge although a given mean firing rate is maintained.506

In our simulations, we start with random weights drawn from a uniform distri-507

bution. For multiplicative normalization, after every weight update, the weights are508

divided by their L2 norm. For the subtractive weight normalization, we subtract509

the average weight
P

i W
E
i /NE from all weights and add a constant (here 1). Neg-510

ative weights, which can arise from this procedure, were clipped to zero. By this511

procedure, the sum of the weights remains at approximately NE.512

Inhibitory synaptic plasticity513

The inhibitory synapses of the network are plastic according to the balancing learning514

rule we previously suggested (Vogels et al., 2011)515

@tW
I
j = ⌘IIj(t)(R(t)� ⇢0) , (6)

where ⌘I is the inhibitory learning rate (Figs. 1–4: ⌘I = 10�3, Figs. 5, 6: ⌘I =516

10�2). The learning rule Eq. 6 introduces a homeostatic control of the firing rate:517

inhibitory synaptic weights are adjusted such that the output rate of the neuron518
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approaches a target rate ⇢0. If the excitatory currents received by the neuron are519

large (i.e., if the activity of the neuron due to the excitatory input alone is large520

compared to the target rate ⇢0), excitatory and inhibitory input currents to the521

neuron become approximately balanced, with a precision that is determined by the522

correlation between excitatory and inhibitory input currents (Vogels et al., 2011). In523

all simulations, the target rate was ⇢0 = 0.01 (again in arbitrary units).524

Disinhibition by neuromodulation525

In the last figure, we study the e↵ect of neuromodulation on learning, with the goal of526

reproducing the experimental data of Froemke et al. (Froemke et al., 2007). To this527

end, we first develop balanced receptive fields with a preference for signal number 8,528

by increasing the input for signal number 8 by 10% (i.e., an average firing rate of 1.1529

instead of 1). The excitatory learning rule is paired with a subtractive normalization,530

and �E = �I = 1. During training, only signal number 5 is active at constant rate of531

5, mimicking the presentation of a pure tone. Finally, when training is paired with532

acetylcholine, we reduce feedforward inhibition as shown experimentally (Xiang et al.,533

1998; Letzkus et al., 2011) by setting the tuning strengths T I to 0.534

Network quantification535

We quantify the network by three di↵erent parameters, the stability, the balance536

and the emergence of receptive fields. The stability S is the average inner product537

of the excitatory weights (L2-normalized) at two di↵erent time points, averaged over538

1000 random samples. These time points are chosen randomly in the second half of539

the simulation to insure learning convergence. The balance B is average correlation540

between excitatory and the inhibitory weights (rescaled so that the maximum weight541
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is one) over the second half of the simulations. Finally, the emergence E is computed542

as one minus the ratio of the mean excitatory weights and their current maximum,543

