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Abstract

In a constantly changing world, animals must account for environmental volatil-
ity when making decisions. To appropriately discount older, irrelevant information,
they need to learn the rate at which the environment changes. We develop an ideal
observer model capable of inferring the present state of the environment along with
its rate of change. Key to this computation is updating the posterior probability of all
possible changepoint counts. This computation can be challenging, as the number of
possibilities grows rapidly with time. However, we show how the computations can be
simplified in the continuum limit by a moment closure approximation. The resulting
low-dimensional system can be used to infer the environmental state and change rate
with accuracy comparable to the ideal observer. The approximate computations can
be performed by a neural network model via a rate-correlation based plasticity rule.
We thus show how optimal observers accumulates evidence in changing environments,
and map this computation to reduced models which perform inference using plausible
neural mechanisms.

1 Introduction

Animals continuously make decisions in order to find food, identify mates, and avoid
predators. However, the world is seldom static. Information that was critical yesterday
may be of little value now. Thus, when accumulating evidence to decide on a course
of action, animals weight new evidence more strongly than old (Pearson et al, 2011).
The rate at which the world changes determines the rate at which an individual should
discount previous information (Deneve, 2008; Veliz-Cuba et al, 2016). For instance,
when actively tracking prey, a predator may only use visual information obtained within
the last second (Olberg et al, 2000; Portugues and Engert, 2009), while social insect
colonies integrate evidence that can be hours to days old when deciding on a new home
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site (Franks et al, 2002). However, the timescale at which the environment changes is
unlikely to be known in advance. To make accurate decisions, animals must also learn
how rapidly their environment changes (Wilson et al, 2010).

Evidence accumulators are often used to model decision processes in static and
fluctuating environments (Smith and Ratcliff, 2004; Bogacz et al, 2006). These mod-
els show how noisy observations can be accumulated to provide a probability that one
among multiple alternatives is correct (Gold and Shadlen, 2007; Beck et al, 2008). They
explain a variety of behavioral data (Ratcliff and McKoon, 2008; Brunton et al, 2013),
and electrophysiological recordings suggest that neural activity can reflect the accumu-
lation of evidence (Huk and Shadlen, 2005; Kira et al, 2015). Since normative evidence
accumulation models determine the belief of an ideal observer, they also show the best
way to integrate noisy sensory measurements, and can tell us if and how animals fail to
use such information optimally (Bogacz et al, 2006; Beck et al, 2008).

Early decision-making models focused on decisions between two choices in a static
environment (Wald and Wolfowitz, 1948; Gold and Shadlen, 2007). Recent studies
have extended this work to more ecologically relevant situations, including multiple
alternatives (Churchland et al, 2008; Krajbich and Rangel, 2011), multidimensional
environments (Niv et al, 2015), and cases where the correct choice (McGuire et al,
2014; Glaze et al, 2015), or context (Shvartsman et al, 2015), changes in time. In
these cases, normative models are more difficult to derive and analyze (Wilson and Niv,
2011), and their dynamics are more complex. However, methods of sequential and
stochastic analysis are still useful in understanding their properties (Wilson et al, 2010;
Veliz-Cuba et al, 2016).

We examine the case of a changing environment where an optimal observer dis-
counts prior evidence at a rate determined by environmental volatility. Experiments
suggest that humans learn the rate of environmental fluctuations to make choices nearly
optimally (Glaze et al, 2015). During dynamic foraging experiments where the choice
with the highest reward changes in time, monkeys also appear to use an evidence dis-
counting strategy suited to the environmental change rate (Sugrue et al, 2004).

However, most previous models have assumed that the rate of change of the envi-
ronment is known ahead of time to the observer (Glaze et al, 2015; Veliz-Cuba et al,
2016). Wilson et al (2010) developed a model of an observer that infers the rate of envi-
ronmental change from observations. To do so, the observer computes a joint posterior
probability of the state of the environment, and the time since the last change in the
environment. With more measurements, such observers improve their estimates of the
change rate, and are therefore better able to predict the environmental state. Inference
of the changerate is most important when an observer makes fairly noisy measurements,
and cannot determine the current state from a single observation.

We extend previous accumulator models of decision making to the case of mul-
tiple, discrete choices with asymmetric, unknown transition rates between them. We
assume that the observer is primarily interested in the current state of the environment,
often referred to as the correct choice in decision-making models (Bogacz et al, 2006).
Therefore, we show how an ideal observer can use sensory evidence to infer the rates at
which the environment transitions between states, and simultaneously use these inferred
rates to discount old evidence and determine the present environmental state.

Related models have been studied before (Wilson et al, 2010; Adams and MacKay,
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2007). However, they relied on the assumption that after a change the new state does
not depend on the previous state. This excludes the possibility of a finite number of
states: For example, with two choices knowledge of the present state determines with
complete certainty the state after a change, and the two are thus not independent. In
the case of a finite number of choices our algorithm is simpler than previous ones. The
observer only needs to compute a joint probability of the environmental state and the
number of changepoints.

The storage needed to implement our algorithms grows rapidly with the number of
possible environmental states. However, we show that moment closure methods can
be used to decrease the needed storage considerably, albeit at the expense of accuracy
and the representation of higher order statistics. Nonetheless, when measurement noise
is not too large, these approximations can be used to estimate the most likely transi-
tion rate, and the current state of the environment. This motivates a physiologically
plausible neural implementation for the present computation: We show that a Hebbian
learning rule which shapes interactions between multiple neural populations represent-
ing the different choices, allows a network to integrate inputs nearly optimally. Our
work therefore links statistical principles for optimal inference with stochastic neural
rate models that can adapt to the environmental volatility to make near-optimal deci-
sions in a changing environment.

2 Optimal evidence accumulation for known transition rates

We start by revisiting the problem of inferring the current state of the environment from
a sequence of noisy observations. We assume that the number of states is finite, and the
state of the environment changes at times unknown to the observer. We first review the
case when the rate of these changes is known to the observer. In later sections we will
assume that these rates must also be learned. Following Veliz-Cuba et al (2016), we
derived a recursive equation for the likelihoods of the different states, and an approx-
imating stochastic differential equation (SDE). Similar derivations were presented for
decisions between two choices by Deneve (2008), and Glaze et al (2015).

An ideal observer decides between N choices, based on successive observations
at times tn (n = 1, 2, . . .). We denote each possible choice by H i, (i = 1, . . . , N),
with Hn being the correct choice at time tn. The transition rates εij , i 6= j, cor-
respond to the known probabilities that the state changes between two observations:
εij = P (Hn = H i|Hn−1 = Hj). The observer makes measurements, ξn, at times tn
with known conditional probability densities f i(ξ) = P (ξn = ξ|Hn = H i). Here, and
elsewhere, we assume that the observations are conditionally independent. We also
abuse notation slightly by using P(·) to denote a probability, or the value of a prob-
ability density function, depending on the argument. We use explicit notation for the
probability density function when there is a potential for confusion.

We denote by ξj:n the vector of observations (ξj, . . . , ξn), and by Pn( · ) the condi-
tional probability P( · |ξ1:n). To make a decision, the observer can compute the index
that maximizes the posterior probability, ı̂ = argmaxi Pn(Hn = H i). Therefore H ı̂ is
the most probable state, given the observations ξ1:n.

A recursive equation for the update of each of the probabilities Pn(Hn = H i) after
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the nth observation has the form (Veliz-Cuba et al, 2016)

Pn(Hn = H i) ∝ f i(ξn)
N∑
j=1

εijPn−1(Hn−1 = Hj) (i = 1, . . . , N). (1)

Thus, the transition rates, εij, provide the weights of the previous probabilities in the
update equation. Unless transition rates are large or observations very noisy, the proba-
bility Pn(Hn = H ı̂) grows, and can be used to identify the present environmental state.
However, with positive transition rates, the posterior probabilities tend to saturate at a
value below unity. Strong observational evidence that contradicts an observer’s current
belief can cause the observer to change their belief subsequently. Such contradictory
evidence typically arrives after a change in the environment.

Taking logarithms, xin := lnPn(Hn = H i), and assuming that evidence from each
observation, as well as the time between observations, ∆t := tn − tn−1, are small, we
can approximate the discrete process Eq. (1) with an SDE,

dx(t) = g(t)dt+ Λ(t)dWt + K(x(t))dt, (2)

where Ki(x) =
∑

j 6=i (ε
ijexj−xi − εji), and the drift, gi(t) = 1

∆t
Eξ [ln f i(ξ)|H(t)] , de-

pends on the state of the environment at time t, H(t) ∈ {H1, ..., HN}. The drift, gi(t),
is largest when the environment is in stateH i. The noise covariance, Λ(t)Λ(t)T = Σ(t),
has entries Σij = 1

∆t
Covξ [ln f i(ξ), ln f j(ξ)|H(t)], while Wt is a vector of independent

Wiener processes.
The nonlinear term, Ki(x), implies that in the absence of noise Eq. (2) has a sta-

ble fixed point, and older evidence is discounted. Such continuum models of evidence
accumulation are useful because they are amenable to the methods of stochastic analy-
sis (Bogacz et al, 2006). Linearization of the SDE provides insights into the system’s
local dynamics (Glaze et al, 2015; Veliz-Cuba et al, 2016), and can be used to imple-
ment the inference process in model neural networks (Bogacz et al, 2006; Veliz-Cuba
et al, 2016).

We next extend this approach to the case when the observer infers the transition
rates, εij, from measurements.

3 Environments with symmetric transition rates

We first derive the ideal observer model when the unknown transition rates are sym-
metric, εij ≡ constant when j 6= i, and εii := 1 − (N − 1)εij . This simplifies the
derivation, since the observer only needs to estimate a single changepoint count. The
general, asymmetric case discussed in Section 4 follows the same idea, but the deriva-
tion is more involved since the observer must estimate multiple counts.

Our problem differs from previous studies in two key ways (Adams and MacKay,
2007; Wilson et al, 2010): We assume the observer tries to identify the most likely
state of the environment at time tn. To do so the observer computes the joint condi-
tional probability, Pn(Hn, an), of the current state, Hn, and the number of environmen-
tal changes since beginning the observation, an. Previous studies focused on obtain-
ing the predictive distribution, Pn(Hn+1). The two distributions are closely related, as
Pn(Hn+1) =

∑
Hn

Pn(Hn+1|Hn)Pn(Hn).
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More importantly, Adams and MacKay (2007); Wilson et al (2010) implicitly as-
sumed that only observations since the last changepoint provide information about the
current environmental state. That is, if the time since the last changepoint – the current
run-length, rn – is known to the observer, then all observations before that time can be
discarded:

P(Hn|ξ1:n, rn) = P(Hn|ξn−rn:n).

This follows from the assumption that the state after a change is conditionally indepen-
dent of the state that preceded it. We assume that the number of environmental states is
finite. Hence this independence assumption does not hold: Intuitively, if observations
prior to a changepoint indicate the true state is Hj , then states H i, i 6= j are more likely
after the changepoint.

Adams and MacKay (2007); Wilson et al (2010) derive a probability update equa-
tion for the run length, and the number of changepoints, and use this equation to obtain
the predictive distribution of future observations. We show that it is not necessary to
compute run length probabilities when the number of environmental states is finite. In-
stead we derive a recursive equation for the joint probability of the current state, Hn,
and number of changepoints, an. As a result, the total number of possible states grows
as N · n (linearly in n) where N is the fixed number of environmental states H i, rather
than n2 (quadratically in n) as in Wilson et al (2010).

3.1 Symmetric 2-state process
We first derive a recursive equation for the probability of two alternatives, Hn ∈ {H±},
in a changing environment, where the change process is memoryless, and the change
rate, ε := P(Hn = H∓|Hn−1 = H±), is symmetric and initially unknown to the
observer (See Fig. 1A). The most probable choice given the observations up to a time,
tn, can be obtained from the log of the posterior odds ratio Ln = log

(
Pn(Hn=H+)
Pn(Hn=H−)

)
.

