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Abstract: 

 

Short-read, next-generation sequencing (NGS) is now broadly used to identify rare or de 

novo mutations in population samples and disease cohorts. However, NGS data is known 

to be error-prone and post-processing pipelines have primarily focused on the removal of 

spurious mutations or "false positives" for downstream genome datasets. Less attention 

has been paid to characterizing the fraction of missing mutations or "false negatives" 

(FN). Here we interrogate several publically available human NGS autosomal variant 

datasets using corresponding Sanger sequencing as a truth-set. We examine both low-

coverage Illumina and high-coverage Complete Genomics genomes. We show that the 

FN rate varies between 3%-18% and that false-positive rates are considerably lower 

(<3%) for publically available human genome callsets like 1000 Genomes. The FN rate is 

strongly dependent on calling pipeline parameters, as well as read coverage. Our results 

demonstrate that missing mutations are a significant feature of genomic datasets and 

imply additional fine-tuning of bioinformatics pipelines is needed. To address this, we 

design a phylogeny-aware tool [PhyloFaN] which can be used to quantify the FN rate for 

haploid genomic experiments, without additional generation of validation data. Using 

PhyloFaN on ultra-high coverage NGS data from both Illumina HiSeq and Complete 

Genomics platforms derived from the 1000 Genomes Project, we characterize the false 

negative rate in human mtDNA genomes. The false negative rate for the publically 

available mtDNA callsets is 17-20%, even for extremely high coverage haploid data. 
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Introduction  

 

Mutation is the process by which novel genetic variation is generated; thus, the 

accurate identification of mutations in genomic data is of the utmost importance for 

mapping Mendelian disease, population genetic analysis, tumor sequencing, and rare 

variant phenotype/genotype associations (Shendure and Akey 2015). Multiple 

bioinformatic algorithms have been developed to call mutations from short read, next-

generation sequencing (NGS) data (DePristo et al. 2011; Ramu et al. 2013; Pabinger et al. 

2014). However, there is a growing consensus that both short- and long-read NGS 

associated calling methods generate datasets with appreciably high error rates, 

particularly for rare or de novo mutations (Wall et al. 2014; Ségurel et al. 2014; O’Rawe 

et al. 2015). These technical error profiles affect many forms of human genomic data, and 

are particularly crucial for the identification of de novo mutations in disease phenotypes 

(Kong et al. 2012; Ng et al. 2010; Bamshad et al. 2011) and somatic tissue (Tomasetti et 

al. 2013; Costa et al. 2015). Raw 2nd generation sequencing read data contains a great 

number of false positive variants (i.e. referred to as “sequencing error”) 	

(Robasky et al. 2013; Reumers et al. 2011). Accordingly, pre- and post-processing 

pipelines filter the raw data in order to discard false positive variants. However, such 

pipelines may also remove true variants, which will then result in a relatively high false 

negative rate in the variant callset.  

Recent efforts to quantify NGS error rates have primarily been focused on the 

identification of false positive errors in human NGS data (Zook et al. 2014; Kennedy et 

al. 2014). However, the need for the quantification of false negatives in such data has 
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received far less attention (Brandt et al. 2015; Pabinger et al. 2014). High error rates 

complicate disease studies which search for de novo disease mutations between parents 

and probands with exome or genome sequencing. There is often a high number of 

candidate de novo mutations identified in trio/duo, but most candidates are a result of 

either a false positive in the offspring or a false negative in a parent 

(Girard et al. 2011; Veeramah et al. 2013; Vissers et al. 2010).  For example, Vissers et 

al. (Vissers et al. 2010) identify 51 candidate de novo mutations in ten probands with 

mental retardation, but were only able to validate 13 with Sanger sequencing. Sanger 

validation of the parents revealed that only 9 of these were truly de novo,  the remaining 4 

were likely false negatives in the parents (i.e. 30% false negative rate). Other studies 

identify similarly high false negative rates (Michaelson et al. 2012), but the precise ratio 

in a given study will depend on many factors. For example, in the context of trio 

pedigree-based calling, filtering for mutations which are already present in a large SNP 

repository, such as dbSNP, will mean that recurrent de novo mutations are eliminated 

from the final callset; recent work with the EXaC database specifically highlights this 

problem (Lek et al. 2016). Recently, Chen et al. (Chen et al. 2016) report that damage 

introduced in-vitro during NGS library preparation results in a high number of spurious 

variants, and estimate that this damage causes the majority of G to T transversions in 

73% of large, publically available datasets (i.e. 1000G and the Cancer Genome Atlas 

[TCGA]). A balanced assessment of both false positive and false negative error rates is 

necessary for Mendelian and complex disease identification approaches, but also crucial 

for evolutionary studies of mutation rates (Ségurel et al. 2014). 
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Previous attempts to quantify the false negative rate in NGS vary widely in 

approach. Perhaps the most common experiment previously conducted is the sequencing 

of familial trios and then Sanger validating select de novo mutations (see above example). 

