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Abstract: Apicomplexan actin is well conserved and clearly important during the parasite's life 

cycle. Several studies assert that its polymerization kinetics are unusual, permitting only short, 

unstable F-actin filaments. However, it has not been possible to study actin in vivo, so its 

physiological role has remained obscure. This has led to functional models which are mutually 

conflicting, incompatible with actin behavior from other eukaryotes, and cannot explain actin's 

importance during basic processes such as parasite replication and egress. Here we use a 

chromobody that specifically binds F-actin to demonstrate that Toxoplasma forms stable actin 

filaments in vivo. F-actin is not only important for parasite replication, but also forms an 

extensive network that connects individuals both within and between parasitophorous vacuoles, 

and allows vesicles to be exchanged between parasites within a vacuole. During host cell egress, 

prior to motility, this network collapses in a calcium-dependent manner. This study demonstrates 

unexpected roles of Toxoplasma actin during the asexual life cycle, and proves that formation of 

F-actin depends on a critical concentration of G-actin, implying a polymerization mechanism 

similar to mammalian actin. 

One Sentence Summary: Toxoplasma establishes a stable F-actin network that is essential for 

replication and material transport between individual parasites. 
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Main Text: For the past 20 years, biochemical assays using heterologously expressed 

apicomplexan actin have implied that it only forms very short filments that are intrinsically 

unstable (1-3). Furthermore, it is believed that it polymerizes in a highly unusual, isodesmic 

manner (4) and it has been suggested that this represents an important adaptation to provide the 

force for apicomplexan motility. While recent studies also implicate parasite actin in other 

essential functions, such as maintenance of the apicoplast, a plastid-like organelle (5, 6), 

daughter cell replication (7) or motility of secretory organelles (8), these functions would predict 

the polymerization of longer filaments. However, to date, it has not been possible to study actin 

in vivo and in real-time in order to correlate its assumed functions with the localization and 

dynamics of F-actin.  

Here we expressed different F-actin binding proteins fused to fluorescent reporters and found 

that expression of actin chromobodies (9, 10), which consist of camelid nanobodies (11) fused C-

terminally to a Halo tag (Cb-Halo)  (12), (13), is tolerated well by the parasite and can be stably 

expressed without causing phenotypic abnormalities (Fig.S1). No differences could be observed 

in replication, egress or host cell invasion for parasites expressing Cb-Halo while gliding motility 

rates were slightly enhanced (Fig.S1), suggesting that expression of actin Cb-Halo has no 

significant effects on actin dynamics in the parasite.  

We next localized Cb-Halo using a cell permeable halo ligand coupled to TMR both in live and 

fixed parasites. Surprisingly, individual daughter parasites remain connected at the posterior pole 

via actin filaments throughout intracellular development (Fig.1, Movie S11). With the increasing 

size of the parasitophorous vacuole (PV) these connections expand, resulting in the formation of 

an extensive network within the PV, which appears to originate from parasites localized closer to 

the center and extends to the surface of the PV (Fig.1A,B,3C, Movie S1). Incubation of wild-

type parasites with antibodies preferentially binding to F-actin (14) revealed a similar 

organisation, though the network was only partially stained with this antibody (Fig. 1A, Fig.S2, 

Movie S2). We verified co-localization of Cb-Halo with alpha-actin in jasplakinolide (Jas) 

stabilized filaments (Fig.S2). Furthermore, incubation of parasites with the actin filament 

disrupting compound  cytochalasin D (CD) resulted in a complete collapse of this network (Fig. 

1A, Fig.S3 Movie S3), whereas stabilization of F-actin using Jas caused the formation of a 

thicker, more elaborate filamentous network (Fig.1A, Fig.S2, Movie S4). Upon addition of Jas, 

the cytosolic stain completely disappears and F-actin can be exclusively detected at the apical 
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and polar ends of the parasite (Fig.S2). To investigate the specificity of Cb-Halo for parasite 

actin, we performed immunoblots under native conditions using lysates obtained from 

extracellular parasites. We find that Cb-Halo binds to approximately 5% of total actin (Fig.S2). 

Together these data confirm previous reports suggesting that 98% of actin is in its globular form 

in extracellular parasites (1).  