The sign of Ln indicates which option is more likely, and its magnitude indicates the
strength of this evidence (Bogacz et al, 2006; Gold and Shadlen, 2007). Old evidence
should be discounted according to the inferred environmental volatility. Since this is
unknown, an ideal observer computes the probability distribution of the change rate, ε
(See Fig. 1C), along with the probability of environmental states.

Let an be the number of changepoints, and bn = n − 1 − an the count of non-
changepoints between times t1 and tn (n = 1, 2, . . .) (See Fig. 1B). The process {an}n≥1

is a pure birth process with birth rate ε. The observer assumes no changes prior to the
start of observation, P(a1 = 0) = 1, and must make at least two observations, ξ1 and
ξ2, to detect a change.

To develop an iterative equation for the joint conditional probability density, Pn(Hn, an),
given the n observations ξ1:n, we begin by marginalizing over these quantities at the time
of the previous observation, tn−1, for n > 1 (See Appendix 7.1 for details):

Pn(Hn, an) =
P(ξ1:n−1)

P(ξ1:n)
P(ξn|Hn)

∑
Hn−1=H±

n−2∑
an−1=0

P(Hn, an|Hn−1, an−1)Pn−1(Hn−1, an−1).

(3)
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A B C

Figure 1: Online inference of the change rate in a dynamic environment. (A) The
environment alternates between states H+ and H− with transition probabilities ε+, ε−.
The state of the environment determines f±(ξ) = P(ξ|H±), which we represent as
Gaussian densities. (B) A sample path of the environment (color bar) together with the
first ten values of the actual changepoint count, an, and non-changepoint count, bn. (C)
Evolution of the conditional probabilities, P(ε|an), corresponding to the changepoint
count from panel B, until tn = t100. The dashed red line indicates the value of ε in the
simulation. The densities are scaled so that each equals 1 at the mode.

With two choices we have the following relationships for all n > 1:

Hn = Hn−1 ⇔ an = an−1, and Hn 6= Hn−1 ⇔ an = an−1 + 1. (4)

The term P(Hn, an|Hn−1, an−1) in Eq. (3) is therefore nonzero only if either, Hn−1 =
Hn, and an−1 = an, or Hn−1 6= Hn and an−1 = an − 1: If the system is in the joint
state (Hn−1, an−1) at tn−1, then at tn it can either (a) transition to (Hn 6= Hn−1, an =
an−1 + 1) or (b) remain at (Hn = Hn−1, an = an−1). This observation is central to
the message-passing algorithm described in (Adams and MacKay, 2007; Wilson et al,
2010), with probability mass flowing from lower to higher values of a according to a
pure birth process (See Fig. 2A). We can thus simplify Eq. (3), leaving only two terms
in the double sum. Writing Pn (H±, a) for Pn (Hn = H±, an = a), and similarly for
any conditional probabilities, we have for n > 1:

Pn

(
H±, a

)
=

P (ξ1:n−1)

P(ξ1:n)
f±(ξn)

[
P(H±, a|Hn−1 = H±, an−1 = a) · Pn−1

(
H±, a

)
+P(H±, a|Hn−1 = H∓, an−1 = a− 1) · Pn−1

(
H∓, a− 1

)]
. (5)

We must also specify initial conditions at time t1, and boundary values when a ∈
{0, n− 1} for these equations. At t1 we have P(a1 = 0) = 1. Therefore,

P1(H±, 0) =
1

P(ξ1)
f±(ξ1)P0(H±), (6)

and P1(H±, a) = 0 for a 6= 0. Here P0(H±) is the prior over the two choices. The
probability P(ξ1) is unknown to the observer. However, similar to the ratio P(ξ1:n−1)

P(ξ1:n)
in

Eq. (5), P(ξ1) acts as a normalization constant and does not appear in the posterior odds
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ratio, Rn (See Eq. (18) below). Finally, at all future times n > 1, we have separate
equations at the boundaries,

Pn(H±, 0) =
P (ξ1:n−1)

P(ξ1:n)
f±(ξn)P(H±, 0|Hn−1 = H±, an−1 = 0)Pn−1

(
H±, 0

)
, (7)

and,

Pn(H±, n− 1) =
P (ξ1:n−1)

P(ξ1:n)
f±(ξn)P(H±, n− 1|Hn−1 = H∓, an−1 = n− 2)×

Pn−1

(
H∓, n− 2

)
. (8)

We next compute P(Hn, an|Hn−1, an−1) in Eq. (3), with n > 1, by marginalizing over
all possible transition rates ε ∈ [0, 1]:

P(Hn, an|Hn−1, an−1) =

∫ 1

0

P(Hn, an|ε,Hn−1, an−1)P(ε|Hn−1, an−1)dε. (9)

Note that P(ε|Hn−1, an−1) = P(ε|an−1), so we need the distribution of ε, given an−1

changepoints, for all n > 1. We assume that prior to any changepoint observations —
that is at time t1 — the rates follow a Beta distribution with hyperparameters a0, b0 > 0
(See also Sections 3.1 and 3.2 in Wilson et al (2010)),

P0(ε) = β(ε; a0, b0) :=
εa0−1(1− ε)b0−1

B(a0, b0)
,

where β denotes the probability density of the associated Beta distribution, andB(x, y) :=∫ 1

0
εx−1(1 − ε)y−1dε is the beta function. For any n > 1, the random variable an|ε fol-

lows a Binomial distribution with parameters (n− 1, ε), for which the Beta distribution
is a conjugate prior. The posterior over the change rate when the changepoint count is
known at time n > 1 is therefore:

ε|an ∼ Beta(a0 + an, b0 + bn). (10)

For simplicity, we assume that prior to any observations, the probability over the tran-
sition rates is uniform, P0(ε) = 1 for all ε ∈ [0, 1], and therefore a0 = b0 = 1.

We now return to Eq. (9) and use the definition of the transition rate, ε, (See Fig. 1)
to find:

P(Hn, an|ε,Hn−1, an−1) =


1− ε Hn = Hn−1 & an = an−1,
ε Hn 6= Hn−1 & an = an−1 + 1,
0 otherwise.

(11)

Eq. (9) can therefore be rewritten using two integrals, depending on the values of
(Hn, an) and (Hn−1, an−1),

P(H±, a|Hn−1 = H±, an−1 = a) =

∫ 1

0

(1− ε)β(ε; an−1 + 1, bn−1 + 1)dε, (12)

and similarly for P(H±, a|Hn−1 = H∓, an−1 = a− 1).
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D

Figure 2: Inference of the state,H i, and change rate, ε. (A) The joint posterior probabil-
ity, Pn(H±, a), is propagated along a directed graph according to Eq. (17). Only paths
corresponding to the initial condition (H1, a1) = (H+, 0) are shown. (B) A sample
sequence of environmental states (color bar, top) together with the first ten observations
ξ1, . . . ξ10 (blue dots), for ε+ = ε− = 0.1. Superimposed in black (right y-axis) is the
log posterior odds ratio Ln as a function of time. (C) Evolution of the posterior over
an (gray scale). The posterior mean (red) converges to the expected number of change-
points ε(n − 1) (dashed line). (D) Evolution of the posterior over the change rate ε
(gray scale). The posterior mean (red) converges to the true value (dashed line) and the
variance diminishes with the number of observations.
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The mean of the Beta distribution, for n > 1, can be expressed in terms of its two
parameters:

ε̂n−1(an−1) := E [ε|an−1] =
an−1 + 1

an−1 + bn−1 + 2
. (13)

We denote this expected value by ε̂n−1(an−1) as it represents a point estimate of the
change rate ε at time tn−1 when the changepoint count is an−1, n > 1. Since an−1 +
bn−1 = n− 2, we have:

ε̂n−1(an−1) =
an−1 + 1

n
. (14)

The expected transition rate, ε̂n−1(an−1), is thus determined by the ratio between the
present changepoint count and the number of timesteps, n. Leaving a0 and b0 as param-
eters in the prior gives ε̂n−1(an−1) = (an−1 +a0)/(n−2+a0 +b0). Using the definition
in Eq. (14), it follows from Eq. (12) that:

P(H±, a|Hn−1 = H±, an−1 = a) = 1− ε̂n−1(a), (15)
P(H±, a|Hn−1 = H∓, an−1 = a− 1) = ε̂n−1(a− 1). (16)

Eqs. (15) and (16), which are illustrated in Fig. 2A, can in turn be substituted into
Eq. (5) to yield, for all n > 1:

Pn

(
H±, a

)
=

P (ξ1:n−1)

P(ξ1:n)
f±(ξn)

[
(1− ε̂n−1(a)) · Pn−1

(
H±, a

)
+ε̂n−1(a− 1) · Pn−1

(
H∓, a− 1

)]
. (17)

The initial conditions and boundary equations for this recursive probability update have
already been described in Eqs. (6–8). Eq. (17) is the equivalent of Eq. (3) in Adams
and MacKay (2007), and Eq. (3.7) in Wilson et al (2010). However, here the observer
does not need to estimate the length of the interval since the last changepoint. We
demonstrate the inference process defined by Eq. (17) in Fig. 2.

The observer can compute the posterior odds ratio by marginalizing over the change-
point count:

Rn : =
Pn (H+)

Pn (H−)
=

∑n−1
a=0 Pn (H+, a)∑n−1
a=0 Pn (H−, a)

=
f+(ξn)

f−(ξn)
·
∑n−1

a=0

[(
1− a+1

n

)
· Pn−1 (H+, a) + a

n
· Pn−1 (H−, a− 1)

]∑n−1
a=0

[(
1− a+1

n

)
· Pn−1 (H−, a) + a

n
· Pn−1 (H+, a− 1)

] . (18)

Here log(Rn) = Ln > 0 implies that Hn = H+ is more likely than Hn = H− (See
Fig. 2B). Note that P(ξ1:n−1)/P(ξ1:n) and 1/P(ξ1) need not be known to the observer
to obtain the most likely choice.

A posterior distribution of the transition rate ε can also be derived from Eq. (17) by
marginalizing over (Hn, an),

Pn(ε) =
∑
s=±

n−1∑
a=0

P(ε|an = a)Pn (Hs, a) , (19)

9

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 28, 2016. ; https://doi.org/10.1101/066480doi: bioRxiv preprint 

https://doi.org/10.1101/066480
http://creativecommons.org/licenses/by-nc-nd/4.0/


A B C

Figure 3: The performance of the inference algorithm. (A) Performance under the inter-
rogation paradigm measured as the percentage of correct responses at the interrogation
time. Here and in the next panel ε = 0.05, and SNR= 1. The black curve represents the
performance of an ideal observer who infers the change rate from measurements. The
green curves, represent the performance of observers that assume a fixed change rate
(0.3, 0.15, 0.05, 0.03 from darker to lighter, see Eq. (1)). The solid green line corre-
sponds to the true rate, dashed lines to erroneous rates. (B) The green curve represents
the performance at interrogation time t300 of an observer that assumes a fixed change
rate. The red star marks the maximum of this curve. The horizontal black curves rep-
resent the performance at times t40, t100, t200, t300 (from bottom to top) of the observer
that learns the change rate. (C) The accuracy as a function of the average threshold
hitting time in the free response protocol. Here ε = 0.1, and SNR=0.75. See Appendix
7.2 for details on numerical simulations. See also Fig. 3 in Veliz-Cuba et al (2016).

where P(ε|an) is given by the Beta distribution prior Eq. (10). The expected rate is
therefore:

ε̄ :=

∫ 1

0

εPn(ε)dε =
∑
s=±

n−1∑
an=0

∫ 1

0

εP(ε|an)Pn(Hs, an)dε =
∑
s=±

n−1∑
an=0

an + 1

n+ 1
Pn(Hs, an).

(20)

Explicit knowledge of the transition rate, ε, is not used in the inference process de-
scribed by Eq. (17). However, computing it allows us to evaluate how the observer’s
estimate converges to the true transition rate (See Fig. 2D). We will also relate this es-
timate to the coupling strength between neural populations in the model described in
Section 6.