the ratio is then averaged over the second half of the simulation.544
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Figure 1: Receptive field formation with unspecific inhibition. A) Network diagram. A
single postsynaptic neuron receives synaptic input from 10 excitatory populations (colored
circles, not all 10 shown) with di↵erent time-varying firing rates (signals, colored traces)
and from a single inhibitory population (grey star) with constant firing rate (black trace).
B) Temporal evolution of excitatory (positive) and inhibitory (negative) synaptic weights.
C) Synaptic currents evoked by activating individual signals before (top) and after learning
(bottom). Stars indicate corresponding times in B. D) Illustration of the mechanism that
leads to the emergence of selectivity in the synaptic weights (D) before E) after conver-
gence). Results for multiplicative normalization, for subtractive normalization see Figure 1
- Supplement 1.
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Figure 1 - Supplement 1: Receptive field formation with pooled feedforward inhibition.
A) Network diagram. A single postsynaptic neuron receives synaptic input from 10 ex-
citatory populations (colored circles, not all 10 shown) with di↵erent time-varying firing
rates (signals, colored traces) and from a single inhibitory population, which pools over
the 10 excitatory inputs (grey star). B) Temporal evolution of excitatory (positive) and
inhibitory (negative) synaptic weights. C) Synaptic weights before (top) and after learn-
ing (bottom). Stars indicate corresponding times in B. D) Illustration of the mechanism
that leads to the emergence of selectivity in the synaptic weights. Parameters: excita-
tory learning rate ⌘E = 10�3, inhibitory learning rate ⌘I = 10�4, target rate of inhibitory
plasticity ⇢0 = 10�2.
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Figure 2: Receptive field formation with specific inhibition. A) Network diagram. A single
postsynaptic neuron receives synaptic input from 10 excitatory populations (colored circles,
not all 10 shown) and 10 inhibitory populations (colored stars). Each excitatory population
has a di↵erent time-varying firing rate that is shared with a corresponding inhibitory pop-
ulation. B) Temporal evolution of excitatory (positive) and inhibitory (negative) synaptic
weights. C) Synaptic weights before (top) and after learning (bottom). D) Illustration
(for two excitatory weights only) of the mechanism that abolishes the selectivity in the
synaptic weights. Because inhibitory plasticity equalizes the postsynaptic responses to all
stimuli, the Hebbian excitatory rule increases all excitatory weights by the same amount
(grey arrows, blue arrow: an example for such a Hebbian weight update). These changes
are partly counteracted by the normalization that rescales the weight vector to unit length
(grey arc, red arrow: example for normalization update), leading to an e↵ective weight
change that follows the black arrows along the constraint line. The joint dynamics drive
all weights to the homogeneous fixed point (black circle).
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Figure 3: E↵ects of relative excitatory and inhibitory learning rate. A, D & G) Temporal
evolution of excitatory (positive) and inhibitory (negative) synaptic weights, for low (A),
intermediate (D) and high (G) ratio ⌘E/⌘I of the excitatory inhibitory learning rates (⌘I
is fixed and ⌘E varies). B, E & H) Synaptic weights after learning (time indicated by star
above A, E & G). C, F & I) Dynamics of the excitatory (horizontal axis) vs. inhibitory
(vertical axis) synaptic weights for a selected input signal. For rapid inhibition, the in-
hibitory weights track their excitatory counterpart, all points are close to the diagonal. As
the learning rate increases, increases in excitation trigger delayed increases in inhibition
that restore the E/I balance and cause the excitatory weights to decay again. This causes
a cyclic excursions in the excitatory-inhibitory weight plane, with increasing amplitude as
the ratio ⌘E/⌘I of excitatory and inhibitory learning rate increases. J) Dependence of the
stability, balance and emergence indices of the weight configuration on the ratio ⌘E/⌘I of
excitatory and inhibitory learning rates.
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Figure 4: Broader inhibitory than excitatory tuning supports receptive field formation. A)
Network diagram. A single postsynaptic neuron receives synaptic inputs from excitatory
(circles) and inhibitory (stars) populations. Each input population fires according to a
weighted superposition of the input signals, with weights that follow a Gaussian distribu-
tion. E↵ectively, this introduces a Gaussian tuning of the input populations as a function
of input signal. The tuning width of the excitatory inputs was kept constant (�E = 1),
while the tuning width of the inhibitory inputs was systematically varied (B,C: �I = 1;
E,F: �I = 4; H, I: �I = 100). B, E & H) Temporal evolution of excitatory (positive) and
inhibitory (negative) synaptic weights. C, F & I) Synaptic currents after learning (excita-
tion: open circles, inhibition: filled circles, net current: open squares). J) Dependence of
stability, balance and emergence indices on the relative tuning width �E/�I of excitation
and inhibition. K) Dependence of stability on the relative learning rates of excitation and
inhibition for di↵erent inhibitory tuning widths �I .
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Figure 5: Co-tuned receptive fields for subtractive normalization and biased inputs. A)
Temporal evolution of excitatory (positive) and inhibitory (negative) synaptic weights. B)
Synaptic weights after learning. C) Illustration (for two excitatory weights only) of the
mechanism that governs the dynamics in the synaptic weights. As in Figure 3, the excita-
tory rule aims to increase all excitatory weights by the same amount (C, grey arrows and
blue arrow). On average, these changes are now exactly counteracted by the subtractive
normalization that reduces all weights by the same amount (red arrow). As a result, the
whole constraint line is marginally stable (black line), and the weight dynamics are dom-
inated by fluctuations. D, E) Dependence of stability, balance and emergence indices on
the relative learning rate ⌘E/⌘I (D) and the relative tuning width �E/�I (E) of excitation
and inhibition. F-J) same as A-E, but the activity of input signal 5 is increased by 10%.
H) The excitatory learning rule now causes more potentiation for the weights of one pop-
ulation (grey arrows, blue arrow for an example of a Hebbian weight update), which in
combination with the subtractive normalization (red arrow) leads to a full specialization of
the neuron for input population 5 (black circle). This strong specialization is not present
for a multiplicative normalization (Fig. 5 - Supplement 1)
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Figure 5 - Supplement 1: Asymmetries in presynaptic firing rates have gradual e↵ects for
multiplicative normalization. A) Network diagram. A single postsynaptic neuron receives
synaptic input from 10 excitatory populations (colored circles, not all 10 shown) with
di↵erent time-varying firing rates (signals, colored traces) and input from 10 corresponding
inhibitory populations with the same rates. The average activity for signal 5 was increased
by 10% compared to the other signals. B) Temporal evolution of excitatory (positive) and
inhibitory (negative) synaptic weights. C) Synaptic weights before (top) and after learning
(bottom). Stars indicate corresponding times in B. After learning, the synaptic weight
for input signal 5 is only mildly higher than those of the other signals. D) Illustration of
the mechanism that causes the gradual dependence on the mean presynaptic firing rate.
Parameters as in Figure 5, apart from normalization.

