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Abstract	
Long	sequencing	reads	generated	by	single-molecule	sequencing	technology	offer	the	possibility	of	
dramatically	improving	the	contiguity	of	genome	assemblies.	The	biggest	challenge	today	is	that	long	
reads	have	relatively	high	error	rates,	currently	around	15%.	The	high	error	rates	make	it	difficult	to	use	
this	data	alone,	particularly	with	highly	repetitive	plant	genomes.	Errors	in	the	raw	data	can	lead	to	
insertion	or	deletion	errors	(indels)	in	the	consensus	genome	sequence,	which	in	turn	create	significant	
problems	for	downstream	analysis;	for	example,	a	single	indel	may	shift	the	reading	frame	and	
incorrectly	truncate	a	protein	sequence.	Here	we	describe	an	algorithm	that	solves	the	high	error	rate	
problem	by	combining	long,	high-error	reads	with	shorter	but	much	more	accurate	Illumina	sequencing	
reads,	whose	error	rates	average	<1%.	Our	hybrid	assembly	algorithm	combines	these	two	types	of	
reads	to	construct	mega-reads,	which	are	both	long	and	accurate,	and	then	assembles	the	mega-reads	
using	the	CABOG	assembler,	which	was	designed	for	long	reads.	We	apply	this	technique	to	a	large	data	
set	of	Illumina	and	PacBio	sequences	from	the	species	Aegilops	tauschii,	a	large	and	highly	repetitive	
plant	genome	that	has	resisted	previous	attempts	at	assembly.	We	show	that	the	resulting	assembled	
contigs	are	far	larger	than	in	any	previous	assembly,	with	an	N50	contig	size	of	486,807.	We	compare	
the	contigs	to	independently	produced	optical	maps	to	evaluate	their	large-scale	accuracy,	and	to	a	set	
of	high-quality	bacterial	artificial	chromosome	(BAC)-based	assemblies	to	evaluate	base-level	accuracy.	
	
Introduction	

Long-read	sequencing	technologies	have	made	significant	advances	in	the	past	few	years,	with	read	
lengths	rapidly	increasing	while	costs	steadily	dropped.	Current	technology	can	yield	reads	with	average	
lengths	of	5-10	kilobases	(Kb)	and	a	throughput	that	can	reach	a	gigabase	(Gb)	from	a	single	Pacific	
Biosciences	(PacBio)	SMRT	cell.		Although	this	technology	remains	more	expensive	and	has	lower	
throughput	than	Illumina	short-read	sequencing,	it	is	now	feasible	to	generate	deep	coverage	of	a	large	
plant	or	animal	genome	at	a	modest	cost.	The	long	read	lengths	are	extremely	valuable	for	de	novo	
genome	assembly,	allowing	assemblers	to	overcome	many	of	the	problems	caused	by	repeated		
sequences.	This	is	particularly	true	for	plant	genomes	in	which	transposable	elements	with	lengths	
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greater		than	1	Kb	are	pervasive,	often	occupying	over	half	of	the	genome.	In	the	absence	of	other	
linking	information,	any	near-exact	repeat	longer	than	a	read	will	create	a	break	in	an	assembly.		
	
Traditionally,	the	primary	strategy	for	spanning	long	repeats	has	been	to	create	paired-end	libraries	
from	long	DNA	fragments,	ranging	in	size	from	2-10	Kb,	or	from	even	longer	fosmids	(~40	Kb)	or	BACs	
(~125-150	Kb).	These	strategies	yield	valuable	long-range	linking	information,	but	they	require	more	
complex	and	more	expensive	methods	of	preparing	DNA	so	that	both	ends	can	be	sequenced.	In	
contrast,	when	a	single	read	spans	a	repeat	and	contains	unique	flanking	sequences,	the	repeat	can	be	
directly	incorporated	into	the	assembly	without	the	need	to	use	paired-end	information.	
	