Similarly, comparison between monozygotic twins or multiple NGS sequencing 

experiments using the fraction of mutations which fail to replicate in the same or related 

individuals has been reported as an estimate of the FN rate. These latter two general 

approaches, however, may not identify issues which systematically affect variant calling 

pipelines, such as filter properties. Nor is FN rates specific to human genomic sequencing 

(Auton et al. 2012; Nevado et al. 2014; Wang et al. 2013); work on model and non-model 

organisms have also produced variable FN rates. For example, short-read next generation 

sequencing of an inbred, non-reference mouse strain was compared to traditional BAC 

Sanger sequencing for 16Mb of sequence; in this inbred mouse, Keane et al. (Keane et al. 

2011) estimate that the false negative rate is 6.5% and that the FN rate was twice the false 

positive rate. The false negative rate for short indels was notably higher (20%) (Keane et 

al. 2011). This study exemplifies how FN identification remained significant even for the 

accessible regions of a homozygous organism with a well-constructed reference genome. 

Marsden et al. (Marsden et al. 2016) estimate a false negative rate of 8%-10% in >15x 

dog genomes using both a comparison to genotyping arrays and an evolutionary 

calculation. Other approaches include the simulation of false negatives by introducing 

artificial variants into the read data directly and then estimating the fraction of artificial 

variants that were recovered by NGS calling pipeline. The problem with this approach is 

that authors may report extremely low FN rates using best-case scenarios; for example, 
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defining “callable” sites after eliminating artificial mutations that failed coverage or other 

filters (Keightley et al. 2014) and as such is not a true false negative rate.   

We empirically measured the false negative and false positive rates from 

published autosomal NGS data from the 1000 Genomes Project [1000G] and Human 

Genome Diversity Panel [HGDP] via Sanger-based sequencing validation (Wall et al. 

2008). These results indicate that the autosomal FN rate from published datasets is highly 

variable and significantly greater than 1%. We then present a new phylogeny-based 

method to identify false negative errors in haploid non-recombining callsets (like mtDNA 

or Y-chromosomes) without generating additional validation data. The input sequences 

used by our method must be both homologous and non-recombining so that a single, non-

ambiguous phylogeny can be constructed. Our approach can be broadly used to optimize 

the FN rate in haploid human next-generation sequencing experiments as set by the user. 

We apply our method to single nucleotide variants (SNVs) in human mitochondrial NGS 

data for more than 2,500 individuals. We reconsider germline mutation rate estimation in 

the context of false negatives by identifying de novo mutations from 131 mother/child 

duos from 1000 Genomes Phase 3 Complete Genomics data. We find that many 

candidate de novo mtDNA mutations are spurious due to a combination of false positive 

variants identified in the child and/or missed variants (false negatives) in the mother. Our 

results are in general agreement with the rates that have been calculated in previous 

Sanger sequencing studies (Howell et al. 2003) only if we aggressively filter the dataset. 

 

Estimating false negative error rates using Sanger sequencing data  
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We verified the ubiquity of false negatives in autosomal next-generation sequence 

data by a more conventional approach, comparing NGS variant calls to Sanger-based 

sequencing. We compare public variant call datasets from Illumina and Complete 

Genomics genomes to an independently published Sanger-sequencing experiment 

(Veeramah et al. 2012), performed on the same individuals (see below, all samples are 

cell-line derived). This Sanger data consists of short 2 kilobase intervals distributed at 40 

loci throughout the autosomes. These loci were previously chosen to estimate neutral 

genetic diversity in human populations and hence are located at some distance from 

genes. These Sanger data differ from prior experiments because they were not chosen 

merely to validate specific NGS variants, as typically occurs for most NGS validation 

experiments. Hence, they represent an unbiased estimate of the false negative and false 

positive rates. Comparable NGS and Sanger sequence data were available for 6 Mbuti 

(MBI), 6 Yoruba (YRI) and 16 Luhya (LWK) (Veeramah et al. 2012). 

 We obtained comparable next-generation sequencing data from 28 human 

genomes sequenced as part of the Human Genome Diversity Project (Henn et al. 2016), 

Complete Genomics public dataset and the 1000 Genomes Project (Durbin et al. 2010). 

The forty 2 kilobase intergenic Sanger sequences for 28 individuals were independently 

aligned to the reference genome (GRCh37) using BLAST. We designed a Perl script that 

used the BLAST trace-back operation (BTOP) string to generate a VCF file. For 

consistency, we excluded indels from this analysis so the autosomal and mitochondrial 

false negative rates could be compared. We ensured that both Sanger sequences (one per 

chromosome) had the same start and stop position and manually trimmed problem 

alignments if necessary (Figure 1B). We compared the Sanger sequences to single-
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sample called and multi-sampled called variants, as well as imputed and unimputed 

versions of these callsets (Table 1). In order to generate single-sample callsets for the 

1000 Genomes and HGDP data, we used BAM files released from these projects and 

generated VCFs using GATK’s Genotyper (-stand_emit_conf 30; -stand_call_conf 30). 