We conjecture that when measurements are noisy, the variance of the distribution
Pn(ε) does not converge to a point mass at the true rate, ε, in the limit of infinitely many
observations, n → ∞, i.e. the estimate of ε is not consistent. As we have shown, to
infer the rate we need to infer the parameter of a Bernoulli variable. It is easy to show
that the posterior over this parameter converges to a point mass at the actual rate value if
the probability of misclassifying the state is known to the observer (Djuric and Huang,
2000). However, when the misclassification probability is not known, the variance of
the posterior remains positive even in the limit of infinitely many observations. In our
case, when measurements are noisy, the observer does not know the exact number of
change points at finite time. Hence, the observer does not know exactly how to weight
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previous observations to make an inference about the current state. As a result, the
probability of misclassifying the current state may not be known. We conjecture that
this implies that even in the limit n→∞ the posterior over ε has positive variance (See
Fig. 2D).

In Fig. 3 we compare the performance of this algorithm in three cases: when the
observer knows the true rate (point mass prior over the true rate ε); when the observer
assumes a wrong rate (point mass prior over an erroneous ε); and when the observer
learns the rate from measurements (flat prior over ε). We define performance as the
probability of a correct decision.

Under the interrogation protocol, the observer infers the state of the environment
at a fixed time. As expected, performance increases with interrogation time, and is
highest if the observer uses the true rate (See Fig. 3A, also Eq. (1) above). Performance
plateaus quickly when the observer assumes a fixed rate, and more slowly if the rate is
learned. The performance of observers that learn the rate slowly increases toward that
of observers who know the true rate. In panel B, we present the performance of the
unknown-rate algorithm at 4 different times (t40, t100, t200, t300) and compare it to the
asymptotic values with different assumed rates (green curves).

Note, an observer that assumes an incorrect change rate can still perform near opti-
mally (e.g., curve for 0.03 in Fig. 3A), especially when the signal-to-noise ratio (SNR)
is quite high. The SNR is the difference in means of the likelihoods divided by their
common standard deviation. Change rate inference is more effective at lower SNR
values, in which case multiple observations are needed for an accurate estimate of the
present state. However, at very low SNR values the observer will not be able to sub-
stantially reduce uncertainty about the change rate, resulting in high uncertainty about
the state.

In the free response protocol, the observer makes a decision when the log odds ratio
reaches a predefined threshold. In Fig. 3C, we present simulation results for this proto-
col in a format similar to Fig. 3A, with empirical performance as a function of average
hitting time. Each performance level corresponds to unique log odds threshold. Similar
to the interrogation protocol (Fig. 3A), performance of the free response protocol sat-
urates much more quickly for an observer that fixes their change rate estimate than on
that infers this rate over time.

3.2 Symmetric multistate process
We next consider evidence accumulation in an environment with an arbitrary number
of states, {H1, H2, ..., HN}, with symmetric transition probabilities, εij ≡ constant,
whenever i 6= j. We define ε := (N − 1)εij for any i 6= j, so that the probability of
remaining in the same state becomes εii = 1 − ε, for all i = 1, ..., N . The symmetry
in transition rates means that an observer still only needs to track the total number of
changepoints, an, as in Section 3.1.

Eqs. (3-4) remain valid with N possible choices, {H1, . . . , HN}. When n > 1, the
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double sum in Eq. (3) simplifies to:

Pn

(
H i, a

)
=

P (ξ1:n−1)

P(ξ1:n)
f i(ξn)

[
P
(
H i, a|Hn−1 = H i, an−1 = a

)
· Pn−1

(
H i, a

)
+
∑
j 6=i

P
(
H i, a|Hn−1 = Hj, an−1 = a− 1

)
· Pn−1

(
Hj, a− 1

)]
.

(21)

As in Section 3.1, we have P1(H i, 0) = f i(ξ1)P0(H i)/P(ξ1) and P1(H i, a1) = 0 for
a1 6= 0, where P0(H i) describes the observer’s belief prior to any observations. At all
future times, n > 1, we have at the boundaries for all i = 1, . . . , N :

Pn(H i, 0) =
P (ξ1:n−1)

P(ξ1:n)
f i(ξn)P(H i, 0|Hn−1 = H i, an−1 = 0)Pn−1

(
H i, 0

)
,

and,

Pn(H i, n− 1) =
P (ξ1:n−1)

P(ξ1:n)
f i(ξn)

∑
j 6=i

P(H i, n− 1|Hn−1 = Hj, an−1 = n− 2)Pn−1

(
Hj, n− 2

)
.

Eq. (9) remains unchanged and we still have P(ε|Hn−1, an−1) = P(ε|an−1). Fur-
thermore, assuming a Beta prior on the change rate, Eq. (10) remains valid, and Eq. (11)
is replaced by:

P(Hn, an|ε,Hn−1, an−1) =


1− ε Hn = Hn−1 & an = an−1,

ε/(N − 1) Hn 6= Hn−1 & an = an−1 + 1,
0 otherwise.

(22)

The integral from Eq. (9) gives, once again, the mean of the Beta distribution, ε̂n−1(a),
defined in Eqs. (13-14). As in Section 3.1, ε̂n−1(an−1) is a point estimate of the change
rate ε at time tn−1 when the changepoint count is an−1. We have,

P(Hn, an|Hn−1, an−1) =


1− ε̂n−1(an) Hn = Hn−1 & an = an−1,

ε̂n−1(an − 1)/(N − 1) Hn 6= Hn−1 & an = an−1 + 1,
0 otherwise,

(23)

and the main probability update equation is now:

Pn

(
H i, a

)
=

P (ξ1:n−1)

P(ξ1:n)
f i(ξn)

[
(1− ε̂n−1(an)) · Pn−1

(
H i, a

)
+
ε̂n−1(an − 1)

N − 1

∑
j 6=i

Pn−1

(
Hj, a− 1

)]
.

(24)

The observer can infer the most likely state of the environments, by computing
the index that maximizes the posterior probability, marginalizing over all changepoint
counts,

ı̂ = argmaxiPn(H i) = argmaxi

(
n−1∑
a=0

Pn

(
H i, a

))
.
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The observer can also compute the posterior probability Pn(ε) of the transition rate, ε,
by marginalizing over all states Hn and changepoint counts an, as in Eq. (19). Further-
more, a point estimate of ε is given by the mean of the posterior after marginalizing, as
in Eq. (20).

4 Environments with asymmetric transition rates

In this section, we depart from the framework of Adams and MacKay (2007), and
Wilson et al (2010), and consider unequal transition rates between states. This includes
the possibility that some transitions are not allowed. We consider an arbitrary number,
N, of states with unknown transition rates, εij, between them. The switching process
between the states is again memoryless, so thatHn is a stationary, discrete-time Markov
chain with finite state space, Ω := {H1, . . . , HN}. We write the (unknown) transition
matrix for this chain as a left stochastic matrix,

ε :=

 ε11 . . . ε1N

... . . . ...
εN1 . . . εNN

 , (25)

where εij = P(Hn = H i|Hn−1 = Hj), with i, j ∈ {1, . . . , N}. We denote by ε·i the
i-th column of the matrix ε, and similarly for other matrices. Each such column sums
to 1. We define the changepoint counts matrix at time tn as,

an :=

a11
n . . . a1N

n
... . . . ...

aN1
n . . . aNNn

 , (26)

where aijn is the number of transitions from state j to state i up to time tn. There can
be a maximum of n − 1 transitions at time tn. For a fixed n ≥ 1, all entries in an are
nonnegative and sum to n − 1, i.e.

∑
i,j a

ij
n = n − 1. As in the symmetric case, the

changepoint matrix at time t1 must be the zero matrix, a1 = 0.
We will show that our inference algorithm assigns positive probability only to change-

point matrices that correspond to possible transition paths between the states {H1, . . . , HN}.
Many nonnegative integer matrices with entries that sum to n − 1 are not possible
changepoint matrices an. A combinatorial argument shows that when N = 2 state case
scales as n2, the number of possible pairs, (Hn,an), grows quadratically with the num-
ber of steps, n, to leading order. It can also be shown that the growth is polynomial for
N > 2, although we do not know the growth rate in general (See Fig. 4B). An ideal ob-
server has to assign a probability of each of these states which is much more demanding
than in the symmetric rate case where the number of possible states grows linearly.

We next derive an iterative equation for Pn(Hn,an), the joint probability of the state
Hn, and an allowable combination of the N(N − 1) changepoint counts (off-diagonal
terms of an), and N non-changepoint counts (diagonal terms of an). The derivation is
similar to the symmetric case: For n > 1, we first marginalize over Hn−1 and an−1,

Pn(Hn,an) =
1

P(ξ1:n)

∑
Hn−1,an−1

P(ξ1:n|Hn, Hn−1,an,an−1)P (Hn, Hn−1,an,an−1) ,
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where the sum is over all Hn−1 ∈ {H1, ..., HN} and possible values of the changepoint
matrix, an−1.

Using P(Hn, Hn−1,an,an−1) = P(Hn,an|Hn−1,an−1)P(Hn−1,an−1), and apply-
ing Bayes’ rule to write

P(ξ1:n−1|Hn−1,an−1)P(Hn−1,an−1) = P(Hn−1,an−1|ξ1:n−1)P(ξ1:n−1),

gives

Pn(Hn,an) =
P(ξ1:n−1)

P(ξ1:n)
P(ξn|Hn)

∑
Hn−1,an−1

Pn−1(Hn−1,an−1)P(Hn,an|Hn−1,an−1).

(27)

We compute the conditional probability P(Hn,an|Hn−1,an−1) by marginalizing
over all possible transition matrices, ε. To do so, we relate the probabilities of ε and
a. Note that if the observer assumes the columns ε·j are independent prior to any
observations, then the exit rates conditioned on the changepoint counts, ε·j|a·jn , are
independent for all states, j = 1, . . . , N .

To motivate the derivation we first consider a single state, j = 1, and assume that the
environmental state has been observed perfectly over T > 1 timesteps, but the transition
rates are unknown. Therefore, all a·1n are known to the observer (1 ≤ n ≤ T ), but the
ε·1 are not. The state of the system at time n + 1, given that it was in state H1 at
time n, is a categorical random variable, and P(Hn+1 = H i|Hn = H1) = εi1, for
1 ≤ n ≤ T − 1. The observed transitions H1 7→ H i are independent samples from a
categorical distribution with unknown parameters ε·1.

The conjugate prior to the categorical distribution is the Dirichlet distribution, and
we therefore use it as a prior on the changepoint probabilities. For simplicity we again
assume a flat prior over ε·1, that is P(ε·1) = χS(ε·1), where χS is the indicator function
on the standard (N − 1)-simplex, S.

Denote by D the sequence of states that the environment transitioned to at time
n + 1 whenever it was in state H1 at time n, for all 1 ≤ n ≤ T − 1. Therefore
D is a sequence of states from the set {H1, . . . , HN}. By definition, P(D|ε·1) =∏N

i=1 (εi1)
∑T−1
n=1 χ(Hn+1=Hi,Hn=H1), where χ(Hn+1 = H i, Hn = H1) is the indicator

function, which is unity only when Hn+1 = H i and Hn = H1 and zero otherwise.
Equivalently, we can write P(a·1T |ε·1) =

∏N
i=1 (εi1)

ai1T , since ai1T =
∑T−1

n=1 χ(Hn+1 =
H i, Hn = H1). For general n > 1, the posterior distribution for the transition probabil-
ities ε·1 given the changepoint vector a·1n is then

P(ε·1|a·1n ) =
Γ
(∑N

i=1(ai1n + 1)
)

∏N
i=1 Γ(ai1n + 1)

N∏
i=1

(
εi1
)ai1n = dir(ε·1;a·1n + 1).