Recently,	several	assembly	techniques	have	been	developed	for	de	novo	assembly	of	a	large	genome	
from	high-coverage	(50x	or	greater)	PacBio	reads.	These	include	the	PBcR	assembler,	which	employs	the	
MHAP	algorithm	(Berlin	et	al.	2015)	together	with	the	CABOG	assembly	system;	the	HGAP	assembler	
(Chin	et	al.	2013),	the	CANU	assembler	(https://github.com/marbl/canu)	which	also	uses	MHAP;	and	the	
Falcon	assembler	developed	at	Pacific	Biosciences	(https://github.com/PacificBiosciences/FALCON).	
Other	methods	employ	a	hybrid	assembly	strategy,	in	which	short	Illumina	reads	are	used	to	correct	
errors	in	longer	PacBio	reads	(Koren	et	al.	2012;	Hackl	et	al.	2014;	Salmela	and	Rivals	2014).	
	
In	this	paper	we	describe	a	new	hybrid	assembly	technique	that	can	produce	highly	contiguous	
assemblies	of	large	genomes	using	a	combination	of	PacBio	and	Illumina	reads.	The	new	method		
extends	Illumina	reads	into	super-reads	(Zimin	et	al.	2013)	and	then	combines	these	with	the	PacBio	
data	to	create	mega-reads,	essentially	converting	each	PacBio	read	into	one	or	more	very	long,	highly	
accurate	reads.	The	mega-reads	software,	which	is	now	incorporated	into	the	MaSuRCA	assembler,	can	
handle	hybrid	assemblies	of	almost	any	plant	or	animal	genome,	including	genomes	as	large	as	the	22	
Gbp	loblolly	pine.	We	use	this	method	to	produce	an	assembly	of	the	large	and	complex	genome	of		
Aegilops	tauschii,	one	of	the	three	diploid	progenitors	of	bread	wheat.		The	Ae.	tauschii	genome	is	
unusually	repetitive	and	has	proven	extremely	difficult	to	assemble	using	short	read	data.	
		
Ae.	tauschii	is	a	cleistogamic	inbreeder,	and	its	genome	is	nearly	homozygous,	making	it	an	excellent	
asset	for	evaluation	of	error	rates	in	assembly.	To	this	end,	we	have	generated	an	optical	BioNano	
genome	(BNG)	map	for	the	Ae.	tauschii	genome,	which	provided	a	sequence-independent	means	of	
evaluating	the	large-scale	accuracy	of	the	assembly,	as	we	discuss	below.	We	have	also	independently	
sequenced	the	Ae.	tasuchii	genome	using	an	ordered	BAC-clone	sequencing	approach,	which	provides	a	
means	of	evaluating	the	base-level	accuracy	of	the	assembly.		
	
Computational	Methods	
Sequencing	data	requirements.	Our	assembly	recipe	calls	for	at	least	100x	genome	coverage	by	paired	
Illumina	reads	of	100-250bp,	combined	with	at	least	10x	coverage	in	PacBio	reads.	Based	on	preliminary	
data,	we	expect	that	generating	deeper	PacBio	coverage,	up	to	60x,	is	likely	to	improve	the	final	results.	
The	mega-reads	algorithm	has	the	following	main	steps.	
	
Super-read	construction.	We	first	transform	Illumina	paired-end	reads	into	super-reads,	as	described	
previously	(Zimin	et	al.	2013).	The	super-reads	algorithm	builds	a	database	of	all	sequences	of	a	user-
specified	length	k,	and	then	extends	these	k-mers	in	both	directions	as	long	as	the	extensions	are	
unambiguous.	In	most	cases,	the	super-reads	will	be	much	longer	than	the	original	Illumina	reads,	
typically	averaging	400	bp	or	more,	depending	on	the	repetitiveness	of	the	genome.	Subsequent	steps	
of	our	algorithm	use	the	longer	but	much	lower	coverage	(usually	2-4x)	super-reads,	thus	providing	a	
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very	substantial	degree	of	data	compression.	Another	benefit	of	the	longer	super-reads	is	that	they	can	
be	mapped	to	the	high-error	PacBio	reads	much	more	reliably	than	the	shorter	Illumina	reads,	and	
therefore	provide	a	better	vehicle	for	error	correction.	
	