Emit-all files were generated so depth information would be available at all sites. Sites 

that fall below the stand_emit_conf or stand_call_conf are still emitted but with a 

LowQual flag. Complete Genomics variant data were only publically available from their 

proprietary single-sample calling pipeline. 

We count false negatives by comparing variants identified by Sanger sequencing 

to NGS. Each site receives a score of 0, 1, or 2: 0 indicates concordance between the 

Sanger and NGS genotype call, a score of 1 indicates that one alternate allele was not 

identified by NGS, and a score of 2 indicates that both alternate alleles were missed by 

NGS. To calculate the false negative rate for a sample, the scores for each site are totaled 

and divided by the number of expected calls, that is, the number of alternate alleles from 

the Sanger sequencing and multiplied by 100. Imputation is expected to identify highly 

probable genotypes that were absent in an initial dataset; imputation is a standard 

“refinement” feature of large genome datasets – including publically available 1000G and 

HGDP. We therefore score imputed and unimputed datasets differently, penalizing 

missing variants in an imputed dataset even if there is no coverage at the locus (see Table 

S1). In addition, we penalize sites in our single-sample emit-all VCFs that were called 

variants but marked with LowQual, as these variants would not be included in a typical 

variant-only file. We count false positives and the false positive rate using a similar 

scoring system. A score of 0 at a given site indicates concordance between the NGS and 
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Sanger variants, a score of 1 indicates that one alternate allele was identified by NGS as 

variant but was reference in the Sanger data, and a score of 2 indicates that a site was 

called homozygous alternative by NGS and homozygous reference by Sanger. 

  

False Negative and False Positive Autosomal Rates for Public NGS Callsets 

We first examine the single sample called variants for all three datasets. The 1000 

Genomes and HGDP data represent low coverage autosomal datasets (~7x) 

(Supplementary Information, Table S1), while Complete Genomics represents a high 

coverage dataset (~54x). We expect the high coverage data to have significantly lower 

FN rates due to enhanced read coverage. In the 1000G LWK samples, we observe an 

average false negative rate of 18.3% in the unimputed single-sample callset (Table 1). In 

the HGDP Mbuti samples, the observed mean false negative rate was 7.6% in the single-

sample callset. The observed Complete Genomics YRI genomes single-sample FN rate 

was 5.7% (Table 1). Our results indicate a significant difference between the single-

sample calling of the 1000G false negative rate (18.3%) and the HGDP false negative 

rate (7.6%) which may be due to factors including library preparation, read length, 

sequencing instrument sensitivity, and base or variant recalibration. Both callsets were 

generated using parameters as specified in GATK’s best practices documentation. The 

coverage was marginally higher on average in the 1000G dataset (7.43x) than HGDP 

(6.71x). Surprisingly, the high coverage CG data had a FN rate nearly identical to the low 

coverage HGDP genomes. This demonstrates that coverage alone is not the primary 

determinant of FNs in a dataset; other factors, likely variant filters and sequencing 

technology (Robasky et al. 2013; Reumers et al. 2011) are important determinants.   
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False negatives are common at low coverage sites but are also observed at higher 

coverage sites in our dataset, e.g. 17x in a LWK individual (NA19307, chr4, position 

27450119) (Figure S2). With biallelic sampling, the probability of sequencing only one 

gamete 17 times is very low (p=7.6*10-6); however, given the large number of sites 

obtained from whole genome sequencing the expected number of sites obtained from 

only a single gamete is still very large (e.g. ~19,000 assuming even 17x coverage of 

2.5Gb). Not all of these sites, however, will contain a non-reference variant. We 

systematically investigated the range of coverage for false negative variants identified 

from the single-sample called datasets (Figure 3). It is important to note that we do not 

call a site FN in the single-sample callset if there is 0x coverage; however, if there were 

sufficient reads present for the emit-all determination of a reference allele, then we do 

consider the site in our FN rate. We observe FNs at a range of coverages, most of the 

Illumina FNs were covered by 4x or more reads (Figure 3, S2). Coverage is far less 

variable in the smaller Complete Genomics dataset, but we still observe false negatives at 

~40x to almost 90x coverage. Contrary to our expectation, we find that the allele 

frequency for a variant is not a good proxy for estimating the probability of a false 

negative given there is almost an even distribution of false negatives across all allele 

frequencies in our sample population (Figure S3). 

Imputation is often used to ‘fill-in’ missing variants that may be present at 

appreciable frequency in a genomic dataset but are missing in a given individual due to 

variation in coverage or stochastic sampling. We considered the FN rates in multi-sample 

called and imputed datasets. In the 1000 Genomes LWK samples, we observe an average 

FN rate of 5.9% in the imputed multi-sample callset (Table 1). We were unable to 
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calculate the FN in a multi-sample unimputed dataset for these LWK samples as 1000 

Genomes does not make this variant dataset publically available. In the HGDP Mbuti 

samples that were imputed and multi-sample called, we observe an 8.8% FN rate but a 

3.3% FN rate in multi-sample unimputed calls (see Table 1).  