Here 1 = (1, ..., 1)T , so a·1n + 1 should be interpreted as the vector with entries (ai1n +
1)Ni=1, Γ(x) is the gamma function, and dir(ε·1;a·1n +1) the probability density function
of the N -dimensional Dirichlet distribution, Dir(a·1n + 1).
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The same argument applies to all initial states, Hj , j ∈ {1, . . . , N}. We assumed
that the transition rates are conditionally independent, so that

P(ε|an) =
N∏
j=1

dir(ε·j;a·jn + 1) =
N∏
j=1

Γ
(∑N

i=1(aijn + 1)
)

∏N
i=1 Γ((aijn + 1))

N∏
k=1

(
εkj
)akjn

. (28)

Using this observation, the transition probability between two states can be com-
puted by marginalizing over all possible transition matrices, ε, conditioned on an−1,

P(Hn,an|Hn−1,an−1) =

∫
M

P(Hn,an|ε, Hn−1,an−1)P(ε|Hn−1,an−1)dε

=

∫
S

· · ·
∫
S

P(Hn,an|ε·1, . . . , ε·N , Hn−1,an−1) (29)

× dir(ε·1;a·1n−1 + 1)× · · · × dir(ε·N ;a·Nn−1 + 1)dε·1 · · · dε·N ,

whereM represents the space of all N ×N left stochastic matrices and S is the N − 1
dimensional simplex of ε·j ∈ [0, 1]N such that

∑N
i=1 ε

ij = 1.
Let δij be the N ×N matrix containing a 1 as its ij-th entry, and 0 everywhere else.

For all i, j ∈ {1, . . . , N} we have

P(Hn = H i,an|ε, Hn−1 = Hj,an−1) =

{
εij if an = an−1 + δij,
0 otherwise.

(30)

Implicit in Eq. (30) is the requirement that the environment must have been in the state
Hn−1 = Hj in order for the transition Hj 7→ H i to have occurred between tn−1 and tn.
This will ensure that the changepoint matrices an that are assigned nonzero probability
correspond to admissible paths through the states {H1, ..., HN}. Applying Eq. (30), we
can compute the integrals in Eq. (29) for all pairs (i, j). We let ε̂ijn−1(an−1) := P(Hn =
H i,an = an−1 + δij|Hn−1 = Hj,an−1) to simplify notation, and find

ε̂ijn−1(an−1) =

∫
S

· · ·
∫
S

εij
N∏
k=1

dir(ε·k;a·kn−1 + 1)dε·1 · · · dε·N

=

∫
S

εijdir(ε·j;a·jn−1 + 1)dε·j
∏
k 6=j

∫
S

dir(ε·k;a·kn−1 + 1)dε·k

=

∫
S

εijdir(ε·j;a·jn−1 + 1)dε·j =
aijn−1 + 1

N +
∑N

k=1 a
kj
n−1

. (31)

As in the point estimate of the rate ε̂n−1(an−1) in Eq. (14), each ε̂ijn−1(an−1) is a ratio
containing the number of Hj 7→ H i transitions in the numerator, and the total number
of transitions out of the jth state in the denominator. Thus, the estimated transition
rate ε̂ijn−1(an−1) increases with the number of transitions Hj 7→ H i in a given interval
{1, ..., n}. Furthermore, each column sums to unity:

N∑
i=1

ε̂ijn−1(an−1) =

∑N
i=1

(
aijn−1 + 1

)
N +

∑N
k=1 a

kj
n−1

=
N +

∑N
i=1 a

ij
n−1

N +
∑N

k=1 a
kj
n−1

= 1,
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A B

C D E

Figure 4: Evidence accumulation and change rates inference in a 2-state asymmetric
system. (A) Sample path (color bar, top) of the environment between times t70 and
t80 (same simulation as in panels C-E) with corresponding observations (blue dots),
and log posterior odds ratio (black step function). Here and in panels C-E, (ε+, ε−) =
(0.2, 0.1), SNR= 1.4. (B) The number of allowable changepoint matrices as a function
of observation number, n, for N = 2 (blue circles), and N = 3 (blue triangles). (C)-(E)
Color plots (gray scale) of the joint density, Pn (ε21, ε12) , with mean value (red star)
approaching the true transition rates (green circle).

so the point estimates ε̂ijn−1(an−1) for the transition rates out of each state j do provide
an empirical probability mass function along each column. However, as in the symmet-
ric case, these estimates are biased toward the interior of the domain. This is a conse-
quence of the hyperparameters we have chosen for our prior density, dir(ε;a0 + 1).

Therefore, for n > 1, the probability update equation in the case of asymmetric
transition rates (Eq. (27)) is given by,

Pn(Hn = H i,an) =
P(ξ1:n−1)

P(ξ1:n)
f i(ξn)

N∑
j=1

ε̂ijn−1(an − δij)Pn−1

(
Hn−1 = Hj,an − δij

)
.

(32)

The point estimates of the transition rates, ε̂ijn−1(an−1 = an − δij), are defined in
Eq. (31). As before, P1(H i,a1 = 0) = f i(ξ1)P0(H i)/P(ξ1) and P1(H i,a1) = 0
for any a1 6= 0. At future times, it is only possible to obtain changepoint matrices an
whose entries sum to

∑
i,j a

ij
n = n− 1, the changepoint matrices an and an−1 must be

related as an = an−1 + δij, as noted in Eq. (30). This considerably reduces the number
of terms in the sum in Eq. (32).
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The observer can find the most likely state of the environment by maximizing the
posterior probability after marginalizing over the changepoint counts an,

ı̂ = argmaxiPn(H i) = argmaxi

(∑
an

Pn

(
H i,an

))
.

The transition rate matrix can also be computed by marginalizing across all possible
states, Hn, and changepoint count matrices, an,

Pn(ε) =
N∑
s=1

∑
an

P(ε|an)Pn(Hs,an),

where P(ε|an) is the product of probability density functions, dir(ε·j;a·jn + 1), given
in Eq. (28). The mean of this distribution is given by

ε̄ =

∫
M
εPn(ε)dε =

N∑
s=1

∑
an

Pn(Hs,an)

∫
M
εP(ε|an)dε

=
N∑
s=1

∑
an

Pn(Hs,an)E(an), (33)

where E(an)ij = ε̂ijn (an) = E [εij|an] defined in Eq. (31), is a conditional expectation
over each possible changepoint matrix an.

Eq. (32) is easier to interpret when N = 2. Using Eq. (31), we find

ε̂21
n−1(an−1) =

a21
n−1 + 1

2 + a21
n−1 + a11

n−1

, ε̂12
n−1(an−1) =

a12
n−1 + 1

2 + a12
n−1 + a22

n−1

,

and we can express ε̂11
n−1(an−1) = 1 − ε̂21

n−1(an−1) and ε̂22
n−1(an−1) = 1 − ε̂12

n−1(an−1).
Expanding the sum in Eq. (32), we have

Pn

(
H1,an

)
=

P(ξ1:n−1)

P(ξ1:n)
f 1(ξn)

[
ε̂11
n−1(an − δ11)Pn−1

(
H1,an − δ11

)
+ε̂12

n−1(an − δ12)Pn−1

(
H2,an − δ12

)]
, (34a)

Pn

(
H2,an

)
=

P(ξ1:n−1)

P(ξ1:n)
f 2(ξn)

[
ε̂22
n−1(an − δ22)Pn−1

(
H2,an − δ22

)
+ε̂21

n−1(an − δ21)Pn−1

(
H1,an − δ21

)]
. (34b)

The boundary and initial conditions will be given as above, and the mean inferred tran-
sition matrix is given by Eq. (33). Importantly, the inference process described by
Eqs. (34) allows for both asymmetric changepoint matrices, an, and inferred transition
rate matricesE(an), unlike the process in Eq. (17). However, the variance of the poste-
riors over the rates will decrease more slowly, as fewer transitions out of each particular
state will be observed.

This algorithm can be used to infer unequal transition rates as shown in Fig. 4:
Panels C through E show that the mode of the joint posterior distribution, Pn(ε21, ε12),
approaches the correct rates, while its variance decreases. As in Section 3.1 we con-
jecture that this joint density does not converge to a point mass at the true rate values
unless the SNR is infinite.
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5 Continuum limits and stochastic differential equation models

We next derive continuum limits of the discrete probability update equations for the
symmetric case discussed in Section 3. We assume that observers make measurements
rapidly, so we can derive a stochastic differential equation (SDE) that models the update
of an ideal observer’s belief (Gold and Shadlen, 2007). SDEs are generally easier to
analyze than their discrete counterparts (Gardiner, 2004). For example, response times
can be studied by examining mean first passage times of log-likelihood ratios (Bogacz
et al, 2006), or log-likelihoods (McMillen and Holmes, 2006), which is much easier
done in the continuum limit (Redner, 2001). For simplicity, we begin with an analysis
of the two state process, and then extend our results to the multistate case.

5.1 Derivation of the continuum limit
Two-state symmetric process. We first assume that the state of the environment, {Ht},
is a homogeneous continuous-time Markov chain with state space {H+, H−}. The
probability of transitions between the two states is symmetric, and given by P(Ht+∆t =
H±|Ht = H∓) = ε∆t + o(∆t), where 0 ≤ ε < ∞. The number of changepoints, at,
up to time t is a Poisson process with rate ε. An observer infers the present state from a
sequence of observations, ξ1:n, made at equally spaced times, t1:n,with ∆t = tj−tj−1.1

Each observation, ξn, has probability f±∆t(ξn) := Pr(ξn|H±) (See Veliz-Cuba et al
(2016) for more details). We again use the notation Pn(H±, a) = P(Htn = H±, atn =
a|ξ1:n) where tn is the time of the nth observation.

As in the previous sections, an estimate of the rate parameter, ε, is obtained from
the posterior distribution over the changepoint count, atn , at the time of the nth obser-
vation, tn. For simplicity, we assume a Gamma prior with parameters α and β over
ε, so that ε ∼ Gamma(α, β). By assumption the changepoint count follows a Pois-
son distribution with parameter εtn, so that P(atn = a|ε) = (εtn)ae−εtn/a!. There-
fore, once an changepoints have been observed, we have the posterior distribution
ε|an ∼ Gamma(an + α, tn + β), that is,

P(ε|an) =
(tn + β)an+αεan+α−1e−ε(tn+β)

Γ(an + α)
. (35)

We can substitute Eq. (35) into Eq. (9) describing the probability of transitions be-
tween time tn−1 and tn to find

P(Hn, an|Hn−1, an−1) =

∫ ∞
0

P(Hn, an|ε,Hn−1, an−1)γ(ε; an−1 + α, tn−1 + β)dε,

(36)

where γ(ε;α, β) = βαεα−1e−εβ/Γ(α) is the density of the Gamma distribution. Using
the definition of the transition rate ε, we can relate it to the first conditional probability

1Equal spacing ∆t = tj − tj−1 is not necessary for all j = 2, . . . , n, but it does allow for a more
concise derivation of the continuum limit. Irregular spacings would require a more careful selection of
the scaling of the log likelihoods ln f±(ξ).
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in the integral of Eq. (36) via

P(Hn, an|ε,Hn−1, an−1) =


1− ε∆t Hn = Hn−1 & an = an−1,
ε∆t Hn 6= Hn−1 & an = an−1 + 1,
0 otherwise.

(37)

We have dropped the o(∆t) terms as we are interested in the limit ∆t→ 0.
Using Eq. (37) and properties of the Gamma distribution we can evaluate the integral

in Eq. (36) to obtain

P(Hn, an|Hn−1, an−1) =


1−∆t an+α

tn−1+β
Hn = Hn−1 & an = an−1

∆tan+α−1
tn−1+β

Hn 6= Hn−1 & an = an−1 + 1

0 otherwise.