For	the	next	two	steps,	we	treat	each	PacBio	read	as	a	template	to	which	super-reads	can	be	attached,	
as	illustrated	in	Figure	1.		
	
Approximate	alignment	along	a	PacBio	read.	We	create	approximate	alignments	of	the	super-reads	to	
each	PacBio	read	using	15-mers	that	the	PacBio	read	has	in	common	with	super-reads.	(Note	that	the	
choice	of	k=15	for	this	step	was	made	empirically,	but	it	can	be	changed	for	different	data.)	We	first	
build	a	database	of	all	15-mers	in	the	super-reads,	and	use	this	database	to	compute,	for	each	super-
read,	its	approximate	start	and	end	positions	on	each	PacBio	read.	This	approach	is	similar	(although	
different	in	many	details)	to	both	MHAP	(Berlin	et	al.	2015)	and	minimap	(Li	2016),	in	that	both	these	
other	algorithms	find	chains	of	"seed"	alignments	in	long	PacBio	reads.	Our	method	does	not	compute	a	
full	alignment.		
	
For	each	PacBio	read	P,	we	walk	down	the	read	looking	at	each	15-mer.	We	use	the	15-mer	database	to	
determine	(in	constant	time	for	each	15-mer)	which	15-mers	are	found	in	super-reads.	Once	we	have	
the	super-reads	that	match	P,	for	each	such	super-read	S	we	look	for	ordered	subsequences	of	the	15-
mers	that	both	P	and	S	have	in	common.	(The	15-mers	can	be	overlapping.)	We	then	assign	a	score	to	
each	super-read	S,	where	the	score	is	number	of	15-mers	in	the	longest	common	subsequence	(LCS)	of	
15-mers	in	the	two	reads.		We	label	an	alignment	as	plausible	if	the	score	of	S	exceeds	some	specified	
minimum.	For	each	plausible	alignment,	we	compute	an	approximate	position	of	S	along	P	based	on	the	
positions	of	the	LCS	15-mers	in	P	and	S.	
	
Note	that	a	super-read	can	align	to	many	different	PacBio	reads;	the	number	will	depend	on	the	depth	
of	coverage	of	the	PacBio	data.	
	
Graph	traversal	for	a	PacBio	read.	Let	K	denote	the	K-mer	size	that	was	used	to	generate	the	super-
reads.	After	super-reads	are	constructed,	we	record	all	exact	overlaps	of	pairs	of	super-reads	for	which	
the	length	of	the	overlap	is	at	least	K.	
	
Using	all	super-read	positions	on	a	PacBio	read	P,	we	create	possible	paths	of	(plausible)	super-reads	
along	P.		Each	path	consists	of	a	sequence	of	super-reads	where	two	adjacent	super-reads	must	have	an	
exact	overlap	of	at	least	K	bases,	and	also	must	have	positions	on	P	that	make	it	possible	for	them	to	
overlap.	We	compute	an	LCS	score	for	each	path.	
	
A	path	might	span	only	part	of	P,	and	conversely	subsequences	of	P	might	not	be	covered	by	any	path.	
We	then	form	a	graph	consistiing	of	the	paths	along	P,	where	super-reads	are	the	nodes	and	K-overlaps	
are	the	edges.	For	each	connected	component	of	paths	(or	more	precisely	a	connected	graph	of	super-
reads),	we	compute	the	LCS	score	and	we	choose	the	path	with	the	highest	score.	We	call	each	such	
path	a	pre-mega-read.		The	sequence	of	a	mega-read	is	essentially	a	long,	high-quality	“read”	that	
covers	part	or	all	of	the	original	PacBio	read	P.	
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At	this	point,	each	connected	component	is	a	directed	acyclic	graph	(DAG)	of	super-reads	that	overlap	
by	at	least	K	bases	and	that	align	to	P.	The	approximate	positions	of	the	super-reads	on	P	impose	a	
topological	order	on	the	DAG.		We	impose	an	overall	direction	on	the	DAG	from	the	5’	end	towards	the	
3’	end	of	P.		