Finally, we also calculated the false positive rates for these samples using the 

same Sanger dataset in order to assess potential trade-offs in sensitivity versus specificity 

(Table 1, Figure S4). False positive rates were indeed much lower than FN rates, 

indicating that calling pipelines implemented for these public datasets were optimized for 

reducing false positives. The 1000G single-sample dataset has a false positive rate of 

2.2% and is further reduced in the imputed multi-sample calls to 0.6%. The HGDP 

callsets have false positive rates of 2.9% in the single-sample callset, 1.2% in the multi-

sample unimputed callset, and 1.1% in the multi-sample imputed dataset. We did not 

observe a single FP in the Complete Genomics dataset, suggesting that the CG variant 

calling pipeline strongly optimizes for accurate specificity of FPs.   

 

mtDNA FN identification 

To identify false negative variants without generating additional experimental 

data, we leverage the phylogenetic nature of genetic sequences. In the absence of 

recombination, any given contiguous sequence of nucleotides can be modeled as being 

inherited identically by descent (IBD) by creating a phylogenetic tree of shared and 

derived mutations. In the absence of repeat mutation, any two DNA sequences with a 

recent common ancestor will share a set of mutations IBD, as well as carry their own 

unique and derived mutations. Using a detailed public mtDNA phylogeny 
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(phylotree.org), we identified all variants shared by multiple mtDNA genomes such that 

they form the internal branches of the phylogeny. These mtDNA variants have been 

identified via Sanger sequencing; over the past 15 years, over 20,000 mtDNA genomes 

have deposited in NCBI and carefully curated by a variety of consortiums (phylotree.org, 

mitomap.org). We estimate the false negative rate for each sample by assigning a next-

generation sequenced individual to a haplogroup in the phylogeny, and count the number 

of missed variants using the known set of mutations for the assigned haplogroup (see 

Figure 1). It is important to note that mutations on terminal branches are excluded, as we 

do not know whether these maybe private to the given sample used to build the tree. In 

addition, the rate of back mutation is assumed to be negligible but could be implemented 

in this model. HaploGrep was designed to be robust haplogroup assignment tool, 

considering the entire mitochondrial genome or any subset of it (Kloss-Brandstätter et al. 

2011).  As such, even if a variant that defines a large clade on the phylogenetic tree is 

removed, HaploGrep is still able to accurately place the genome in the proper 

haplogroup, albeit with a lower confidence score. Therefore, we can still use the 

phylogenetic nature of the mitochondrial genome to identify missing variants. 

False negative estimates were calculated for two different sequencing platforms: 

393 individuals in pedigree trios were sequenced by Complete Genomics (Drmanac et al. 

2010) and 2,535 individuals from the 1000 Genomes Phase 3 dataset (Auton et al. 2015) 

sequenced via Illumina HiSeq platforms. Many individuals that were sequenced with 

Complete Genomics were also sequenced in the 1000 Genomes dataset allowing us to 

directly compare the false negative rate between the two platforms. The Complete 

Genomics data contained variants (up to about 50 base pairs in length) called via the 
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company’s assembly pipeline with respect to the revised Cambridge Reference Sequence 

(rCRS) of the human mitochondrial genome (Andrews et al. 1999; Anderson et al. 1981). 

The Illumina dataset consisted of mitochondrial genomes sequenced using 75 - 100 bp 

paired-end reads that were mapped using the Burrows-Wheeler Aligner (BWA) software 

(Li and Durbin 2009). Variant calling by the 1000 Genomes Consortium was performed 

with the Genome Analysis Toolkit (GATK) software (DePristo et al. 2011; McKenna et 

al. 2010). During preparation of the callset, it was assumed that for any given locus the 

mtDNA has only one allele in a particular individual and heterozygous sites were 

removed. 

We developed a software tool, PhyloFaN, that accepts VCF or VAR files as input 

data and is capable of lifting over variants detected using hg19 reference genome to the 

rCRS mitochondrial reference genome; variants detected with GRCh37 (NC_012920) do 

not require liftover to rCRS as the mitochondrial sequences are identical. Once input 

variants are aligned to match the rCRS numbering convention, both insertions and 

deletions are removed from the sample callset and complex multi-nucleotide 

polymorphisms and multi-allelic sites are split into individual records. Mitochondrial 

haplogroups are then assigned to each sample using the HaploGrep algorithm (Kloss-

Brandstätter et al. 2011) according to the mtDNA phylogenetic tree (van Oven and 

Kayser 2009). 
We isolate the expected internal variants for each sample based on its assigned 

haplogroup, and computed the rate in which haplogroup-defining variants were not 

observed. This rate is computed with a Bayesian inference routine, the Bernoilli p is used 

with a Jeffreys prior. The number of Bernoulli experiments, n, is represented as the 
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number expected variants, given its haplogroup assignment, and the number of successes, 

k, is represented by the number of variants out of the expected that were found (see 

Supplemental Methods for details). 