Importantly, when we analyzed the localization of Cb-Halo in a conditional null mutant for act1 

(act1 cKO) (5), we found that as early as 24 hours after removal of act1, the filaments collapsed, 

similar to the effect observed with CD treatment, suggesting that at this time point G-actin is 

below the critical concentration required for formation of F-actin, strongly arguing against an 

isodesmic polymerization process (4). In good agreement, at later time points, a filamentous 

network was not observed in act1 cKO parasites (Fig.1B). 

Surprisingly, we also detected very long (>50 μm) extensions that connect two independent 

vacuoles (Fig.1C). Examination of these long, extra-vacuolar filamentous connections shows that 

they were formed of an F-actin core surrounded by dense granule proteins, such as Gra2 and/or 

Gra7 (Fig.1D, Fig.S2). Intriguingly, we observed also connections devoid of F-actin, suggesting 

a dynamic behavior of F-actin during parasite development where it is possible that F-actin 

depolymerizes once connections are formed (Fig.1D, Fig.3C).  

To investigate the presence of F-actin within this network, we performed correlative light-

electron microscopy (CLEM). The network within a vacuole was imaged with super-resolution 

microscopy (3D-SIM) (Fig. 1E). Thin sections of the same network were imaged with 

transmission electron microscopy (squares). Within the network tubules, ~5 nm thick filaments 

(arrows) extending over 100 nm in length were observed (highlighted in magenta).  

Together these data demonstrate that parasite actin forms stable F-actin filaments during 

intracellular development of the parasite and that – as is the case in mammalians and plants - 

actin polymerization depends on a critical concentration of available G-actin. 

Next, we were interested in the stability and behavior of the F-actin network in live parasites. 

Using time-lapse analysis during parasite replication, we found that the filamentous network is 

dynamic and the length of filaments appears to depend on the cell cycle (Fig.2A, Movie S5). 

During replication of parasites, the network appears to collapse, adopting a ‘ring-like’ 

appearance (asterisks) before reforming and extending throughout the PV. However, when 

fluorescence recovery after photobleaching (FRAP) was used to estimate the turnaround time of 
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G-actin within individual tubules, we were unable to detect any fluorescent recovery in 

established tubules, even after prolonged o servation (longest time scale   120s), suggesting that 

once F-actin structures are formed, they must depolymerize completely before new actin is 

incorporated (Fig.2B,C). 

These data suggest that actin turnover within the filamentous structures is slow in the absence of 

any cell-signaling that may trigger specific parasite events. We speculate that the observed 

dynamic behavior is exclusively caused by active extension and retraction of filaments at the 

posterior pole of the parasite. It remains to be seen if the tubular structures contain long actin 

filaments or, as might be assumed due to the reported properties of apicomplexan actin, short F-

actin bundles that are connected via actin binding proteins.  

Conditional deletion of act1 is surprisingly well tolerated by T. gondii (5) and previous studies 

on parasite actin suggested only a minor role of actin during parasite division (15). However, 

closer examination of individual parasites within the PV revealed that while wild-type parasites 

form a conventional rosette, act1 cKO parasites are not well organised, with erratic appearance. 

Actin filaments connect parasites at their posterior pole whereas no obvious connections between 

individual parasites were observed in the act1 cKO (Fig.1B, 3A). Furthermore, a residual body 

could not be observed upon depletion of act1 and parasites appeared to have aberrant 

morphology at the posterior pole, which appears in general flattened (Fig.3B). 

To analyze the role of F-actin during intracellular replication in detail, we performed localization 

analysis of Cb-Halo in parasites co-expressing endogenously tagged GAPM1a-YFP as marker 

protein for the inner membrane complex (16) (Fig.3C, Movie S5). During early stages of 

daughter cell formation, F-actin was found primarily at the posterior end of the parasite (Fig.3C), 

later F-actin accumulates at the nascent IMC of the daughter cells (Fig.3C, arrowhead) and 

further concentrates at the posterior end of the mother cell, where it colocalizes with the mother 

IMC (Fig.3C, arrow). Finally, towards the end of replication, the IMC of the mother collapses 

and individual GAPM1a-YFP positive vesicles are formed that localize with F-actin and are 

transported towards the daughter cells IMC. This suggests an important role of F-actin in 

recycling of mother cell IMC and the final assembly of the daughter cell IMC. Together with the 

phenotypic defects, this analysis demonstrates a function of parasite F-actin during formation of 

the IMC of daughter cells. 
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During this analysis we also identified events where F-actin connections are formed between 

PVs (Fig.3D). These connections are formed in a highly dynamic manner. Cb-Halo stained 

filaments were observed to rapidly extrude from one PV and remain in contact with a 

neighboring PV for a few minutes before retracting (Fig.3D, Movie S6). 