	

Figure	1.	Overview	of	the	mega-reads	algorithm.	Low-error	rate	Illumina	reads	(top	left)	are	used	to	
build	longer	super-reads	(green	lines),	which	in	turn	are	used	to	construct	a	database	of	all	15-mers	
in	those	reads.	PacBio	reads	(purple	lines)	and	super-reads	are	then	aligned,	using	the	15-mer	
database.	Inconsistent	super-reads	are	show	as	kinked	lines;	these	are	discarded	and	the	remaining	
super-reads	are	merged,	using	the	PacBio	read	as	a	template,	to	produce	pre-mega-reads	(yellow).	
These	are	further	merged	to	produce	the	final	mega-reads	and	to	generate	linking	mates	across	gaps.	
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Tiling.	We	tile	the	PacBio	read	P	with	the	pre-mega-reads	in	a	greedy	fashion,	beginning	with	the	longest	
pre-mega-read,	and	disallowing	overlaps	longer	than	K	bases	(Figure	1).	We	choose	the	pre-mega-reads	
for	P	by	maximizing	the	total	of	all	LCS	scores	in	the	tiling.		
	
Many	PacBio	reads	will	be	tiled	by	more	than	one	pre-mega-read;	i.e.,	the	tiling	has	gaps.		Gaps	might	be	
caused	by	lack	of	Illumina	read	coverage	for	parts	of	the	genome,	or	by	long	stretches	of	poor	quality	
sequence	in	a	PacBio	read,	or	(rarely)	by	chimeric	PacBio	reads.		Even	though	we	have	PacBio	sequence	
spanning	these	gaps,	we	choose	not	to	simply	merge	the	pre-mega-reads	using	raw	PacBio	read	
sequence	because	that	might	create	stretches	of	low-quality	sequence	in	the	mega-reads.	However,	if	
multiple	PacBio	reads	overlap	one	another	for	the	sequence	in	one	of	these	gaps,	we	can	sometimes	fill	
the	gap	between	pre-mega-reads.	We	only	use	raw	PacBio	read	sequence	if	3	or	more	PacBio	reads	have	
nearly	identical	gaps,	for	which	the	pre-mega-reads	surrounding	the	gap	are	identical	and	the	gap	
lengths	are	nearly	identical.	In	these	cases,	we	create	a	consensus	sequence	from	the	multiple	PacBio	
reads	and	use	that	to	fill	the	gaps	in	each	of	them.		
	
It	is	also	possible	that	a	gap	in	the	tiling	is	not	a	gap	at	all,	but	instead	is	an	erroneous	insertion	in	the	
PacBio	read.	In	these	cases,	the	pre-mega-reads	flanking	the	gap	may	overlap	one	another.	If	the	pre-
mega-reads	overlap	by	at	least	37	bp,	then	we	merge	them	to	close	the	gap.	
	
Note	that	the	user	can	set	the	maximum	gap	size	for	the	gap-filling	procedure,	and	the	algorithm	will	
not	attempt	to	fill	gaps	larger	than	this	maximum.		If	one	sets	the	maximum	gap	size	to	zero,	the	mega-
reads	assembler	will	not	use	raw	PacBio	sequence	at	all,	and	will	only	join	pre-mega-reads	when	they	
have	an	exact	overlap	of	37	bases	or	more.	
	
The	result	of	this	tiling	and	gap-filling	process	is	the	final	set	of	mega-reads.		
	