Frequency (kHz)Frequency (kHz)Frequency (kHz)Frequency (kHz)

Frequency (kHz)

N
or

m
al

iz
ed

 c
ur

re
nt

C
ur

re
nt

0.5 1 2 4 8 16 32

Exc..
Inh.

B

C

0 2 4 680.5 1 2 4 8 16 320.5 1 2 4 8 16 320.5 1 2 4 8 16 32
0.0

0.5

1.0

1.5

0 -
50

50
100
150

A

D
-60

-20

-40

0.5 1 2 4 8 16 32

--

# ACh

JIHGFE

.........................

0.5 1 2 4 8 16 32
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 c
ur

re
nt

Frequency (kHz)

Exc.
Inh.

Exc.
Inh.

Be
st

 F
re

q.
 S

hi
ft 

(%
)

Time (hrs)

signal no.
10987654321

signal no.
10987654321

signal no.
10987654321

signal no.
10987654321

signal no.
10987654321

signal no.
10987654321

0.0

-1.0

1.0

N
or

m
al

iz
ed

 c
ur

re
nt

Exc..
Inh.

0.5 1 2 4 8 16 32
Frequency (kHz)

0.5 1 2 4 8 16 32
Frequency (kHz)

0.5 1 2 4 8 16 32
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 c
ur

re
nt

Frequency (kHz)

37

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 29, 2016. ; https://doi.org/10.1101/066589doi: bioRxiv preprint 