In the Complete Genomics dataset, our algorithm estimates that 2,313 out of 

11,429 predicted variants were missing from the NGS variant callset. This corresponds to 

a false negative rate of 20.2% (confidence interval, CI: 19.5%-21.0%). We repeated the 

procedure for the Illumina mtDNA and obtained a false negative rate of 21.3% (95% C.I. 

between 21.1% and 21.5%). The ~2,300 variants identified as missing in the Complete 

Genomics data and the ~18,100 variants identified as missing in the Illumina data are 

plotted according to their mitochondrial base pair location (Figure 2). False negatives are 

particularly enriched in the hypervariable regions, despite excluding indels from the FN 

calculation. The tandem repeats in the hypervariable region could cause an increase in de 

novo mutations due to replication slippage, which is common in an origin of replication 

with a repetitive nature. However, false negatives were not enriched in regions of 

repetitive sequence as identified with RepeatMasker (regions shown in Figure 2). Higher 

mutation rate in this region could be responsible for a fraction of the apparent ‘false 

negatives’ observed using this model (but see below). 

We investigated whether the loss of these putative true variants from the callset 

was due to the strictness of filters applied by the post-processing pipelines. Such 

pipelines tend to optimize filtering out false positive variants, which are highly prevalent 

in raw 2nd generation sequencing data (DePristo et al. 2011; O'Rawe et al. 2013). We 

hypothesized that these pipelines would often miss large numbers of variants that are, in 

truth, present within the raw sequence data. We confirmed that the missing variants were 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted October 18, 2016. ; https://doi.org/10.1101/066043doi: bioRxiv preprint 

https://doi.org/10.1101/066043


	 15	

indeed present in the pre-pipeline BAM files. For example, the HaploGrep algorithm 

assigns individual HG00097 to haplogroup T2f1a1. The mitochondrial phylogeny has a 

substitution from G to A at position 8860 (rs2001031) derived in the reference sequence 

haplogroup, H2a2. Thus, the phylogeny predicts that the mitochondrial sequence of 

HG00097 would to have a G at this locus, whereas the reference sequence has an A. This 

G variant was not present in the sample VCF file but was indeed present in the original 

BAM file for this sample (Figure S1).  

The variant at location 8860 contributes to the false negative rate in our case study 

to a great extent due to the fact that it defines the H2a2 haplogroup of the Cambridge 

Reference Sequence. It is predicted but missing in 2,533 of the 2,535 Illumina VCF files. 

As a result, the corresponding 2,533 false negative calls comprise 17% of the false 

negatives we detect in the Illumina callset. This variant represents the central peak in 

Figure 2. We also checked whether the exclusion of multi-allelic variants in the public 

1000G Illumina mtDNA files significantly affects the FN rate. Here, “multi-allelic” is 

defined as a locus that has more than two alleles present among the sampled individuals.  

As per our expectation, allowing for multi-allelic variants in the VCF improved the false 

negative rate, decreasing from 21.3% to 17.1% (C.I.: 16.8%-17.3%).  Multi-allelic 

variants may be more common in mtDNA datasets than autosomal due to high relative 

mutation rate of mtDNA. 

We further investigated the effect of decreasing the number of stringency filters in 

the GATK pipeline on the false negative rate. Specifically, we recalled variants using the 

original BAM files using GATK’s UnifiedGenotyper (McKenna et al. 2010) with respect 

to the GRCh37 reference sequence. The choice of reference genome is significant 
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because most variant calling pipelines align to a reference genome from which non-

reference variants are identified; FN’s are, by default, assumed to carry the reference 

allele (Degner et al. 2009; Brandt et al. 2015). We ran GATK default emit-all parameters 

(i.e. permissive genotype calling) on each individual sample separately (referred to as 

“single-sample calling”). This pipeline dramatically reduced the false negative rate in 

Illumina data, from 17.1% down to 2.28%. We note that is approach is likely associated 

with a great number of false positive variant calls because these filters are built to 

minimize sequencing error in autosomal sequences – but the experiment demonstrates 

how the majority of the false negatives are present in the short read data and erroneously 

excluded in subsequent filtering processes. In summary, we find that most FN variants 

are missing due to filtering within the post-processing pipeline. 

We then tested whether false negative status of a variant correlates with short read 

coverage. To compute the depth of coverage for each base pair location in each sample in 

our Illumina data, we used GATK’s DepthOfCoverage (McKenna et al. 2010). Average 

coverage for the variants identified as false negatives was found to be 2,022x, while that 

for the variants expected from the phylogeny and contained in the VCF files was 2,244x. 

