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Abstract: 
 
Short-read, next-generation sequencing (NGS) is now broadly used to identify rare or de 
novo mutations in population samples and disease cohorts. However, NGS data is known 
to be error-prone and post-processing pipelines have primarily focused on the removal of 
spurious mutations or "false positives" in downstream genome datasets. Less attention 
has been paid to characterizing the fraction of missing mutations or "false negatives" 
(FN). We design a phylogeny-aware tool to determine false negatives [PhyloFaN] and 
describe how read coverage and reference bias affect the FN rate. Using thousand-fold 
coverage NGS data from both Illumina HiSeq and Complete Genomics platforms derived 
from the 1000 Genomes Project, we first characterize the false negative rate in human 
mtDNA genomes. The false negative rate for the publically available callsets is 17-20%, 
even for extremely high coverage haploid data. We demonstrate that high FN rates are 
not limited to mtDNA by comparing autosomal data from 28 publically available full 
genomes to intergenic Sanger sequenced regions for each individual. We examine both 
low-coverage Illumina and high-coverage Complete Genomics genomes. We show that 
the FN rate varies between ~6%-18% and that false-positive rates are considerably lower 
(<3%). The FN rate is strongly dependent on calling pipeline parameters, as well as read 
coverage. Our results demonstrate that missing mutations are a significant feature of 
genomic datasets and imply additional fine-tuning of bioinformatics pipelines is needed. 
We provide a tool which can be used to quantify the FN rate for haploid genomic 
experiments, without additional generation of validation data. 
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Report  
 
Mutation is the process by which novel genetic variation is generated; thus, the 

accurate identification of mutations in genomic data is of the utmost importance for 
mapping Mendelian disease, population genetic analysis, tumor sequencing, and rare 
variant phenotype/genotype associations1. Multiple bioinformatic algorithms have been 
developed to call mutations from short read, next-generation sequencing (NGS) data2,3. 
However, there is a growing consensus that both short- and long-read NGS associated 
calling methods generate datasets with appreciably high error rates, particularly for rare 
or de novo mutations4-6. These technical error profiles affect many forms of human 
genomic data, and are particularly crucial for the identification of de novo mutations in 
disease phenotypes7-9 and somatic tissue10,11. Raw 2nd generation sequencing read data 
contains a great number of false positive variants (i.e. referred to as “sequencing error”12). 
Accordingly, pre- and post-processing pipelines filter the raw data in order to discard 
false positive variants. However, such pipelines may also miss true variants, which will 
then result in a relatively high false negative rate in the variant callset.  

Recent efforts to quantify NGS error rates have primarily been focused on the 
identification of false positive errors in human NGS data13,14. However, the need for the 
quantification of false negatives in such data has received far less attention15,16. High error 
rates complicate disease studies which search for de novo disease mutations between 
parents and probands with exome or genome sequencing. There is often a high number of 
candidate de novo mutations identified in trio/duo, but most candidates are a result of 
either a false positive in the offspring or a false negative in a parent 
17-19.  For example, Vissers et al. 19 identify 51 candidate de novo mutations in ten 
probands with mental retardation, but were only able to validate 13 with Sanger 
sequencing. Sanger validation of the parents revealed that only 9 of these were truly de 
novo,  the remaining 4 were likely false negatives in the parents (i.e. 30% false negative 
rate). Other studies identify similarly high false negative rates20, but the precise ratio will 
depend on many factors. For example, in the context of trio-calling, filtering for 
mutations which are already present in a large SNP repository, such as dbSNP, will mean 
that recurrent de novo mutations are eliminated from the final callset; recent work with 
the EXaC database specifically highlights this problem21. Recently, Chen et al.22 report 
that damage introduced in-vitro during NGS library preparation results in a high number 
of spurious variants, and estimate that this damage causes the majority of G to T 
transversions in 73% of large, publically available datasets (i.e. 1000G and the Cancer 
Genome Atlas [TCGA]). A balanced assessment of both false positive and false negative 
error rates is necessary for Mendelian and complex disease identification approaches, but 
also crucial for evolutionary studies of mutation rates5.   