Creating	linking	pairs.		When	mega-reads	cannot	be	merged	and	a	gap	remains,	we	create	a	linked	pair	
of	“reads”	that	spans	the	gap.	We	extract	two	500	bp	sequences	from	the	mega-reads	flanking	the	gap	
and	link	them	together	as	mates	(Figure	1).	(If	either	mega-read	is	<500	bp,	we	create	a	shorter	linking	
read.)	The	assembler	uses	these	sequences	in	its	scaffolding	step	to	ensure	that	all	mega-reads	from	the	
same	PacBio	read	are	kept	adjacent	in	the	assembly;	i.e.,	they	are	placed	into	the	same	scaffold.		We	call	
these	artificial	mates	the	linking	pairs.	
	
Assembly.		Finally,	we	assemble	the	mega-reads	along	with	the	linking	pairs	into	contigs	and	scaffolds	
using	the	CABOG	assembler	(Miller	et	al.	2008).	For	this	step	we	can	also	use	other	linking	information,	if	
available,	for	scaffolding.		
	
Results	
	
Data	sets.	We	generated	over	19	million	PacBio	reads,	equivalent	to	~38x	genome	coverage,	using	the	
SMRT	P6-C4	chemistry.	We	also	generated	a	total	of	177x	coverage	on	an	Illumina	HiSeq	2500	in	paired	
200	bp	reads	and	an	Illumina	MiSeq	with	paired	250	bp	reads	(Table	1).	These	data	sets	were	the	only	
input	used	for	our	hybrid	assembly	of	Ae.	tauschii.	
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Table	1.	Input	data	used	for	the	Ae.	tauschii	hybrid	assembly.		Coverage	is	computed	
based	on	an	estimated	genome	size	of	4.25	Gb.		Paired	Illumina	reads	were	generated	
from	fragments	whose	lengths	averaged	450-500	bp.	
Sequence	data	type	 Number	of	reads	 Average	read	

length	(bp)	
Genome	
coverage	

Illumina	HiSeq	paired-end	 1.98	x	109	 200	 93.2x	
Illumina	MiSeq	paired-end	 1.41	x	109	 250	 83.6x	
PacBio	SMRT	P6-C4		 19.22	x	106	 8,519	 38.5x	

	
Ae.	tauschii	assembly.	The	methods	described	above	produced	16.7M	super-reads	from	the	Illumina	
data,	and	18.7M	mega-reads	from	the	super-reads	and	PacBio	reads	(Table	2).	We	aligned	both	super-
reads	and	mega-reads	to	an	Illumina-only	assembly,	produced	by	the	DeNovoMagic	assembler,	and	the	
average	identity	was	99.91%	and	99.77%	respectively.	From	this	we	estimate	that	the	error	rates	for	
super-reads	and	mega-reads	were	less	than	0.09%	and	0.23%	(respectively)	because	some	of	the	
mismatches	might	be	caused	by	haplotype	differences	or	by	errors	in	the	Illumina-only	assembly.	
	
We	next	ran	the	CABOG	assembler	(version	wgs-8.3rc2)	to	produce	an	initial	assembly	of	the	mega-
reads.	This	assembly	contained	128,898	scaffolds	totaling	4.778	Gb	in	length.	We	then	ran	four	rounds	
of	alignment,	aligning	each	scaffold	to	all	others,	to	remove	scaffolds	that	were	either	duplicated	or	that	
were	completely	contained	within	other	scaffolds.	For	this	alignment	step	we	ran	bwa-mem	(Li	2013)	
with	parameters	–k127 –e	and	then	used	nucmer	(Delcher	et	al.	2002a)	to	find	and	remove	duplicate	
alignments.	This	procedure	identified	a	total	of	75,338	scaffolds	(most	of	them	very	small)	that	were	
contained	in	other	scaffolds	and	could	be	safely	removed.	Total	computational	time	for	all	steps	of	the	
assembly	was	approximately	110,000	CPU	hours,	with	about	72,000	CPU	hours	for	computing	super-
reads	and	mega-reads,	and	the	remaining	time	spent	in	assembly	of	contigs	and	scaffods.	The	code	is	
highly	parallelized	so	that	most	procedures	were	run	in	parallel	on	large	computing	grids.	
	