The difference between coverage values of the former group and those of the latter group 

was shown to be significant by a t-test (p < 2.2×10-16, 95% C.I. for the difference in 

coverage between 197x and 248x). A best-fit logit linear regression model of the 

dependence of false negative status on coverage based on the same data had an intercept 

equal to -1.36 and a coefficient of the explanatory variable equal to -0.000105. A logit 

model with these parameters predicts that an increase in coverage from 2,000 to 3,000 

reads leads to a decrease in the probability of false negative status from 17.3% to 15.8%. 
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In other words, for our extremely high-coverage data, the effect of coverage on the false 

negative error status via the pipeline filters is significant but not very large. 

 

mtDNA de novo mutation rate 

 Our results indicate that the false negative rate is sensitive to variant filtering and 

coverage, leading to false negative rates of 6-20% for publically available datasets. We 

illustrate the effect of the FN rate by considering its impact on estimates of the human 

mtDNA germline mutation rate. We estimate the germline mtDNA mutation rate by 

comparing mitochondrial genomes of mothers with those of their children to identify de 

novo mutations. We utilize 131 mother-child pairs from the 1000 Genomes Phase 3 

Complete Genomics samples (Auton et al. 2015) for which genotype calls were provided 

by proprietary CG processing pipelines. We identified 36 mitochondrial SNVs that were 

present in the child but not in the mother (Table 2). For each mother-child pair that had a 

putative de novo mutation, we used HaploGrep to assign haplogroups on the basis of the 

known mitochondrial phylogenetic tree (Kloss-Brandstätter et al. 2011; van Oven and 

Kayser 2009), separately for both the mother and the child. 

Next, to confirm maternal assignment for each duo, we compared the haplogroups 

that HaploGrep assigned to the mother and the child for each of the pairs. We retain pairs 

for which either (a) the mother’s haplogroup was the same as the child’s, (b) the child’s 

haplogroup was contained within the mother’s or (c) the mother’s haplogroup was 

contained within the child’s. Two of the 34 candidate de novo mutations came from 

mother-child pairs whose haplogroup pairs did not fall in either of the above-mentioned 

categories indicating sample swaps or non-maternity. For each of the remaining candidate 
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mutations, we then checked the variant call in the mother’s data. We excluded 15 

candidate de novo mutations that had been identified within segments that had a ‘no-call’ 

status in the mother (Table 2). We then applied our phylogenetic method of identifying 

false negatives to each of the remaining 19 candidate de novo mutations to test whether 

the absence of each of these variants in the mother’s sequence was due to a false negative 

call at the locus in question. For 9 of the remaining candidate mutations, the variants in 

the mother’s sequence were predicted to be present based on the mother’s phylogenetic 

lineage, so the corresponding candidate mutations were excluded. This left us with 10 

candidate de novo mutations: 8 in the coding region and 2 in the control region. 

In order to assess whether our final de novo mutation candidates could still be 

false positives, we compared their variant quality scores (varScoreVAF column in the 

Complete Genomics VAR files for children that had the corresponding SNVs) with those 

of all SNVs identified in our Complete Genomics data (Figure S5). The ten de novo 

mutation candidates have significantly lower variant quality scores than the rest of the 

SNVs in the dataset (Mann-Whitney test, p = 0.02) indicating that many of them are 

likely spurious variants. Only 4 variants had a varScoreVAF (derived from maximum 

likelihood model) greater than 5000.   

Using the 131 duo dataset, we could then compare the NGS mtDNA coding 

region mutation rate with earlier Sanger sequencing estimates. By dividing the number of 

putative de novo mutations by the total called sequence length (see Supplemental 

Methods), we obtain an estimate of 8 / 1,981,090 = 4.04×10-6 mutations per base pair per 

generation (95% CI: 1.74×10-6 - 7.96×10-6) in the human mitochondrial coding region and 

2 / 146,610 = 1.36×10-5 mutations per base pair per generation in the control region (95% 
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CI: 1.65×10-6 and 4.93×10-5). However, if we consider only the two coding region 

mutations which have a quality score greater than 5000, then we obtain an estimate of μ = 

1.01×10-6/bp/g. Howell and colleagues (Howell et al. 2003) produce a Sanger pedigree-

based estimate of the coding region mutation rate of 6.0×10-7 bp/g (99.5% CI: 8.0×10-8 - 

2.0×10-6 bp/g), after conversion from the divergence rate to the mutation rate and 

assuming 20 years per generation; inclusion of all 8 mutations in Table 1 results in a 

mutation rate outside of the earlier confidence interval, while our more conservative 

1.01×10-6/bp/g is consistent with Howell et al.’s meta-analysis. A recent mtDNA genome 

μ estimate of 2.7×10-7/bp/g from extremely high coverage NGS sequencing of 39 mother-

child duos is significantly lower than the pedigree estimate here; however Rebolledo-

Jaramillo et al. (Rebolledo-Jaramillo et al. 2014) note that they heavily filtered variant 

calls in order to confidently discriminate heteroplasmies from sequencing artifacts, and 

therefore their estimate should be seen as a lower bound. We note that multi-generational 

pedigrees are needed to discriminate de novo germline mutations from somatic mutations. 