Together these observations suggest an exciting hypothesis that individual parasites both within 

and between vacuoles may exchange material during intracellular development along these 

filamentous structures. 

To test this hypothesis in more detail, we analyzed if intra-parasite material is indeed transported 

along the identified filaments. Time-lapse analysis of both the integral membrane protein 

GAPM1a-YFP and cytosolic GFP was performed in wt parasites (Fig.S3) and in both cases 

vesicles could be identified that moved outside parasites (Fig.S3, Movie S7). Digital tracking of 

vesicles correlated well with actin filaments described above (Fig.S3). By expressing Cb-Halo in 

these lines, we were able to show that these vesicles were closely associated with F-actin both in 

fixed (Fig.4A) and live cells (Fig. 4C,D). Importantly, movement of extracellular vesicles was F-

actin dependent; incubation of parasites with CD significantly abrogated extracellular vesicular 

motility (Fig.4B). No motility could be observed in act1 cKO parasites.  

Finally we tested how the organization of the F-actin network changes during parasite egress, 

especially as act1 cKO parasites are completely blocked in egress, while gliding motility and 

host cell invasion can still be observed in the absence of detectable F-actin (5). When we 

triggered a calcium signaling cascade using Ca
2+

-Ionophore (17), the F-actin network 

immediately collapsed. This collapse is rapid and can occur as quickly as 10 seconds after the 

addition of Ca
2+

-Ionophore even if the parasites do not egress from the cell (Fig.5A, Movie S8). 

Collapse of the network is followed quickly by the initiation of motility and egress from the host 

cell (Fig.5B, S. Movie S9).  As the parasites begin to move, F-actin can be detected at the rear of 

the parasites.  Importantly, this indicates that collapse of the network is required for egress and 

suggests a role in signaling prior to escape.  

In summary, we detect for the first time actin filamentous structures in apicomplexan parasites 

and demonstrate that Toxoplasma actin has essential and previously unforeseen roles during the 

intracellular development of the parasite (Fig. 6). Actin serves several functions: from 

segregation of the apicoplast; recycling of organellar material from the mother to the daughter 

cells, and is potentially required for structural stability of the vacuole and intracellular 
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communication between individual parasites within the same or independent PV. In order to 

function, we show here that parasite actin is capable of forming stable actin filaments and that, 

(at least) in vivo, this polymerization depends on a critical concentration of G-actin. This first 

demonstration of the presence and functions of stable, filamentous actin in Toxoplasma offers 

new insights into the biology of apicomplexan parasites.  
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Figure Legends 

Fig. 1. Filamentous actin can be visualized by expression of Cb-Halo. A) 3D imaging of 

parasites transfected with Cb-Halo and stained using a specific apicomplexan actin antibody 

(14). An actin filament network can be observed using Cb-Halo with only partial colocalization 

of Cb-Halo and actin antibody in filaments connecting parasites. Upon treatment with 2 M CD, 

the filamentous network collapses and colocalization of Cb-Halo and actin antibody in regions of 

collapsed filaments is observed. Upon treatment with 100 nM Jas for 1 h, a more elaborate 

network can be seen with enhanced co-localization between the antibody and Cb-Halo. Scale bar 

2 m . B) Expression of Cb-Halo in a conditional act1 cKO.  A filamentous network is observed 

prior to excision of act1 in loxPAct1. As soon as 24 hours after excision of act1 the network 

diminishes. No filaments are observed at later time points. C) Long connections between 

vacuoles can be observed, some extending for over 50 m. Scale bar 10 m D) The dense 

granule protein Gra7 is seen surrounding Cb-HALO connections. However some Gra7-positive 

tubules are seen in the absence of F-actin. Scale  ar 10 μm.  E) A vacuolar network was imaged 

with SIM super-resolution microscopy and the same areas were imaged with TEM. Filaments of 
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5 nm in thickness were present within the network tubules, extending over 100 nm in length. 