(38)

We can use Eq. (38) in the update equation, Eq. (3), to obtain the probabilities of
(Hn, an) given observations ξ1:n. As before, only terms involving an− 1 and an remain
in the sum for n ≥ 1. Using the same notational convention as in previous sections, we
obtain,

Pn(H±, a) =
P(ξ1:n−1)

P(ξ1:n)
f±∆t(ξn)

[(
1−∆t

a+ α

tn−1 + β

)
Pn−1

(
H±, a

)
+ ∆t

a+ α− 1

tn−1 + β
Pn−1

(
H∓, a− 1

)]
. (39)

Note, Eq. (39) is similar to the update Eq. (17) we derived in Section 3, with the time
index replaced by tn−1/∆t up to the β term. Also, since we have used a Gamma instead
of a Beta distribution as a prior, the point estimate of the transition rate is slightly
different (See Eq. (14)). As in the discrete time case, a point estimate of the transition
rate is required even before the first changepoint can be observed. We therefore cannot
use an improper prior, as the rate point estimate would be undefined.

To take the limit of Eq. (39) as ∆t → 0 we proceed as in Bogacz et al (2006) and
Veliz-Cuba et al (2016), working with logarithms of the probabilities. Dividing Eq. (39)
by Pn−1(H±, a), taking logarithms of both sides, and using the notation x±tn(a) :=

ln Pn(H±, a), we obtain, 2

∆x±tn(a) ∝ ln f±∆t(ξn) + ln

[
1−∆t

a+ α

tn−1 + β
+ ∆t

a+ α− 1

tn−1 + β
e
x∓tn−1

(a−1)−x±tn−1
(a)

]
.

(40)

Using the approximation ln(1 + z) ≈ z for small z yields

∆x±tn(a) ∝ ln f±∆t(ξn) + ∆t

(
a+ α− 1

tn−1 + β
e
x∓tn−1

(a−1)−x±tn−1
(a) − a+ α

tn−1 + β

)
. (41)

2Note, we drop the ln [P(ξ1:n−1)/P(ξ1:n)] term below since it is common to all evolution equations.
For determining the most likely option, only the relative magnitudes of the log likelihoods are important.
In numerical simulations, we normalize to account for this discrepancy.
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Since the proportionality constant is equal for all a, we can use the SDE for the log
likelihood xt, (See Veliz-Cuba et al (2016) for the details of the derivation)

dx±t (a) = g±(t)dt+ dW±
t +

(
a+ α− 1

t+ β
ex

∓
t (a−1)−x±t (a) − a+ α

t+ β

)
dt, (42)

where g±(t) = lim∆t→0
1

∆t
E[ln f±∆t(ξ)|H(t)] andW i satisfies 〈W i

tW
j
t 〉 = Σij(t) ·t with

Σij(t) = lim∆t→0
1

∆t
Cov[ln f i∆t(ξ), ln f

j
∆t(ξ)|H(t)] for i, j ∈ {+,−}.

Note that Eq. (42) is an infinite set of differential equations, one for each pair
(H±, a), a ∈ Z≥0. The initial conditions at t = 0 are given by x±(a) = ln P0(H±, a).
To be consistent with the prior over the rate, ε, we can choose a Poisson prior over a

with mean, α, i.e. P0(a) :=
αae−α

a!
. The initial conditions for Eq. (42) are given by

x± = ln P0(H±, a) = ln [P0(H±)P0(a)]. Note also that Eq. (42) at the boundary a = 0
is a special case. Since at those values there is no influx of probability from a − 1,
Eq. (42) reduces to

dx±t (0) = g±(t)dt+ dW± +
(

(α− 1)e−x
±
t (0) − α

) dt

t+ β
.

Lastly, note that we can obtain an evolution equations for the the likelihoods, P±t (a) =

P(H(t) = H±, a), by applying the change of variables P±t (a) = ex
±
t (a). Itô’s change of

coordinates rules (Gardiner, 2004) imply that Eq. (42) is equivalent to

dP±t (a) = P±t (a)

[(
g±(t) +

1

2

)
dt+ dW±

t

]
+

[
a+ α− 1

t+ β
P∓t (a− 1)− a+ α

t+ β
P±t (a)

]
dt, (43)

where now initial conditions at t = 0 are simply P±0 (a) = P0(H±, a) = P0(H±)P0(a).
We will compare the full system, Eq. (43), with an approximation using a moment
expansion in subsection 5.2.
Two states with asymmetric rates. Next we consider the case where the state of the
environment, {Ht}, is still a continuous-time Markov chain with state space {H1, H2},
but the probabilities of transition between the two states are asymmetric: P(Ht+∆t =
H i|Ht = Hj) = εij∆t + o(∆t), i 6= j, where ε12 6= ε21. Thus, we must separately
enumerate changepoints, a12

t and a21
t , to obtain an estimate of the rates ε12 and ε21. In

addition, we will rescale the enumeration of non-changepoints so that ajjt = ajj∆t, in
anticipation of the divergence of ajj as ∆t → 0. This will mean the total dwell time,
ajjt , will be continuous, while the change point count will be discrete. The quantities
aijt are then placed into a 2 × 2 matrix, At = (aijt ) ∈ R2×2, where aij ∈ Z≥0 for i 6= j
and ajj ∈ R∗. Note that if the number of changepoints, aijt , and the total dwell time in
a state, ajjt , were known, the escape rate could be estimated as εij = aijt /a

jj
t .

As before, we will estimate the rate parameters, εij , using the posterior probabil-
ity of the changepoint matrix, at. We assume Gamma priors on each rate, so that
εij ∼ Gamma(αj, βj). By assumption the changepoint count, aijt , follows a Poisson
distribution with parameter εijajjt , so that P(aijt = a|εijajjt ) =

(
εijajjt

)a
e−ε

ijajjt /a!.
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Therefore, once aijt changepoints have been observed along with the dwell time ajjt , we
have the posterior distribution εij|(aijt , a

jj
t ) ∼ Gamma(aijt + αj, a

jj
t + βj), so

P(εij|aijt , a
jj
t ) =

(ajjt + βj)
aijt +αj (εij)

aijt +αj−1
e−ε

ij(ajjt +βj)

Γ(aijt + αj)
. (44)

We now derive the continuum limit of Eq. (34). One key step of the derivation is
the application of a change of variables to the changepoint matrix a, where we replace
the non-changepoint counts with dwell times tj , defined as ti∆t := ∆taii∆t for ∆t =
tn − tn−1. This is necessary, due to the divergence of aii∆t as ∆t → 0. In the limit
∆t→ 0, the changepoint matrix becomes

A =

(
t1 a12

a21 t2

)
,

where aij ∈ Z∗ is the changepoint counts from Hj 7→ H i, while ti ∈ R∗ is the dwell
time in state H i. Thus, taking logarithms, linearizing, and taking the limit ∆t→ 0, we
obtain the following system of stochastic partial differential equations (SPDEs) for the
log likelihoods, xjt(A) = ln Pn(H±,A) :

dx1
t (A) = g1(t)dt+ dW 1

t +

(
a12 + α2 − 1

t2 + β2

ex
2
t (A−δ12)−x1t (A) − a21 + α1

t1 + β1

− ∂x1
t

∂t1

)
dt,

(45a)

dx2
t (A) = g2(t)dt+ dW 2

t +

(
a21 + α1 − 1

t1 + β1

ex
1
t (A−δ21)−x2t (A) − a12 + α2

t2 + β2

− ∂x2
t

∂t2

)
dt,

(45b)

where the drift, gi(t), and noise, W i(t), are defined as before (for details, see Appendix

7.3). Note that the flux terms,
∂xit
∂ti

, account for the flow of probability to longer dwell

times ti. For example, the SPDE for x1
t has a flux term for the linear increase of the

dwell time t1, since this represents the environment remaining in state H1. These flux
terms simply propagate the probability densities ex

i
t(A) = Pt (H i,A) over the space

(t1, t2), causing no net change in the probability of residing in either state H i: Pi
t =∫∞

0

∫∞
0

ex
i
t(A)dt1dt2.

Eq. (45) generalizes Eq. (34) as an infinite set of SPDEs, indexed by the discrete
variables (Hj, a12, a21) where a12, a21 ∈ Z≥0. Each SPDE is over the space (t1, t2),
and it is always true that t1 + t2 = t. Initial conditions at t = 0 are given by
xj(A) = ln [P0(Hj) · P0(A)]. For consistency with the prior on the rates, εij , we
choose a Poisson prior over the changepoint counts aij , i 6= j, and a Dirac delta distri-
bution prior over the dwell times ti,

P0(A) =
αa

21

1 e−α1

a21!

αa
12

2 e−α2

a12!
δ(t1 − β1)δ(t2 − β2). (46)

As before, Eq. (45) at the boundaries a12 = 0 and a21 = 0 is a special case, since there
will be no influx of probability from a12 − 1 or a21 − 1.
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As in the symmetric case, we can convert Eq. (45) to equations describing the evo-
lution of the likelihoods Pi

t(A) = P(H(t) = H i,A). Applying the change of variables
Pi
t(A) = ex

i
t(A), we find

dP1
t (A) =P1

t (A)

[(
g1(t) +

1

2

)
dt+ dW 1

t

]
+

[
a12 + α2 − 1

t2 + β2

P2
t (A− δ12)− a21 + α1

t1 + β1

P1
t (A)− ∂P1

t (A)

∂t1

]
dt (47a)

dP2
t (a) =P2

t (a)

[(
g2(t) +

1

2

)
dt+ dW 2

t

]
+

[
a21 + α1 − 1

t1 + β1

P1
t (A− δ21)− a12 + α2

t2 + β2

P2
t (A)− ∂P2

t (A)

∂t2

]
dt (47b)

where now initial conditions at t = 0 are Pi
0(A) = P0(H i)P0(A).

Multiple states with symmetric rates. The continuum limit in the case of N states,
{H1, . . . , HN}, with symmetric transition rates can be derived as with N = 2 (See
Appendix 7.4 for details). Again, denote the transition probabilities by P(Ht+∆t =
H i|Ht = Hj) = εij∆t + o(∆t), and the rate of switching from one to any other state
by ε = (N − 1)εij .

Assuming again a Gamma prior on the transition rate, ε ∼ Gamma(α, β), and
introducing xitn(a) := ln Pn(H i, a), we obtain the SDE

dxit(a) = gi(t)dt+ dW i
t +

(
a+ α− 1

(N − 1)(t+ β)

∑
j 6=i

ex
j
t (a−1)−xit(a) − a+ α

t+ β

)
dt, (48)

where gi(t) = lim∆t→0
1

∆t
E[ln f i∆t(ξ)|H(t)] and W i satisfies 〈W iW j〉 = Σij(t) · t with

Σij(t) = lim∆t→0
1

∆t
Cov[ln f i∆t(ξ), ln f

j
∆t(ξ)|H(t)].

Eq. (48) is again an infinite set of stochastic differential equations, one for each pair
(H i, a), i ∈ 1, . . . , N , a ∈ Z≥0. We have some freedom in choosing initial conditions
at t = 0. For example, since xi(a) = ln P0(H i, a), we can use the Poisson distribution
discussed in the case of two states.

The posterior over the transition rate, ε, is

Pn(ε) =
N∑
s=1

∞∑
an=0

P(ε|an)Pn(Hs, an),

where P(ε|an) is the Gamma distribution given by Eq. 35. Similar to Eq. 20, the ex-
pected rate is

ε̄ :=

∫ ∞
0

εPn(ε)dε =
N∑
s=1

∞∑
an=0

∫ ∞
0

εP(ε|an)Pn(Hs, an)dε =
N∑
s=1

∞∑
an=0

an + α

tn + β
Pn(Hs, an).

(49)

An equivalent argument can be used to obtain the posterior over the rates in the asym-
metric case.
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5.2 Moment hierarchy for the 2-state process
In the previous section, we approximated the evolution of the joint probabilities of en-
vironmental states and changepoint counts. The result, in the symmetric case, was an
infinite set of SDEs, one for each combination of state and changepoint values (H i, a).
However, an observer is mainly concerned with the current state of the environment.
The changepoint count is important for this inference, but may not be of direct interest
itself. We next derive simpler, approximate models that do not track the entire joint dis-
tribution over all changepoint counts, but only essential aspects of this distribution. We
do so by deriving a hierarchy of iterative equations for the moments of the distribution
of changepoint counts, a ∈ Z≥0, focusing specifically on the two state symmetric case.