Table	2.	Statistics	for	super-reads	and	mega-reads.	Super-reads	were	constructed	from	
Illumina	data,	and	mega-reads	were	constructed	as	described	in	the	main	text.	
Coverage	is	based	on	an	estimated	genome	size	of	4.25	Gbp.	Error	rates	were	
computed	by	mapping	the	reads	against	Illumina-only	contigs.	
	 Number	 Coverage	 Average	

length	(bp)	
N50	(bp)	 Error	rate	

(%)	
Super-reads	 16.7	x	106	 1.9x	 474	 749	 <0.09	
Mega-reads	 18.7	x	106	 27.8x	 6,319	 9,378	 <0.23	

	
The	resulting	Ae.	tauschii	assembly,	version	Aet_MR.1.0,	contains	53,560	scaffolds	with	a	total	span	of	
4.338	Gb,	a	contig	N50	size	of	486,807	bp,	and	a	scaffold	N50	size	of	521,653	bp	(Table	3).	As	described	
above,	scaffolding	was	minimal	because	it	used	only	the	linking	pairs	created	from	mega-reads	that	
flanked	gaps	in	the	original	PacBio	reads.	Thus	for	every	gap	internal	to	a	scaffold,	we	have	at	least	one	
PacBio	read	spanning	the	gap.	The	principal	benefit	of	PacBio	reads	and	of	the	mega-reads	algorithm	is	
the	much	larger	contigs	that	result,	~30	times	larger	than	the	contigs	from	an	Illumina-only	assembly	
(Table	3).	
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Table	3.	Assembly	statistics	for	Ae.	tauschii	Aet_MR.1.0	compared	to	other	assemblies.	N50	numbers	
were	computed	using	an	estimated	genome	size	of	4.25	Gb.		The	Canu	assembly	used	PacBio	data	only	
but	at	deeper	coverage,	55x.	The	DeNovoMagic	assembly	used	additional	Illumina	paired	reads	from	
fragments	ranging	in	size	from	3-10	Kb.	The	SOAPdenovo	assembly	(Jia	et	al.	2013)	used	94x	coverage	in	
Illumina	and	454	sequences.	The	MaSuRCA	mega-reads	assembly	used	only	the	short-fragment	Illumina	
pairs	plus	the	PacBio	data.			
Assembler	 MaSuRCA	mega-

reads	
Canu	 DeNovoMagic	 SOAPdenovo	

(Jia	et	al.	2013)	
Total	assembly	length	(bp)	 4,328,138,807	 4,064,667,949	 4,044,191,731	 2,691,663,445	
N50	contig	size	(bp)	 486,807	 311,860	 16,392	 2,105	
Number	of	contigs	 68,565	 24,115	 841,938	 1,107,056	
	
We	also	created	a	whole-genome	assembly	with	the	PacBio	reads	only,	using	the	Canu	assembler	(Berlin	
et	al.	2015).	For	this	assembly	we	generated	additional	data	to	bring	the	PacBio	coverage	up	to	55x.	The	
Canu	assembly	had	a	total	length	of	4.06	Gb	and	an	N50	size	(using	4.25	Gb	as	the	genome	size)	
of	311,860	bp	(Table	3).	It	is	worth	noting	here	that	the	Aet_MR.1.0	assembly	has	many	more	contigs	
than	the	Canu	assembly,	but	this	is	due	to	a	large	number	of	small	contigs	in	the	tail	of	the	distribution,	
and	to	the	fact	that	the	Aet_MR.1.0	assembly	is	~264	Mb	larger.	If	we	select	contigs	from	the	
Aet_MR.1.0	assembly	whose	sizes	total	4.06	Gb	(the	same	total	as	the	Canu	assembly),	we	need	only	
24,309	contigs,	almost	exactly	the	same	number	as	in	the	Canu	assembly,	and	the	smallest	such	contig	is	
15,911	bp.	
	