https://doi.org/10.1101/066589
http://creativecommons.org/licenses/by-nd/4.0/


Figure 6: Interacting excitatory and inhibitory synaptic plasticity reproduce receptive
field plasticity. A-D) Electrophysiological data from rat primary auditory cortex (A1). A)
Co-tuning of excitatory and inhibitory receptive fields in A1 increases during development.
Imbalanced synaptic frequency tuning at P14 (left), balanced frequency tuning in adult
rats (right). Filled circles, excitation; open circles, inhibition. B) In adults, receptive fields
are robust to pure tone stimulation alone. Normalized frequency tuning of excitation and
inhibition before stimulation (left) and after stimulation (right). C) Excitatory receptive
field plasticity induced by paired pure tone and nucleus basalis stimulation. Tuning curves
before (left) and after paired stimulation (middle). Inhibitory receptive fields shift to
rebalance excitation within hours (right). D) Duration of synaptic frequency tuning modi-
fications induced by a single episode of nucleus basalis pairing. Left, normalized frequency
tuning curves for an A1 neuron recorded 125 minutes after pairing. Middle, a di↵erent cell
from same A1 region recorded 295 minutes after pairing. Right, time course for normalized
shift in excitatory tuning curve peak. 0% represents the original best frequency for a given
A1 location; 100% is a full shift to the paired frequency. Data from 52 recordings in 24 an-
imals.Time is relative to the end of pairing. Error bars show s.e.m.. Data with permission
from Dorrn et al. (2010) (A), Froemke et al. (2007) (B, C) and Martins & Froemke (2015)
(D). E-J) Computational model. E) Synaptic weights are initialized to a weak excitatory
and inhibitory stimulus tuning. Stimulus channel 8 (preferred channel - open triangle)
is 10% stronger than the other channels. F) Sensory stimulation causes an emergence of
co-tuned and bell-shaped excitatory and inhibitory tuning curves at the preferred channel
no 8. G) In the balanced configuration, pure tone stimulation (at stimulus channel no 5)
causes only minor changes of excitatory and inhibitory tuning curves. H) Pairing pure
tone stimulation with disinhibition shifts the maximum of the excitatory tuning curve to
the frequency of the pure tone (training channel no 5 - full triangle). Inhibitory tuning
remains largely unchanged. I) Inhibitory synaptic plasticity triggered by sensory experi-
ence shifts the inhibitory tuning to rebalance excitation (peak at training channel no 5).
J) Extended sensory experience shifts both excitatory and inhibitory receptive fields back
to their original preferred channel (#8).
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1 Derivation of effective learning rules

In the case where the inhibitory learning rate is much higher than the excitatory learning rate, ⌘I � ⌘E , the
excitatory learning rule can be replaced by an effective learning rule that incorporates the effects of plastic inhi-
bition. To derive such effective learning rules, we consider two cases: the case of specific inhibition and the case
of unspecific inhibition.

Unspecific inhibition

For unspecific inhibition, we assume that all inhibitory inputs have the same, albeit potentially time-varying firing
rate, so that we can reduce the problem to one single inhibitory input with firing rate I . We study two cases: In the
first, the inhibitory input firing rate is constant (I(t) = I = const.), in the second, it is given by the population
activity of the excitatory inputs (I(t) =

P
i Ei(t)). The former case corresponds to uncorrelated tonic inhibition,

the latter to pooled feedforward inhibition.
For uncorrelated tonic inhibition, we can insert the expression for the postsynaptic firing rate R(t) into the Heb-
bian learning rule to obtain the effective excitatory learning rule stated in the main text:

@tW
E
i = ⌘EEi(t)

2

4
X

j

WE
j WE

j Ej(t)�W II

3

5

+

(1)

= ⌘EEi(t) [RE(t)� ✓]+ , (2)

where RE(t) =
P

j W
E
j Ej(t) is the total excitatory input to the cell and ✓ = W II the inhibitory input. Struc-

turally, this rule is similar to a BCM rule with ✓ acting as a threshold. To show that the threshold is sliding, we
only need to consider the inhibitory learning rule, multiplied with the inhibitory input rate I:

@t✓ = I@tW
I (3)

= ⌘II
2
�
[RE(t)� ✓]+ � ⇢0

�
. (4)

For sufficiently small learning rates (such that we can consider the time-averaged version of the learning dynam-
ics), the stable fixed point of this equation is given by the implicit condition

h[RE(t)� ✓]+it = ⇢0 , (5)

where h·it denotes temporal averaging. The speed at which the threshold converges to this fixed point is mainly
determined by ⌘II

2, i.e., by the inhibitory learning rate and the firing rate of the inhibitory inputs.
The case where the inhibitory firing rate I(t) is given by the mean activity Ē(t) = N�1

P
i Ei(t) of the excitatory

rates ~E creates a slightly different situation, because the inhibitory input depends on the excitatory input and hence
varies in time. The stationary state for the inhibitory weight W I (again assuming sufficiently small learning rates)
is determined by the equation