Assuming that the true FN detection rate in the CG dataset is ~20%, one could also argue 

that our μ should be corrected by 20% to account for missing de novo variant calls in the 

child (Table S2).  

 

Conclusions:  

We demonstrate that false negative mutations are a significant feature of short-

read, next-generation sequencing data sets. While various previous reports have estimated 

FN rates for specific datasets, the general assumption is either that read coverage is the 

primary determinant of false negatives or imputation will correct for sparsely missing 
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variants. Gross characterization of the expected false negative rate for any given 

sequencing experiment is often difficult because the FN rate is sensitive to post-

processing variant calling pipeline parameters. Previously, these pipeline parameters have 

been optimized for false positive removal (Table 1). Autosomal FN results presented 

here range between 3%-18% for large, publically-available human genome datasets. 

While 80 total kilobases per individual contains relatively few SNPs, our validation 

approach here is unique for using an unbiased dataset that was not chosen to specifically 

validate de novos for independent published datasets. 

We provide a computational tool [PhyloFaN] for rapid estimation of the FN rate 

in new genomic datasets, which will allow optimization of the FN rate without relying on 

new Sanger sequencing validation. Our phylogenetic approach is currently confined to 

non-recombining homologous loci, such as mtDNA and the Y chromosome. While 

PhyloFaN can be used to systematically explore the effect of pipeline parameters on the 

false negative in haploid systems, it is an imperfect proxy for assaying autosomal data. 

Future extensions using ancestral recombination graphs or ARGs (Rasmussen et al. 

2014), however, hold great potential. Finally, we describe one instance in which 

increasing coverage hundredfold still results in large false negative rates by exploring 

FNs and FPs in 131 high-coverage mtDNA duos from 1000 Genomes. We find that the 

majority (89%) of putative de novos identified in the child are due to either variant 

quality issues or false negatives in the mother (resulting in a ‘false positive’ de novo for 

the child). Accurate identification of de novo mutations remains a critical challenge for 

Mendelian disease, cancer genomics and mutation rate estimation. 
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Figure Legends: 
 
Figure 1: Two Schematics Illustrating False Negative Identification. A) A schematic 
representation of (1) the process that was used to obtain mitochondrial SNV data for each 
individual (before the “assign to tree” arrow) and (2) the algorithm that was used to 
identify false negatives in such data (i.e. SNVs that should have been present, but were 
not) based on an independently obtained phylogenetic tree (phylotree.org). B) Schematic 
summarizing NGS false negative identification with Sanger validation. Each box 
summarizes the steps and data formats that were used to identify NGS false negatives 
assuming that the Sanger sequenced fragments represented the true variation. 
 
Figure 2: Histogram of mtDNA False Negatives by Chromosomal Location. Grey 
bars indicate areas of repetitive sequence on the mitochondrial chromosome, obtained by 
the application of RepeatMasker (including simple repeats) to the mitochondrial 
sequence.  
 
Figure 3: Autosomal False Negative Sites by Coverage and Allele Frequency. Each 
dot represents an NGS autosomal false negative (FN) site in one individual from the 
single-sample variant calling dataset. FNs are colored by project (Table 1). The Complete 
Genomics dataset has higher mean coverage than the two Illumina datasets in our study. 
To calculate allele frequency, Sanger data from the three African populations were 
combined and the allele frequency across the dataset was estimated as the non-reference 
allele frequency. The y-axis represents the non-reference allele frequency relative to 
hg19. False negatives span the full frequency range in all three datasets. 
 
Table 1: Autosomal False Negative Rates Assessed from Sanger Sequencing 
 
Table 2: Candidate de novo mitochondrial mutations from 131 duos  
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 Table 1: Autosomal False Negative Rates Assessed from Sanger Sequencing 

Population Sample ID Multi-sample Imputed Multi-sample Unimputed Single-sample Calls 

    FN1 FP2 FN1 FP2 FN1 FP2 

LWK 
 

(1000G) 

NA19027 - - - - 12.1% 3.30% 

NA19028 6.0% 0.0% - - 18.8% 2.01% 

NA19041 8.1% 0.7% - - 14.9% 2.70% 

NA19044 6.3% 1.2% - - 29.9% 2.87% 

NA19046 5.0% 0.6% - - 32.0% 2.87% 

NA19307 9.3% 0.6% - - 15.4% 1.65% 

NA19308 7.0% 0.0% - - 4.7% 0.58% 

NA19309 6.0% 0.0% - - 11.1% 1.51% 

NA19317 4.2% 0.6% - - 18.1% 3.01% 

NA19319 5.1% 0.6% - - 14.2% 1.70% 

NA19346 3.1% 0.0% - - 19.8% 0.62% 

NA19350 5.3% 0.0% - - 22.3% 0.97% 

NA19360 3.9% 0.6% - - 12.8% 1.67% 

NA19371 9.6% 2.3% - - 31.5% 3.93% 

NA19373 6.3% 0.0% - - 21.4% 3.14% 

NA19380 3.9% 1.7% - - 13.7% 3.30% 
Mean (SD) 5.9% ±0.5% 0.6% ±0.2% - - 18.3% ±1.9% 2.2% ±0.3% 