Our goal in deriving moment equations is to have a low-dimensional, and reasonably
tractable, system of SDEs. Similar to previous studies of sequential decision making
algorithms (Bogacz et al, 2006), such low-dimensional systems can be used to inform
neurophysiologically relevant population rate models of the evidence accumulation pro-
cess. To begin, we consider the infinite system of SDEs given in the two state symmetric
case, Eq. (43). Our reduction then proceeds by computing the SDEs associated with the
lower order (0th, 1st, and 2nd) moments over the changepoint count a:

P̄±t =
∑
a∈Z≥0

P±t (a), ā±t =
∑
a∈Z≥0

(a+ α)P±t (a), b̄±t =
∑
a∈Z≥0

(a+ α)2P±t (a). (50)

We denote the moments using bars (b̄±t ). Below, when we discuss cumulants, we will
represent them using hats

(
b̂±t

)
. Note that the “0th” moments are the marginal proba-

bilities of H+ and H−.
We begin by summing Eq. (43) over all a ∈ Z≥0 and applying Eq. (50) to find this

generates an SDE for the evolution of the moments P̄±t given

dP̄±t = P̄±t

[(
g±(t) +

1

2

)
dt+ dW±

t

]
+

1

t+ β

[
ā∓t − ā±t

]
dt. (51)

where we have used the fact that

(a− 1)
±
t =

∞∑
a=1

(a+ α− 1)P±t (a− 1) =
∞∑
a=0

(a+ α)P±t (a) = ā±t .

The SDE given by Eq. (51) for the zeroth moment, P̄±t , depends on the first moment,
ā±n . We can determine values for the first moment by either obtaining the next SDE in
the moment hierarchy, or assuming a reasonable functional form for ā±t . For instance,
if the transition rate ε is known we can assume ā±t := (t + β)εP̄±t + O(1), so that
ā+
t + ā−t is approximately the mean of the counting process with rate ε. In this case, the

continuum limit t→∞ of Eq. (51) becomes

dP̄±t = P̄±t

[(
g±(t) +

1

2

)
dt+ dW±

t

]
+ ε ·

[
P̄∓t − P̄±t

]
dt. (52)

As expected, this is the two state version of Eq. (2), with known rate, ε. However,
if the observer has no prior knowledge of the rate, ε, then ā±t should evolve towards
(t+ β)εP̄±t at a rate that depends on the noisiness of observations.
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To obtain an equation for ā±t we multiply Eq. (43) by (a+ α) and sum to yield,

dā±t = ā±t

[(
g±(t) +

1

2

)
dt+ dW±

t

]
+

1

t+ β

[
ā∓t + b̄∓t − b̄±t

]
, (53)

This equation relates the zeroth, first, and second moments, P̄±t , ā±t , and b̄±t . Again,
we require an expression for the next moment, b̄±t , to close the system of Eqs. (51,
53). We could obtain an equation for b̄±t by multiplying Eq. (43) by (a + α)2 and
summing. However, as is typical with moment hierarchies, we would not be able to
close the system as equations for subsequent moments will depend on successively
higher moments (Socha, 2007; Kuehn, 2016). To close the equations for P̄±t , ā

±
t , ... we

can truncate: One possibility is cumulant-neglect (Whittle, 1957; Socha, 2007), which
assumes all cumulants above a given order grow more slowly than the moment itself
and can thus be ignored. This allows one to express the highest order moment as a
function of the lower order moments, since a moment is an algebraic function of its
associated cumulant and lower moments. For instance, neglecting the second cumulant
b̂±t ≈ 0 allows us to approximate the second moment as b̄±t = b̂±t +

(
ā±t
)2 ≈

(
ā±t
)2.3

Applying cumulant-neglect to the second moment, b̄±t , in Eqs. (51,53), using the
change of variables, Ā±t = ā±t /(t+β), and the fact that dĀ±t =

[
(t+ β)dā±t − ā±t dt

]
/(t+

β)2, we obtain a closed system of equations for the zeroth and first moments,

dP̄±t = P̄±t

[(
g±(t) +

1

2

)
dt+ dW±

]
+
[
Ā∓t − Ā±t

]
dt (54a)

dĀ±t = Ā±(t)

[(
g±(t) +

1

2

)
dt+ dW±

]
+
(
Ā∓t − Ā±t

)( 1

t+ β
+ Ā∓t + Ā±t

)
dt.

(54b)

Here initial conditions are given by P̄±0 := P0(H±) and Ā±0 = αP0(H±)/β. We show
in Appendix 7.5 that Eq. (54) is also consistent with Eq. (2), which holds in the case
of two states and known rate ε. Trajectories of Eq. (54) are shown in Fig. 5. Note that
both P̄±t and Ā±t tend to increase when g±(t) is the maximal drift rate, i.e. when H± is
the true environmental state. Thus, we expect that when P̄± is high (close to unity) then
Ā±t will tend to be larger than Ā∓t .

Immediately after a changepoint (where the maximal drift rate g±(t) changes), there
is an additional contribution to the increase of Ā±t due to the (Ā∓t − Ā±t ) term. It is this
brief burst of additional input to the subsequently dominant variable that generates the
counting process, which enumerates changepoints. For instance, when a H+ 7→ H−

switch occurs, an increase in Ā−t will temporarily be driven both by the drift term,
g−(t), and the nonlinear term involving (Ā+

t − Ā−t ). The burst of input generated by the
nonlinear term in Eq. (54b) has an amplitude that decays nonautonomously with time.
In fact, it can be shown that when the signal-to-noise ratio of the system is quite high,
the variables Ā±t ≈ (m+α)/(t+β), which is effectively the true changepoint count m
divided by elapsed time as modified by the prior.

3Note, we have used a hat to distinguish cumulants (b̂±t ), whereas bars still denote moments (b̄±t ).
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Figure 5: The dynamics of the first two moments, as approximated by Eq. (54). (A) The
probabilities P̄±t track the present state of the environment (bar above), switching with
rate ε = 0.1, and approach the stationary densities around the equilibria determined by
the dichotomous drift terms g±(t). (B) The first moments, Ā±t , also switch with the
environmental state and alternate between the neighborhoods of two points. (C) The
sum ε̃t := Ā+

t + Ā−t provides a running point estimate of the environmental transition
rate, ε, as shown in Eq. (55). The estimate is determined by the actual changepoints,
and noisily tracks m/t, where m is the actual number of changepoints. (D,E,F) Same
as A,B,C, but the moment simulations are compared with numerical simulations of the
full system of SDEs given by Eq. (43). (D) Thick red line is P̄+

t from Eq. (54) and thin
black line is

∑∞
a=0 P+

t (a) using Eq. (43); (E) Thick red line is Ā+
t from Eq. (54) and

thin black line is
∑∞

a=0(a+ α)P+
t (a) using Eq. (43); (F) Estimates of ε̃t using Eq. (54)

and Eq. (43). Details about the simulation method, initial conditions, and parameters
are provided in Appendix 7.7.
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We can also obtain a point-estimate of the transition rate of the environment, which
we define as ε̃t := Ā+

t + Ā−t , since the following relations hold:

Ā+
t + Ā−t =

1

t+ β

∑
a∈Z≥0

(a+ α)
[
P(H+, a|ξ(t)) + P(H−, a|ξ(t))

]
=
∑
a∈Z≥0

(a+ α)

t+ β
P(a|ξ(t)) =

∫ ∞
0

ε
∑
a∈Z≥0

P(ε|a)P(a|ξ(t))dε, (55)

This estimate is an average over the distribution of possible changepoint counts, a, given
the observations, ξ(t).Here P(ε|a) is a Gamma distribution with parameters α and β. In
Fig. 5C we compare this approximation, ε̃t, with the true change rate ε and the running
estimate m/t, obtained from the actual number of changepoints, m.

In Fig. 5D,E these approximations are compared to Eq. (43), the full SDE giving
the distribution over all changepoint counts, a. Notice that the first moments Ā±t are
overestimates of the true average,

∑∞
a=0(a+α)P±t (a)/(t+ β), obtained from Eq. (43).

We expect this is due to the fact that the moment equations, Eq. (54), tend to overcount
the number of changepoints. Fluctuations lead to an increase in the number of events
whereby Ā+

t and Ā−t exchange dominance
(
Ā+
t = Ā−t

)
, which will lead to a burst of

input to one of the variables Ā±t . As a consequence, the transition rate tends to be
overestimated by Eq. (54) compared to Eq. (43).

In sum, while the inference approximation given by Eq. (54) does not provide an es-
timate of the variance, it does provide insight into the computations needed to estimate
the changepoint count and transition probability. Transitions increment the running es-
timate of the changepoint count, and this increment decays over time, inversely with the
total observation time t. Similar equations for the moments can be obtained in the case
of asymmetric transition rates, or more than two choices using Eq. (47) and Eq. (48)
respectively, although we omit their derivation here.

6 Learning transition rate in neural populations with plasticity

Models of decision making often consist of mutually inhibitory neural populations with
finely tuned synaptic weights (Machens et al, 2005; McMillen and Holmes, 2006; Wong
et al, 2007). For instance, many models of evidence integration in two alternative choice
tasks assume that synaptic connectivity is tuned so that the full system exhibits line at-
tractor dynamics in the absence of inputs. Such networks integrate inputs perfectly, and
maintain this integrated information in memory after the inputs are removed. However,
in changing environments optimal evidence integration should be leaky, since older in-
formation becomes irrelevant for the present decision (Deneve, 2008; Glaze et al, 2015).

We previously showed that optimal integration in changing environments can be
implemented by mutually excitatory neural populations (Veliz-Cuba et al, 2016). In-
stead of a line attractor, the resulting dynamical systems contain globally attracting
fixed points. Such leaky integrators maintain a limited memory of their inputs on a
timescale determined by the frequency of environmental changes. However, in this pre-
vious work we assumed that the rates of the environmental changes were known to the
observer. Here, we show that when these rates are not known a priori, a plastic neu-
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ronal network is capable of learning and implicitly representing them through coupling
strengths between neural populations.
Symmetric environment. We begin with Eq. (54), the leading order equations for
the likelihood P̄±t and change rate variables Ā±t derived in Section 5.2. We interpret
the likelihoods as neural population activity variables u±t := P̄±t , reflecting a common
modeling assumption that two populations receive separate streams of input associated
with evidence for either choice (Bogacz et al, 2006). Next, we define a new variable
w±t := Ā±t /P̄

±
t , which represents the synaptic weight between these neural populations.

In particular, w±t represents the strength of coupling from u±t to u∓t as well as the local
inhibitory coupling within u±t . Applying this change of variables to Eq. (54), we derive
a set of equations for the population activities, u±t , and their associated synaptic weights,
w±t :

du±t = u±t

[(
g±(t) +

1

2

)
dt+ dW±

t

]
+
[
w∓t u

∓
t − w±t u±t

]
dt (56a)

dw±t = −
[
w±t + w∓t −

w∓t
u±t

] [
1

t+ β
+ u∓t (w∓t − w±t )

]
dt. (56b)

This is a neural population model with a rate-correlation based plasticity rule (Miller,
1994; Pfister and Gerstner, 2006). We can interpret the non-autonomous term, 1/(t+β),
as modeling the dynamics of a chemical agent involved in the plasticity process whose
availability decays over time. Simple chemical degradation kinetics for a concentration
Ct yield such a function when

dCt = −C2dt, C(0) = 1/β ⇒ Ct =
1

t+ β
. (57)

We briefly analyze the model, Eq. (56), by considering the limit of no observation-
noise. That is, we assume g±(t) → ±∞ when Ht = H+ and Σ++ → 0, where
〈W+

t W
+
t 〉 = Σ++(t) · t, and analogous relations hold when Ht = H−. As a result,

when Ht = H+, then u+
t → 1 and u−t → 0, which we demonstrate in Appendix 7.6.