0 = N�1

* 
X

i

Ei(t)

!0

@

2

4
X

j

WE
j Ej(t)�W IN�1

X

j

Ej(t)

3

5

+

� ⇢0

1

A
+

t

. (6)
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To find an analytical solution that can be understood intuitively, we neglect the output rectification in the learning
dynamics of the inhibition (admittedly a rather questionable approximation), and rewrite equation 6 in vector
notation using the covariance matrix CE = h ~E ~ET it of the excitatory inputs and the homogeneous weight vec-
tor ~W 0 := N�1(1, 1, 1, 1, ...)T :

0 = ~W 0TCE
~WE �W IhĒ(t)2it � ⇢0hĒ(t)it . (7)

If we assume that the statistics of the excitatory inputs are symmetric in the sense that the homogeneous vector ~W 0

is an eigenvector of the excitatory covariance matrix CE , we can calculate an explicit expression for the stationary
inhibitory weight:

W I =
X

i

WE
i +

hĒi⇢0
hĒ2i

. (8)

If we insert the resulting output firing rate

y(t) =

2

4
X

i

0

@WE
i �N�1

X

j

WE
j

1

AEi(t) + ⇢0
hĒiĒ(t)

hĒ2i

3

5

+

. (9)

into the excitatory learning rule, we also get a Hebbian rule with a “sliding threshold”, but the threshold is not
given by the temporal average of the excitatory drive, but by the momentary excitatory drive that would be caused
by a homogeneous weight vector of the same total synaptic weight. From this perspective, this rule generates a
spatial competition between synapses, while the case of tonic inhibition generates a temporal competition between
stimuli. Both lead to the formation of a receptive field, as shown in Fig. 1 of the main text and the associated
Supplement 1.
The validity of the effective learning rule resulting from Equation 9 is questionable, because the derivation first
neglects the output rectification of the neuron and later reintroduces it, but it nevertheless provides an intuition
for the mechanism behind the symmetry breaking observed in the simulations.

Specific inhibition

By specific inhibition we mean that the inhibitory inputs contain a sufficient stimulus selectivity that a bal-
ance of excitatory and inhibitory inputs can be reached on a moment-by-moment basis, for arbitrary excitatory
weights WE . To ensure this, it is sufficient and necessary in the present linear picture that all excitatory inputs
can be written as a linear combination of the inhibitory inputs, i.e., that there is a matrix M such that

~E(t) = M ~I(t) . (10)

The stationarity condition for the inhibitory weights is

h~I(t)(R(t)� ⇢0)it = 0 (11)

) hM ~I(t)(R(t)� ⇢0)it = 0 (12)

, h ~E(t)R(t)it = h ~Eit⇢0 , (13)

which can be directly inserted into the averaged weight dynamics of the excitatory weights:

@t ~W
E = ⌘Eh ~E(t)R(t)it (14)

= ⌘Eh ~E(t)it⇢0 . (15)

By taking the online version of this learning rule and reverting back to index notation, we get the the effective
learning rule that was intuitively motivated in the main text:

h@tWE
i it = ⌘EEi(t)⇢0 . (16)
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2 Mathematical analysis of the learning dynamics for specific inhibition

To study the properties of the fixed points of the full system of excitatory and inhibitory plasticity, we need to
take the effects of the normalization into account. As shown by Miller and MacKay (1994), both a multiplicative
and an subtractive normalization can be included in a dynamical system by an additional normalization-specific
term in the excitatory learning rule:

@WE
i = ⌘E

⇣
Ei(t)y(t) +Ni( ~W

E , ~W I)
⌘

(17)

with Ni( ~WE , ~W I) = �⇣( ~WE , ~W I) independent of i for the subtractive normalization and
Ni( ~WE) = ��( ~WE , ~W I)WE

i for the multiplicative normalization. Here, � is a scalar function of the excitatory
weight vector that is independent of i. The specific shape of the functions ⇣ and � controls the shape of the
constraint manifold.