We present a new phylogeny-based method to identify false negative errors in 
mtDNA callsets without generating additional validation data. The sequences used by our 
method must be both homologous and non-recombining so that a single, non-ambiguous 
phylogeny can be constructed. This approach can be broadly used to optimize the FN rate 
in human next-generation sequencing experiments as set by the user. We apply our 
method to single nucleotide variants (SNVs) in human mitochondrial NGS data for more 
than 2,500 individuals. We reconsider germline mutation rate estimation in the context of 
false negatives by identifying de novo mutations from 131 mother/child duos from 1000 
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Genomes Phase 3 Complete Genomics data. We find that many candidate de novo 
mutations are spurious due to a combination of false positive variants identified in the 
child and/or missed variants (false negatives) in the mother. Our results are in general 
agreement with the rates that have been calculated in previous Sanger sequencing 
studies23 if we aggressively filter the dataset. 

In addition to calculating the false negative rate by leveraging phylogenies, we 
also empirically measured the false negative and false positive rates from published 
autosomal NGS data (from the 1000 Genomes Project [1000G] and Human Genome 
Diversity Panel [HGDP]) via Sanger-based sequencing validation24. In total, we compare 
NGS data for 6 Mbuti (MBI) samples from HGDP, 16 Luhya (LWK) from 1000 
Genomes Project and 6 Yoruba (YRI) from Complete Genomics samples for which 
intergenic Sanger sequencing was also available.  
 
mtDNA FN identification 

To identify false negative variants without generating additional experimental 
data, we leverage the phylogenetic nature of genetic sequences. In the absence of 
recombination, any given contiguous sequence of nucleotides can be modeled as being 
inherited identically by descent (IBD) by creating a phylogenetic tree of shared and 
derived mutations. In the absence of repeat mutation, any two DNA sequences with a 
recent common ancestor will share a set of mutations IBD, as well as carry their own 
unique and derived mutations. Using a detailed public mtDNA phylogeny 
(phylotree.org), we identified all variants shared by multiple mtDNA genomes such that 
they form the internal branches of the phylogeny. These mtDNA variants have been 
identified via Sanger sequencing; over the past 15 years, over 20,000 mtDNA genomes 
have deposited in NCBI and carefully curated by a variety of consortiums (phylotree.org, 
mitomap.org). We estimate the false negative rate for each sample by assigning a next-
generation sequenced individual to a haplogroup in the phylogeny, and count the number 
of missed variants using the known set of mutations for the assigned haplogroup (see 
Figure 1). It is important to note that mutations on terminal branches are excluded, as we 
do not know whether these maybe private to the given sample used to build the tree. In 
addition, the rate of back mutation is assumed to be negligible but could be implemented 
in this model. HaploGrep was designed to be robust haplogroup assignment tool, 
considering the entire mitochondrial genome or any subset of it25.  As such, even if a 
variant that defines a large clade on the phylogenetic tree is removed, HaploGrep is still 
able to accurately place the genome in the proper haplogroup, albeit with a lower 
confidence score. Therefore, we can still use the phylogenetic nature of the mitochondrial 
genome to identify missing variants. 

False negative estimates were calculated for two different sequencing platforms: 
393 individuals in pedigree trios were sequenced by Complete Genomics26 and 2,535 
individuals from the 1000 Genomes Phase 3 dataset27 sequenced via Illumina HiSeq 
platforms. Many individuals that were sequenced with Complete Genomics were also 
sequenced in the 1000 Genomes dataset allowing us to directly compare the false 
negative rate between the two platforms. The Complete Genomics data contained variants 
(up to about 50 base pairs in length) called via the company’s assembly pipeline with 
respect to the revised Cambridge Reference Sequence (rCRS) of the human 
mitochondrial genome28,29. The Illumina dataset consisted of mitochondrial genomes 
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sequenced using 75 - 100 bp paired-end reads that were mapped using the Burrows-
Wheeler Aligner (BWA) software30. Variant calling by the 1000 Genomes Consortium 
was performed with the Genome Analysis Toolkit (GATK) software2,31. During 
preparation of the callset, it was assumed that for any given locus the mtDNA has only 
one allele in a particular individual and heterozygous sites were removed. 