Plugging the expressions u+
t = 1 and u−t = 0 into Eq. (56b) for w+

t , we find

dw+
t = −

[
1

t+ β

]
w+
t dt. (58)

Next, we write Eq. (56b) for w−t in the form

u−t dw−t = −
[
u−t w

−
t + u−t w

+
t − w+

t

] [ 1

t+ β
+ u+

t (w+
t − w−t )

]
dt,

so by plugging in u+
t = 1 and u−t = 0, we find 0 = w+

t

[
1
t+β

+ w+
t − w−t

]
, which,

when w+
t 6= 0, simplifies to

w−t = w+
t +

1

t+ β
. (59)
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An analogous pair of equations holds when Ht = H− and thus u−t → 1 and u+
t → 0.

Solving Eq. (58,59) and their Ht = H− counterparts iteratively, we find that in the limit
of no observation-noise (e.g., g±(t)→ ±∞ when Ht = H±),

w±t =
w0β +m

t+ β
, w∓t =

w0β +m+ 1

t+ β
, (60)

where Ht = H± and w0 := wj(0) for H(0) = Hj , so w0 constitutes the initial estimate
of the change rate of the environment. Here, m is the number of changepoints in the
time series Ht during the time interval [0, t]. Eq. (60) can be re-expressed in the form
of a rate-based plasticity rule

dw±t =
[
δ(u+

t − u−t )− w±t
]
· Ct dt, (61)

where δ(u) is the Dirac delta distribution, along with Eq. (57) for the concentration
decay of the agent Ct. Note, that the non-negative term δ(u+

t − u−t ) in Eq. (61) results
in long term potentiation (LTP) of both synaptic weights, w±t , whenever the neural
activities, u±t , are both high, i.e. when their values cross at u±t = 0.5. During such
changes, the weights w±t are incremented. Outside of these transient switching epochs,
there is a constant long term depression (LTD) of the synaptic weights w±t modeled by
the term (−w±t ).

We schematize (Fig. 6A) and simulate (Fig. 6B,C) the resulting plastic neural
population network:

du±t = u±t
[
I±(t)dt+ dW±

t

]
+
[
w∓t u

∓
t − w±t u±t

]
dt (62a)

dw±t =
[
δ(u+

t − u−t )− w±t
]
· Ct dt. (62b)

The constant 1/2 has been absorbed into the population input, so that I±(t) = g±(t) +
1/2. It is important to note that Eq. (62) only performs optimal inference in the limit
of no observation-noise. Perturbing away from this case, we expect the performance
to be sub-optimal. However, as can be seen in Fig. 6C, the correct change rate is
approximated reasonably well.

Eq. (62), thus models evidence accumulation in a symmetrically changing envi-
ronment when the change rate, ε, is not known a priori. The model is based on the
recursive equation for the joint probability of the environmental state, H±, and change-
point count, a, derived in Section 3.1. We obtained a tractable model by first passing
to the continuum limit, and then applying a moment closure approximation to reduce
the dimension of the resulting equations. Obtaining the low-dimensional approximation
in Eq. (54) was crucial to obtaining a neural population model that approximates state
inference. We next extend this model to the case of asymmetric rates of change.
Asymmetric environment. The continuum limit of the inference process in an asym-
metric environment, Eq. (47), provides several pieces of information we can use to
identify an approximate neural population model. First, under the assumption of large
signal-to-noise ratios, the synaptic weights should evolve to reflect the number of de-
tected change-points, rescaled by the amount of time spent in each state

w+
t =

w+
0 β

+ +m+
t

t+ + β+
, w−t =

w−0 β
− +m−t

t− + β−
, (63)
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Figure 6: Neural network model with plasticity, inferring the current state Ht and rates
ε± of environmental change. (A) Schematic showing the synaptic weight w± from neu-
ral population u± 7→ u∓ evolving through long term potentiation (LTP) and long term
depression (LTD) to match the environment’s rate of change, ε± := ε. (B) When the
neural populations exchange dominance, their activity levels u± are both transiently
high. As a result, both synaptic weights, w±, increase via LTP. When only one popu-
lation is active, both weights decay via LTD, as described by Eq. (62b). (C) Inference
of the rate, ε, via long term plasticity of the weights for ε = 0.01, 0.05, 0.1. Though
the signal-to-noise ratio is finite (See Appendix 7.7), the weights in the network de-
scribed by Eq. (62) converge to the actual rate, ε. (D) Schematic showing the evolution
of weights w±t when rates are asymmetric, ε+ > ε−, so that w+

∞ > w−∞. The network is
described by Eq. (65). (E) Only the weightw±t decays through LTD when population u±t
is active, and only the weight w±t is potentiated through LTP when dominance switches
from u±t to u∓t , as in Eq. (65). (F) Network weights w±t converge to the asymmetric
rates, ε±. See Appendix 7.7 for details about the simulations.
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where w±0 := w±(0) are the network’s initial estimates of the change rates ε±, m± is
the true number of changepoints H± 7→ H∓ during the time interval [0, t], and t± is the
total length of time spent in the state H±.4 Second, the flux term in Eq. (47) indicates
that a memory process is needed to store the estimated time t± spent in each state H±.
This can be accomplished by modifying Eq. (57) for the plasticity agent, so that each
C±t decays only when the neural population of origin, u±t , is active. Thus we obtain the
pair of equations:

dC±t = −H(u±t − θ)
[
C±t
]2
. (64)

Expressing Eq. (63) as a system of equations for the synaptic weights, w±t , yields:

dw±t = H(u±t−τ − θ)
[
δ(u+

t − u−t )− w±t
]
· C±t dt. (65)

Here the function H(u±(t − τ) − θ) for θ ≥ 0.5, and τ > 0 enforces the requirement
that the population u±t must have a high rate of activity prior to the LTP event. Thus,
to learn asymmetric weights, there should be a small delay τ accounting for the time it
takes for the presynaptic firing rate to trigger the plasticity process (Gütig et al, 2003).
We demonstrate the performance of the network whose weights evolve according to
Eq. (65) in Fig. 6D,E. Note, the network with weights evolving according to Eq. (65)
can still infer symmetric transition rates ε± = ε, but it will do so at half the rate of the
network Eq. (62). This is due to the fact that Eq. (65) counts changepoints and dwell
times of each state H± separately.

We have thus shown that the recursive update equations for the state probability
in a dynamic environment lead to plausible neural network models that approximate
the same inference. Previous neural network models of decision making have tended
to interpret population rates as a representation of posterior probability (Bogacz et al,
2006; Beck et al, 2008). We have shown that the synaptic weight between populations
can represent the change rate of the environment. As a result, standard rate-correlation
models of plasticity can be used to implement the change rate inference process.

7 Discussion

Evidence integration models have a long history in neuroscience (Ratcliff and McK-
oon, 2008). These normative models conform with behavioral observations across
species (Brunton et al, 2013), and have been used to explain the neural activity that
underpins decisions (Gold and Shadlen, 2007). However, animals make decisions in an
environment that is seldom static (Portugues and Engert, 2009). The relevance of avail-
able information, the accessibility, and the payoff of different choices can all fluctuate.
It is thus important to extend evidence accumulation models to such cases.

We have shown how ideal observers accumulate evidence to make decisions when
there are multiple, discrete choices, and the correct choice changes in time. We assumed
that the rates of transition between environmental states are initially unknown to the
observer. An ideal observer must therefore integrate information from measurements to

4We use the notation H± for the two states here, for convenience and consistency with Eq. (62).
Similarly, we use ε± and t± rather than the numerical notation of the asymmetric case in Section 5.1.
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concurrently estimate both the transition rates and the current state of the environment.
Importantly, these two inference processes are coupled: Knowledge of the rate allows
the observer to appropriately discount older information to infer the present state, while
knowledge of transitions between states is in turn necessary to infer the rate.

Inference when all transition rates are identical is straightforward to implement in
resulting models. An ideal observer only needs to track the probability of the environ-
mental state and the total changepoint count, regardless of the states between which
the change occurred. However, when the transition rates are asymmetric, the result-
ing models are more complex. In this case, an ideal observer must estimate a matrix of
changepoint counts, distinguished by the starting and ending states. The number of pos-
sible matrices grows polynomially with the number of observations. This computation
is difficult to implement, and we do not suggest that animals make inferences about en-
vironmental variability in this way. However, understanding the ideal inference process
allowed us to identify its most important features. In turn, we derived tractable approxi-
mations and plausible neural implementations, whose performance compared well with
that of an ideal observer (Fig. 5D,E,F). We believe humans and other animals do gen-
erally implement approximate strategies when they need to infer such rates (Lange and
Dukas, 2009). Ideal observer models allow us to understand what inferences can be
made with the available information, which assumptions of the observer are important
(e.g., assuming an incorrect transition rate does not always have a large impact on per-
formance), and how such inferences could be approximated in networks of the brain
and other biological computers.

In many naturally occurring decisions like foraging, mate selection, and home-site
choice, animals simply need to identify the best alternative rather than the rate of en-
vironmental change (Johnson et al, 2013). Therefore, rapid approximations, or a guess
of the environmental change rate may provide better initial performance than learn-
ing the rate, which could be slow. Moreover, it appears that when measurements are
noisy, rates cannot be learned precisely even in the limit of infinite observations. Thus,
learning the rate may only be useful when noise is too high for single measurements to
determine the correct alternative, but sufficiently low to make rate inference possible.
There is evidence that humans adjust their rate of evidence-discounting, based on the
actual changerate of the environment (Glaze et al, 2015). However, further psychophys-
ical studies are needed to identify whether subjects use heuristic strategies to learn or
something close to the normative models we derived here.

A number of related models have been developed previously (Wilson et al, 2010;
Adams and MacKay, 2007). The present model is somewhat different, as a finite num-
ber of choices implies that the present environmental state is dependent on the previous
state. As a result, we found it was more efficient to implement an update equation that
estimated the present environmental state and the changepoints, rather than the time in
the present state.

Several of the assumptions we have made in this study could be modified to ex-
tend our analysis to more general situations. For instance, we have assumed that the
observer’s eventual choice does not affect the environment. However, in many natural
situations changes in the environment are a consequence of the observer’s actions (Cisek
and Pastor-Bernier, 2014). In more realistic situations it is likely that there is a sequence
of actions leading to an ultimate decision, and each action can influence the informa-

31

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 28, 2016. ; https://doi.org/10.1101/066480doi: bioRxiv preprint 

https://doi.org/10.1101/066480
http://creativecommons.org/licenses/by-nc-nd/4.0/


tion available to the observer. An animal making a foraging decision in a group collects
more evidence once it moves toward a particular food patch, but it may also draw other
members with it, changing the subsequent availability of food there (Petit et al, 2009).
Thus including a sequence of actions, and their impact on the available information
and the environment would be necessary in a realistic model. Another possibility is
that changes to the environment are non-Markovian and/or involve multiple timescales.
Extending our ideal observer models to estimate such change statistics might require
derivation of multi-step update equations. In such cases, we expect the truncations we
have applied in this work would be useful for identifying tractable approximations of
the optimal inference process.

Optimal models of evidence accumulation are useful both as baselines to compare
to performance in psychophysical experiments, and starting points for identifying plau-
sible neuronal network implementations. Our core contribution here has been to present
a general model of evidence accumulation in a dynamic environment, when an observer
has no prior knowledge of the rate of change. An unavoidable feature of these models
is that the number of variables the observer must track grows as more observations are
made, and growth is more rapid in asymmetric environments with multiple environ-
mental states. This motivated our development of continuum approximations and low-
dimensional moment equations for the optimal models, which suggest more plausible
neural computations. We hope this work will foster future theoretical studies that will
extend this framework, as well as experiments that could validate the models herein. To
fully understand the neural mechanisms of evidence accumulation, we must account for
the wide variety of conditions that organisms encounter when making decisions.
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Appendix

7.1 Two-state system with unknown symmetric rate
We show how to derive Eq. (3) from the main text. Bayes’ rule and the law of total
probability first yield:

Pn(Hn, an) =
1

P(ξ1:n)

∑
Hn−1=H±

n−2∑
an−1=0

P(ξ1:n|Hn, Hn−1, an, an−1)P(Hn, Hn−1, an, an−1).