Evaluation	of	assembly	quality.	We	evaluated	the	quality	of	the	output	contigs	using	two	metrics:	large-
scale	contiguity	and	consensus	sequence	accuracy.	To	evaluate	large-scale	accuracy	we	aligned	the	
Aet_MR.1.0	contigs	to	independently	developed	genome	maps	created	using	nanochannel	arrays	from	
BioNano	Genomics.		This	technology	allows	the	construction	of	accurate	maps	based	on	restriction	
enzymes,	in	which	DNA	molecules	are	passed	through	a	nanochannel	and	fluorescently	tagged	
restriction	sites	are	detected	(Lam	et	al.	2012).	This	process	creates	many	small	restriction-mapped	
regions	that	can	span	several	megabases	each.	Nanochannel	maps	have	recently	been	used	to	improve	
the	assembly	of	portions	of	several	highly	repetitive	plant	genomes,	including	one	arm	of	the	bread	
wheat	genome	(Stankova	et	al.	2016),	a	2-Mb	fragment	of	Ae.	tauschii	(Hastie	et	al.	2013),	and	six	small	
but	complex	regions	of	the	maize	genome	(Dong	et	al.	2016).	To	use	these	maps	to	assess	quality	of	a	
sequence	assembly,	the	distances	and	positions	of	the	same	restriction	sites	along	the	nanochannel	map	
(“nanomap”)	contigs		are	compared	with	a	restriction	map	constructed	computationally.		
	
Here	we	used	the		Ae.	tauschii	nanomap	only	to	evaluate	the	correctness	of	Aet_MR.1.0;	it	was	not	used	
to	construct	or	modify	the	assembly.	We	aligned	our	contigs	to	the	Ae.	tauschii	nanomap	using	the	
restriction	sites	in	the	contigs,	and	searched	for	regions	of	disagreement,	which	indicate	either	an	error	
in	the	nanomap	or	a	mis-assembled	contig.	Note	that	the	nanomap	does	not	contain	sequence,	and	the	
only	errors	this	procedure	can	detect	are	relatively	large-scale	rearrangements,	insertions,	or	deletions.	
	
We	found	572	locations	where	a	contig	disagreed	with	the	nanomap.		A	typical	signature	of	a	possible	
mis-assembly	is	a	sharp	drop	in	coverage,	indicating	a	possible	“weak”	overlap	holding	the	contig	
together.	Given	that	the	average	coverage	in	mega-reads	was	~28x	(Table	3),	we	flagged	as	a	possible	
mis-assembly	any	disagreement	with	the	nanomap	where	the	coverage	was	<4;	this	analysis	flagged	342	
locations.		We	examined	a	small	set	of	the	higher-coverage	discrepancies	by	hand,	and	in	each	case	the	
assembly	appeared	correct	(based	on	underlying	support	from	paired	Illumina	reads);	thus	we	
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concluded	that	these	are	likely	to	represent	errors	in	the	nanomap	rather	than	in	Aet_MR.1.0.		Thus	for	
the	full	assembly	of	4.28	Gb,	we	estimate	approximately	1	assembly	error	per	12.5	Mb.	
	
Next	we	evaluated	the	base-level	sequence	quality	by	aligning	the	contigs	to	5,216	assembled	BAC	
pools,	each	containing	eight	overlapping	BACs	with	approximately	1	Mb	per	pool.		These	pools	were	
independently	assembled	from	250-bp	Illumina	MiSeq	reads	using	SOAPdenovo2	(Luo	et	al.	2012),	and	
previously	released	as	a	preliminary	assembly	(Aet	0.4)	at	
ftp://ftp.ccb.jhu.edu/pub/data/Aegilops_tauschii.		The	reads	used	for	these	BAC	pool	assemblies	were	a	
subset	of	reads	we	used	for	creating	the	mega-reads.		We	aligned	all	contigs	to	the	BAC	pool	assemblies	
with	Nucmer	program	from	the	MUMmer	package	(Delcher	et	al.	2002b;	Kurtz	et	al.	2004)	with	a	
minimum	match	length	of	127	bp	to	anchor	each	alignment.	
	