MBI 
 

(HGDP) 

HGDP00449 7.4%  1.0% 5.0% 2.0% 8.4% 3.5% 

HGDP00456 4.7%  0.05% 2.6% 1.6% 3.2% 2.1% 

HGDP00462 13.6%  1.6% 4.2% 1.6% 12.6% 2.1% 

HGDP00471 6.9%  0.6% 1.3% 0.6% 6.3% 1.3% 

HGDP00474 6.6% 1.5%  4.1% 0.5% 4.6% 2.6% 

HGDP00476 13.2%  1.5% 2.9% 1.0% 10.8% 5.9% 

Mean (SD) 8.8% ±1.5%  1.1% ±0.6%  3.3% ±0.6% 1.2% ±1.7% 7.6% ±1.5% 2.9% ±0.7% 

YRI 
 

(1000G)3 
(CG)3 

NA18501 2.9% 0.0% - - 9.4% 0.0% 

NA18502 1.7% 0.0% - - 9.6% 0.0% 

NA18505 4.6% 0.0% - - 9.9% 0.0% 

NA18517 1.6% 0.0% - - 0.0% 0.0% 

NA19238 - - - - 9.4% 0.0% 

NA19239 - - - - 8.7% 0.0% 

Mean (SD) 2.7%   ±1.4% 0.0% - - 7.8% ±1.6% 0.0% 
1 Indicates the false negative rate as assessed from comparison to 80 kilobases of Sanger 
sequencing from the same individual. 
2 Indicates the false positive rate as assessed from comparison to 80 kilobases of Sanger 
sequencing from the same individual. We assume the Sanger sequencing does not contain 
spurious mutational errors. 
3 The multi-sample imputed column represents low-coverage data from 1000G; the single-sample 
column represents the high-coverage Complete Genomes data. 
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Table 2: Candidate de novo mitochondrial mutations from 131 duos 
Mother ID Child ID Source Haplogroup 

Assignment 
Candidate de 

novo mutation1 
FP in child due 
to ‘No call’ in 

Mother2 

FP in child due to 
FN in Mother3 

GS000016020 GS000016048 LCL U4b1b1 8655 (242)   

    10566 (22)   

GS000016039 GS000016539 LCL H2a5b / H2a5 9835 (8342) 3166 (7413)  

GS000016041 GS000016538 LCL U5b2a1a+16311 
/ U5b2 

204 (9262)   

GS000016398 GS000016412 LCL T2 / T2b 14050 (629)   

GS000016456 GS000016408 LCL H52 2351 (2147)   

GS000016465 GS000016380 LCL H5b1 279 (13042)   

    14569 (8028)   

GS000017172 GS000017223 LCL L3e2b1a2 2045 (1342) 2483 (73) 16189 (516, L3e2b) 

GS000017130 GS000017271 Blood B2 3173 (2494)   

GS000016414 GS000016400 LCL U5a1a2b  750 (2424) 1700 (6051, U5a1a) 

     1438 (1584) 3197 (17404, U5a'b) 

     2706 (10860) 11467 (6271, U) 

     10915 (8882) 14793 (8883, U5a) 

     14766 (4244) 15218 (8736, U5a1) 

     15326 (10230)  

GS000016469 GS000016540 LCL H3a1a  4769 (129)  

GS000017276 GS000017275 Buffy L1b1a15  3936 (1003)  

GS000016396 GS000016409 LCL U3a1a/U3a1  8860 (205)  

GS000016011 GS000016459 LCL W1c1  2706 (12255)  

     4769 (305)  

GS000017242 GS000016026 LCL U5a1  2706 (11788)  

     8994 (1864)  

GS000017185 GS000017173 LCL L2a1f   16192 (4551, L2a1f) 

GS000017227 GS000017119 LCL L2b3a   16213 (6945, L2b) 

GS000017045 GS000017047 Buffy L1b1a15     16355 (6228, L1b1a15) 

   Total count 10 15 9 
1  Mitochondrial base pair position for each candidate de novo mutation which appeared in the 
child but not the mother. The variant quality score for the child’s SNV is indicated in parentheses. 
Quality scores greater than 5000 are indicated in bold (see supplemental Figure S3 for bimodal 
distribution of variant quality scores). 
2 mtDNA position of candidate de novo mutations which were inferred to be false positives due to 
a ‘no call’ in the mother. The variant quality score for the child’s SNV is indicated in parentheses. 
3 mtDNA position of candidate de novo mutations which were inferred to be false positives in the 
child inferred from the local mtDNA phylogeny; mother’s allele was indicated as reference but 
the mutation was derived in the derived haplogroup (i.e. a haplogroup defining mutation). 
Haplogroup defined in parentheses. 
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