Scale bars: 200 nm (3D-SIM); 50 nm (TEM).  

 

 

Fig. 2. The F-actin network is dynamic during replication but individual filaments are 

stable. A) Analysis of Cb-Halo during two rounds of replication. Images were taken every 30 

mins for 20 h. The network appears dynamic across the intracellular lifecycle, collapsing into 

rings during daughter cell emergence (asterisks). Scale bar 5 μm. Time lapse imaging of a 

filament (B) and the residual body (C) before and after photobleaching (white arrow) show no 

recovery of average fluorescence intensity, indicating that actin filaments were stable during 

imaging. Plot shows average fluorescence intensity (red and green squares in B and green circle 

in C) before and after photobleaching, compared with untreated areas (blue and magenta squares 

in B and blue circle in C). FRAP treatment shows a dramatic decrease in fluorescence intensity 

in the bleached area with no recovery of fluorescence during the duration of the experiment (52 

and 122 s respectively), indicating the presence of stable actin filaments and a lack of significant 

turnover. Scale bar 2 µm.  

 

Fig. 3. Analysis of F-actin dynamics during replication A) Scanning EM of wild type, Cb-

HALO and act1 cKO parasites showing the filamentous network connecting parasites from the 

posterior end. act1 cKO parasites are disorganized within the vacuole and form no connections. 

B) Analysis of the IMC of the act1 cKO using IFA and scanning EM analysis in both intra- and 

extracellular parasites. Arrowhead shows the end of division of the act1 KO. act1 cKO parasites 

have a flattened bottom, torpedo shape.  Scale bars: fluorescence images: 10 µm, SEM: 2 µm.  

C) GAPM3-YFP expressing parasites transiently expressing Cb-Halo were imaged every 6 mins 

for 5 hours, F-actin can be seen initially connecting the basal end of the parasites before 

accumulating beneath the forming daughter cells where it appears to concentrate towards the rear 

of the new daughters during emergence and recycling of the maternal IMC. Scale  ar 5 μm. D) 

Another example of F-actin behaviour during replication using conditions as in (C). Note that in 

this example a F-actin connection is formed between two neigbouring PVs. The connection 

rapidly extrudes (arrow), remains in contact with the neighbouring PV for several minutes, 

before it retracts. 
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Fig. 4. Parasite-derived extracellular vesicles are transported in an F-actin dependent 

manner. A) In parasites endogenously expressing GAPM1a-YFP, extracellular vesicles could be 

observed in close apposition to Cb-HALO labeled filaments (arrow). B) The number of vesicles 

per vacuole that moved within 5 min of imaging were quantified in the presence and absence of 

500 nM CD. At least 60 vacuoles were counted over three independent experiments. **** P < 

0.0001. Parasites transiently expressing Cb-HALO were imaged every second for up to 5 mins. 

Extracellular vesicles positive for GAPM1a-YFP (C) and GFP (D) were observed to move along 

F-actin filaments (arrows). Scale bar, 1 μm.  

 

Fig. 5. Collapse of the F-actin network can be triggered by calcium ionophore. A) A 

flattened Z-stack of the dynamics of F-actin after addition of Ca
2+

, images taken every second.  

Filaments break up in a calcium dependant manner even if the parasites do not egress. B) The 

network collapses before parasites begin to egress. While filaments quickly collapse, the residual 

 ody remains intact during egress.  Scale  ar, 10 μm. 

 

Fig. 6. Representation of actin dynamics during replication. 1) After successful invasion, 

tachyzoites establishe a parasitophorous vacuole and start replication. 2) During daughter cells 

formation, actin labelling is observed at the developing IMC of the daughter cells and at the 

basal pole of the mother cell. 3) Once the daughter cells are fully formed, the actin signal 

strongly colocalises with the mother IMC, as it is recycled. 4-5) Replication continues an an 

extensive filamentous network is established between individual tachyzoites. 6) After treatment 

with a Ca
2+

 ionophore, filaments between parasites are desolved. The network collapses and dots 

of actin are detected at the posterior end of tachyzoites. 7) Tachyzoites egress from the vacuole 

leaving behing an actin accumulation in the residual body. 

 

Supplementary Materials: 

Materials and Methods 

Figures S1-S4 

Movies S1-S9 
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