Using the conditional independence of observations,

P(ξ1:n|Hn, Hn−1, an, an−1) = P(ξn|Hn)P(ξ1:n−1|Hn−1, an−1),

we find that,

Pn(Hn, an) =
1

P(ξ1:n)

∑
Hn−1=H±

n−2∑
an−1=0

P(ξn|Hn)P(ξ1:n−1|Hn−1, an−1)P(Hn, Hn−1, an, an−1).
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Furthermore, we can use the definition of conditional probability to write,

P(Hn, Hn−1, an, an−1) = P(Hn, an|Hn−1, an−1)P(Hn−1, an−1),

and Bayes’ rule also implies,

P(ξ1:n−1|Hn−1, an−1)P(Hn−1, an−1) = Pn−1(Hn−1, an−1)P(ξ1:n−1).

Hence, we derive Eq. (3) from the main text,

Pn(Hn, an) =
P(ξ1:n−1)

P(ξ1:n)
P(ξn|Hn)

∑
Hn−1=H±

n−2∑
an−1=0

Pn−1(Hn−1, an−1)P(Hn, an|Hn−1, an−1).

7.2 Numerical methods for free response protocol
The free response protocol is simulated by evolving the update Eq. (17) and subse-
quently computing the log likelihood ratio Ln := log(Rn) using Eq. (18) at each
timestep n. Each point along the curves in Fig. 3C corresponds to an average wait-
ing time and average performance corresponding to a threshold value θ over 100,000
simulations. For each value of θ, the simulation is terminated when |Ln| > θ and the
choice is given by the sign of Ln. To avoid excessively long simulations, we removed
any that lasted longer than n = 5000, but we found changing this upper bound did
not affect averages considerably. There were 400 values of θ chosen, discretizing the
interval from θ = 0 to θ = 3.89.

7.3 Continuum limit for two states with asymmetric rates
We begin by considering Eq. (34a), which provides an update of the probability of being
in state H1 after n observations, given the specific changepoint matrix a:

Pn(H1,a) = F1
n,∆t

[(
1− a21 + 1

1 + a21 + a11

)
Pn−1

(
H1,a− δ11

)
(66)

+
a12

1 + a12 + a22
Pn−1

(
H2,a− δ12

)]
,

where we have definedF1
n,∆t = P(ξ1:n−1)

P(ξ1:n)
f 1

∆t(ξn). Subsequently, we divide by Pn−1(H1,a)
and take the logarithm to find:

∆x1
n(a) = lnF1

n,∆t + ln

[(
1− a21 + 1

1 + a21 + a11

)
ex

1
n−1(a−δ11)−x1n−1(a)

+
a12

1 + a12 + a22
ex

2
n−1(a−δ12)−x1n−1(a)

]
.

Now, as we are taking the continuum limit, we consider P(Ht+∆t = H±|Ht = H∓) =
εij∆t + o(∆t), where 0 ≤ εij < ∞. Given a R2×2 transition rate matrix with off-
diagonal entries εij∆t + o(∆t) and diagonal entries 1 − εij∆t + o(∆t), the expected
changepoint and non-changepoint counts after n timesteps will be 〈aij∆t〉 = ∆tε12ε21n/(ε12+
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ε21) and 〈aii∆t〉 = εijn/(ε12+ε21). Thus, while the changepoint counts aij∆t scale with ∆t,
the non-changepoint counts do not. In the continuum limit, we will choose a time t :=
n∆t and take ∆t → 0 while keeping t constant, so the number of timesteps diverges
like n = t/(∆t) for a fixed time t. While the expected changepoint counts 〈aij∆t〉 thus
remain fixed, the non-changepoint counts 〈aii∆t〉 will diverge as (∆t)−1, suggesting we
should rescale non-changepoint counts to the absolute dwell time ti∆t = ∆taii∆t. The ex-
pected value of the dwell times is then finite in this limit lim∆t→0〈ti∆t〉 = εijt/(ε12+ε21).
Performing this change of variables, we then define the changepoint matrix as involv-
ing changepoint counts aij on the off-diagonal and dwell times along the diagonal:

A =

(
t1 a12

a21 t2

)
so an increment of non-changepoint count aii now takes the form

A+ ∆tδii. As such, we can now expand:

ex
i(a−δii) = ex

i(A−∆tδii) = ex
i(A) −∆tex

i(A)∂x
i(A)

∂ti
+O

(
(∆t)2) ,

via application of the chain rule and noting dti/daii = ∆t. Note, we cannot perform
such an expansion in ∆t to xi(A−δij), since perturbations to the matrixA in this case
are O(1). Truncating Eq. (66) to terms of O(∆t) and incorporating the Poisson-delta
prior Eq. (46), we find the discrete update equation becomes:

∆x1
n(A) = lnF1

n,∆t + ∆t ·
[
a12 + α2 − 1

t2 + β2

ex
2
n−1(A−δ12)−x1n−1(A) − a21 + α1

t1 + β1

−
∂x1

n−1(A)

∂t1

]
.

Lastly, upon taking the continuum limit ∆t→ 0, we find that

dx1
t (A) =

[
g1(t)dt+ dW 1

t

]
+

[
a12 + α2 − 1

t2 + β2

ex
2
t (A−δ12)−x1t (A) − a21 + α1

t1 + β1

− ∂x1
t (A)

∂t1

]
dt,

where the statistics of the drift g1(t) and noise dW 1
t are analogous to those given after

Eq. (42), only the transition rates ofHt fromHj 7→ H i are now εij . Note, due to the flux

term
∂x1

t (A)

∂t1
and continuum values for tj ∈ R∗, this is a stochastic partial differential

equation (SPDE). An analogous SPDE can be derived for x2
t (A) in the same way.

7.4 Continuum limit with multiple states and symmetric rates
The derivation parallels that with two states. To obtain the continuum limit, we use the
generalized version of Eq. (3),

Pn(Hn, an) =
P(ξ1:n−1)

P(ξ1:n)
P(ξn|Hn)

∑
Hn−1

∞∑
an−1=0

Pn−1(Hn−1, an−1)P(Hn, an|Hn−1, an−1).

(67)

Assuming again a Gamma prior on the transition rate, ε ∼ Gamma(α, β), and
following the derivations of Eq. (23) and (38), we obtain

P(Hn, an|Hn−1, an−1) =


1−∆t an+α

tn−1+β
Hn = Hn−1 & an = an−1

∆t an+α−1
(N−1)(tn−1+β)

Hn 6= Hn−1 & an = an−1 + 1

0 otherwise.

(68)
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Using Eq. (68) in Eq. (67) yields

Pn(H i, a) =
P(ξ1:n−1)

P(ξ1:n)
f i∆t(ξn)

[(
1−∆t

a+ α

tn−1 + β

)
Pn−1(H i, a)

+∆t
a+ α− 1

(N − 1)(tn−1 + β)

∑
j 6=i

Pn−1(Hj, a− 1)

]
.

Dividing by Pn−1(H i, a), taking logarithms, and denoting xitn(a) := ln Pn(H i, a)
we obtain

∆xitn(a) ∝ ln f i∆t(ξn) + ln

[
1−∆t

a+ α

tn−1 + β
+ ∆t

a+ α− 1

(N − 1)(tn−1 + β)

∑
j 6=i

e
xjtn−1

(a−1)−xitn−1
(a)

]
.

Using the approximation ln(1 + z) ≈ z valid for small z yields

∆xitn(a) ∝ ln f i∆t(ξn) + ∆t

(
a+ α− 1

(N − 1)(tn−1 + β)

∑
j 6=i

e
xjtn−1

(a−1)−xitn−1
(a) − a+ α

tn−1 + β

)
.

Similar to the N = 2 case, we may then take the continuum limit to yield Eq. (48).

7.5 Consistency of the moment hierarchy equations
We begin by taking the SDE given by Eq. (2) for N = 2 states, and the known rate ε,
and changing variables to P̄±t = ex

±
t , so

dP̄±t = P̄±t
[
g±(t)dt+ dW±]+ ε

[
P̄∓t − P̄±t

]
dt.

Furthermore, note that in the limit t → ∞, the O(1) terms and O(t−1) terms vanish in
Eq. (54):

dP
±
t = P

±
t

[(
g±(t) +

1

2

)
dt+ dW±

]
+
[
Ā∓t − Ā±t

]
dt (69a)

dĀ±t = Ā±(t)

[(
g±(t) +

1

2

)
dt+ dW±

]
+
(
Ā∓t − Ā±t

) (
Ā∓t + Ā±t

)
dt. (69b)

Therefore, in the event that Ā±t → εP̄±t in the long time limit (t → ∞), we find the
truncated system, Eq. (69), becomes

dP̄±t = P̄±t

[(
g±(t) +

1

2

)
dt+ dW±

]
+ ε ·

[
P̄∓t − P̄±t

]
dt (70a)

εdP̄±t = εP̄±(t)

[(
g±(t) +

1

2

)
dt+ dW±

]
+ ε2 ·

(
P̄∓t − P̄±t

) (
P̄∓t + P̄±t

)
dt. (70b)

Dividing by ε and noting that P̄+
t + P̄−t = 1, Eq. (70b) becomes

dP̄±t = P̄±t

[(
g±(t) +

1

2

)
dt+ dW±

]
+ ε ·

[
P̄∓t − P̄±t

]
dt,

which is consistent with Eq. (70a), and indicates the truncated moment hierarchy is
consistent with the case of known rates and two choices (N = 2) in the SDE Eq. (2).
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7.6 Noise-free limit of the neural population model
Consider the neural population Eq. (56a) for the evolution of u−t in the event of en-
vironmental state Ht = H+ and no observation-noise f±(ξ|H+) = δ(ξ − ξ±). As
a result, the drift terms diverge g±(t) := lim∆t→0

1
∆t

E
[
ln f±∆t(ξ)|H+

]
→ ±∞ and

the covariance matrix Σij(t) := lim∆t→0
1

∆t
Cov

[
ln f i∆t(ξ), ln f

j
∆t(ξ)

∣∣H+] → 0. Thus,
the dominant terms on the right hand side of Eq. (56a) for u−t come from the input so
du−t = −u−t |g−|dt, and the population activity immediately decays to u−t = 0. As a
result, since u+

t + ut− = 1, we expect u+
t = 1, when Ht = H+.

7.7 Numerical simulations of SDE models
Stochastic differential equation (SDE) models of evidence accumulation in symmet-
ric environments changing between two states are simulated using a standard Euler-
Maruyama integration algorithm (Higham, 2001). Eq. (43) describes the evolution of
an infinite number of SDEs over the changepoint vector a ∈ Z≥0, state vector Ht ∈
{H+, H−}, and time t ∈ [0, T ], so we truncate this space to a ∈ {0, 1, 2, ...., 1000},
which is sufficient for transition rates ε and total simulation times T not too large. We
compared our results to cases with longer state vectors a ∈ {0, 1, 2, ...., amax} and the
changes were negligible. Simulations shown in Fig. 5 had a transition rate of ε = 0.1
and total run time of T = 1000 with timestep dt = 10−3. Observations were sampled

from a normal distribution f±(ξ) =
e−(ξ∓µ)2/(2σ2)

√
2πσ2

with mean µ = 0.5 and variance

σ2 = 1, so the signal-to-noise ratio was 2µ/σ = 1. Initial conditions were chosen so
that P±0 = 0.5 and P0(a) = αae−α

a!
where α = 1 and β = 5. A similar approach was

used to numerically simulate the neural population model Eq. (62) and its variants to
produce Fig. 6, but µ = 1 and σ = 0.1, so the signal-to-noise ratio was 20.
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