Fixed points

To find the fixed points of the coupled learning rules for excitation and inhibition, we can first find the fixed points
of the inhibitory learning rule and insert it into the excitatory rule. In the case where the inhibition is specific, the
calculation of the fixed points of the excitatory weights thus amounts to finding the fixed points of the effective
learning rule Eq. 15, enriched by the additional constraint terms. For an subtractive normalization, this leads to
the fixed point equation:

hEiit⇢0 � ⇣( ~WE , ~W I) = 0 (18)

⇣( ~WE , ~W I) = hEiit⇢0 . (19)

If the input statistics are the same, i.e. all hEiit have the same value, this reduces to a single equation, suggest-
ing that any point on the constraint manifold for the excitatory weights is a fixed point. This is in line with the
diffusive dynamics observed in the simulations. If the statistics are not the same, this equation has no solution,
suggesting that the fixed point(s) will lie at the border of the constraint manifold. Small differences in the mean
input firing rates thus have a drastic effect, as observed in the simulations in Fig. 5 of the main text.

For a multiplicative normalization, the fixed point equation has the following form

hEii⇢0 � �( ~WE , ~W I)WE
i = 0 (20)

) WE
i = hEii , (21)

where  is a constant that has to be chosen such that the normalization requirement is fulfilled. If the mean firing
rate hEii is the same for all input neurons, the only fixed point is the homogenous solution in which all excitatory
synapses have the same strength, in agreement with the simulation results. Moreover, small differences in the
mean firing rate of the excitatory inputs lead to gradual changes of the fixed point, in contrast to the drastic impact
they have for an subtractive normalization (main text Fig. 5 - Supplement 1).

Jacobian at the fixed points

To evaluate the stability of the fixed points, we have to calculate the Jacobian of the learning dynamics. For
specific inhibition (i.e., ~E = M ~I) and sufficiently small ⇢0, the Jacobian is given by

J =

✓
⌘EMCIM

T �⌘EMCI

⌘ICIM
T �⌘ICI

◆

| {z }
J1

+

✓
⌘E

@N
@WE ⌘E

@N
@W I ,

0 0

◆

| {z }
J2

. (22)

where CI := h~I~IT it denotes the matrix of the second moments of the inhibitory inputs ~I and @N
@WE/I denotes

the two matrices that contain the partial derivatives of the constraint term Ni with respect to the excitatory and
inhibitory weights WE/I

j , respectively. The first term J1 arises from the learning rules, the second term J2 from
the normalization. For mathematical simplicity, we assume in the following that M is the identity matrix, i.e., that
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the excitatory and the inhibitory inputs are identical, although we suspect that a generalization of the derivation
is straightforward. Moreover, we assume that the inputs are symmetrical in the sense that the normalised uniform
vector ~v1 = (1, 1, ..., 1)/

p
N is an eigenvector of the input covariance matrix C and that the mean firing rates hEii

of all inputs are identical. Let O denote the orthogonal matrix with the eigenvectors of C and ⇤ the diagonal
matrix with the eigenvalues, respectively: C = O⇤OT .
Under these assumptions, the linearized dynamics ~WE/I = ~WE/I,0 + � ~WE/I around the fixed point ~WE/I,0

decouple almost completely when the small perturbations � ~WE/I are written as a linear combination of the
eigenvectors of C:

� ~WE = O~↵E (23)

� ~W I = O~↵I (24)

The resulting dynamical equations for the coefficient vectors ~↵E/I are given by

@t

✓
~↵E

~↵I

◆
=

✓
⌘E⇤ �⌘E⇤
⌘I⇤ �⌘I⇤

◆✓
~↵E

~↵I

◆
+

✓
⌘EÑ

E ⌘EÑ
I

0 0

◆✓
~↵E

~↵I

◆
, (25)

where the matrices ÑE/I are given by ÑE/I := O @N
@WE/I O

T . These matrices have a special structure for
subtractive and multiplicative normalization. For subtractive normalization, the derivatives of the normalization
term with respect to the weights is given by

@Ni

@W
E/I
j

= � @⇣

@W
E/I
j

. (26)