We	then	computed	the	average	identity	for	all	alignments	longer	than	10	Kb,	which	is	long	enough	to	
span	almost	all	repeats	in	the	genome.	This	yield	10,597	alignments	covering	1,629,700,561	bp,	and	the	
average	identity	was	99.96%,	with	values	ranging	from	99.24%	to	100%.	Thus	the	base-level	accuracy	of	
the	assembly	appears	very	high:	note	that	some	differences	between	the	haploid	BAC	assemblies	and	
the	diploid	whole-genome	assembly	are	likely	due	to	haplotype	differences.	In	support	of	this	
hypothesis,	if	we	consider	only	the	alignments	at	99.99%	identity,	these	cover	650,572,225	bp	(40%)	of	
the	aligned	regions.	
	
Discussion	
	
Both	Ae.	tauschii	and	its	close	relative,	the	hexaploid	wheat	(Triticum	aestivum),	have	proven	difficult	to	
assemble	because	of	their	unusually	high	proportion	of	repetitive	sequences.	A	previously	published	
version	of	Ae.	tauschii	(Jia	et	al.	2013)	yielded	only	2.69	Gbp	(~63%	of	the	genome)	spread	across	1.1	
million	contigs.	Attempts	to	assemble	T.	aestivum	have	met	with	similar	problems:	a	massive	effort	to	
sequence	T.	aestivum	chromosome-by-chromosome	yielded	only	61%	of	the	genome	in	very	small	
contigs	with	N50	sizes	from	1.7	to	8.9	Kb	(International	Wheat	Genome	Sequencing	2014).	Most	of	the	
repeats	in	Ae.	tauschii	and	in	other	plants	consist	of	transposons	(Lisch	2013),	which	occur	in	thousands	
of	copies,	many	of	them	nearly	identical,	throughout	the	genome.	Assembly	algorithms	can	find	the	
correct	location	for	these	elements	if	the	input	data	include	reads	that	are	long	enough	to	contain	the	
entire	span	of	a	repeat	plus	unique	flanking	regions	on	either	side.		
	
The	PacBio	reads	generated	in	this	study,	with	an	average	read	length	of	8520	bp,	are	easily	long	enough	
to	span	most	transposable	elements,	which	are	usually	2-3	kilobases	in	length	(though	some	can	be	
longer).	However,	the	high	error	rate	of	PacBio	reads	requires	some	form	of	error	correction	before	
these	sequences	can	be	used	in	a	final	assembly.	The	mega-reads	introduced	here	solve	both	these	
problems:	with	an	average	length	of	6319	bp,	they	are	long	enough	to	contain	the	ubiquitous	2-3	Kbp	
repeats	in	the	Ae.	tauschii	genome,	and	they	are	accurate	enough–much	more	accurate	than	raw	
Illumina	reads–to	be	used	to	generate	a	high-quality	assembly.	Using	these	mega-reads,	we	have	
generated	a	whole-genome	assembly	of	Ae.	tauschii	with	an	N50	contig	size	of	486,807	bp,	more	than	
20	times	longer	than	any	previous	assembly.	The	unprecedented	contiguity	of	this	assembly	provides	a	
strong	foundation	for	additional	mapping	and	assembly	work	to	create	a	far	more	complete	picture	of	
this	important	plant	genome.	The	strategy	described	here,	using	deep	coverage	Illumina	sequencing	
with	moderate	coverage	PacBio	sequencing,	demonstrates	a	cost-effective	approach	to	generating	
highly	contiguous,	accurate	assemblies	of	large	genomes,	even	when	those	genomes	contain	large	
numbers	of	long,	near-identical	repeats.	
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Data	and	software	availability.	The	MaSuRCA	mega-reads	software	is	freely	available	from	
http://genome.umd.edu/masurca.html.	The	Ae.	tauschii	assembly,	version	Aet_MR.1.0,	is	available	from	
NCBI	under	BioProject	PRJNA329335.	
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