Because this term is independent of i, the product of this matrix with any vector can only generate vectors that
have equal entries in all components, i.e., vectors that are proportional to ~v1. Therefore, the matrices ÑE/I can
only have non-vanishing entries in their first row.
For multiplicative normalization, the derivative of the normalization term with the respect to the weights is given
by

@Ni

@WE
j

= ��ij +WE
i

@�

@WE
j

(27)

@Ni

@W I
j

= WE
i

@�

@W I
j

, (28)

which needs to be evaluated at the fixed point ~WE,0 = h ~Ei / ~v1 (Equation 21). If we assume that the
normalization is symmetric with respect to the components of ~WE , the derivative @�

@WE/I
j

is independent of j at

the homogeneous fixed point. As a consequence, the derivative matrices @Ni

@WE/I
j

have the same eigenvectors as C

and can therefore be diagonalized in the same basis:

Ñ
E/I
ij = n

E/I
i �ij , (29)

with

nE
i =

(
�� �

P
j

@�

@WE/I
j

|| ~WE,0||p
N

for i = 1

�� otherwise .
(30)

nI
i =

(
�
P

j
@�

@WE/I
j

|| ~WE,0||p
N

for i = 1

0 otherwise .
(31)
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Stability analysis

Given the Jacobian of the learning dynamics, we can now evaluate its eigenvalues and study the stability of the
fixed points. The main advantage of changing into the eigenbasis of the covariance matrix CI is that the Jacobian
is almost diagonal in the sense that the only components of the excitatory and the inhibitory weights that couple
belong to the same eigenvector. The only component that would have to be treated separately is the homogeneous
component ↵E/I

1 . We neglect this component, however, because it is of limited interest in the context of symme-
try breaking.

Subtractive normalization. We study the dynamics of the inhomogeneous components ↵E/I
i with i > 1, which

couple only to the corresponding excitatory and inhibitory counterpart:

@t

✓
↵E
i

↵I
i

◆
= �i

✓
⌘E �⌘E
⌘I �⌘I

◆✓
↵E
i

↵I
i

◆
, (32)

where �i denote the eigenvalues of the input covariance matrix C. The eigenvalues of this system are given
by 0 (for the “balanced” eigenvector (1, 1)) and the difference between the learning rates �i(⌘E � ⌘I) (for an
unbalanced eigenvector). The vanishing eigenvalue is not surprising given that the whole constraint manifold is
a solution. The other eigenvalue suggests that whether a balance of excitation and inhibition is reached in finite
time depends on the relation of the excitatory and inhibitory learning rates. For faster inhibitory learning, any un-
balance will die out and give way to diffusive dynamics. For faster excitatory learning, all points on the constraint
manifold are unstable, so that any small disruption of the E/I balance in the weights will diverge. This is only
stopped by the fact that weights cannot become negative, so that the dynamics should spend most of its time in
states where one excitatory weight is saturated. This state can lose stability again, however, when the inhibition
had time to rebalance the excitatory weights. This is confirmed by the simulations.

Multiplicative normalization. The dynamics of the inhomogeneous components in the case of the multiplicative
normalization, again for i > 1, are given by

@t

✓
↵E
i

↵I
i

◆
= �i⌘I

✓
⌘E/⌘I(1� �/�i) �⌘E/⌘I

1 �1

◆✓
↵E
i

↵I
i

◆
. (33)

The parameters that control the stability of the fixed point are the dimensionless (and positive) ratios gi := �/�i

and ⌘̃ := ⌘E/⌘I . The eigenvalues �̃i of the system can be written as a function of gi and ⌘̃:

�̃i =
⌘̃(1� gi)� 1

2
±

s✓
⌘̃(1� gi)� 1

2

◆2

� ⌘̃gi . (34)

For small ⌘̃ ⌧ 1, i.e., for small excitatory learning rates, the homogeneous fixed point is therefore stable. As the
excitatory learning rate is increased, the eigenvalues become imaginary, until the fixed point loses stability via a
Hopf bifurcation at ⌘̃ = 1/(1 � gi). This analysis is in line with the simulations, which show the emergence of
an oscillation with increasing excitatory learning rate.
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