We developed a software tool, PhyloFaN, that accepts VCF or VAR files as input 
data and is capable of lifting over variants detected using hg19 reference genome to the 
rCRS mitochondrial reference genome; variants detected with GRCh37 (NC_012920) do 
not require liftover to rCRS as the mitochondrial sequences are identical. Once input 
variants are aligned to match the rCRS numbering convention, both insertions and 
deletions are removed from the sample callset and complex multi-nucleotide 
polymorphisms and multi-allelic sites are split into individual records. Mitochondrial 
haplogroups are then assigned to each sample using the HaploGrep algorithm25 according 
to the mtDNA phylogenetic tree32. We isolate the expected internal variants for each sample based on its assigned 
haplogroup, and computed the rate in which haplogroup-defining variants were not 
observed. This rate is computed with a Bayesian inference routine, the Bernoilli p is used 
with a Jeffreys prior. The number of Bernoulli experiments, n, is represented as the 
number expected variants, given its haplogroup assignment, and the number of successes, 
k, is represented by the number of variants out of the expected that were found. 

In the Complete Genomics dataset, our algorithm estimates that 2,313 out of 
11,429 predicted variants were missing from the NGS variant callset. This corresponds to 
a false negative rate of 20.2% (credible interval, CI: 19.5%-21.0%). We repeated the 
procedure for the Illumina mtDNA and obtained a false negative rate of 21.3% (95% C.I. 
between 21.1% and 21.5%). The ~2,300 variants identified as missing in the Complete 
Genomics data and the ~18,100 variants identified as missing in the Illumina data are 
plotted according to their mitochondrial base pair location (Figure 2). False negatives are 
particularly enriched in the hypervariable regions, despite excluding indels from the FN 
calculation. The tandem repeats in the hypervariable region could cause an increase in de 
novo mutations due to replication slippage, which is common in an origin of replication 
with a repetitive nature. However, false negatives were not enriched in regions of 
repetitive sequence as identified with RepeatMasker (regions shown in Figure 2). Higher 
mutation rate in this region could be responsible for a fraction of the apparent ‘false 
negatives’ observed using this model (but see below). 

We investigated whether the loss of these putative true variants from the callset 
was due to the strictness of filters applied by the post-processing pipelines. Such 
pipelines tend to optimize filtering out false positive variants, which are highly prevalent 
in raw 2nd generation sequencing data2,33. We hypothesized that these pipelines would 
often miss large numbers of variants that are, in truth, present within the raw sequence 
data. We confirmed that the missing variants were indeed present in the pre-pipeline 
BAM files. For example, the HaploGrep algorithm assigns individual HG00097 to 
haplogroup T2f1a1. The mitochondrial phylogeny has a substitution from G to A at 
position 8860 (rs2001031) derived in the reference sequence haplogroup, H2a2. Thus, the 
phylogeny predicts that the mitochondrial sequence of HG00097 would to have a G at 
this locus, whereas the reference sequence has an A. This G variant was not present in the 
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sample VCF file but was indeed present in the original BAM file for this sample (Figure 
S1).  

The variant at location 8860 contributes to the false negative rate in our case study 
to a great extent due to the fact that it defines the H2a2 haplogroup of the Cambridge 
Reference Sequence. It is predicted but missing in 2,533 of the 2,535 Illumina VCF files. 
As a result, the corresponding 2,533 false negative calls comprise 17% of the false 
negatives we detect in the Illumina callset. This variant represents the central peak in 
Figure 2. We also checked whether the exclusion of multi-allelic variants in the public 
1000G Illumina mtDNA files significantly affects the FN rate. Here, “multi-allelic” is 
defined as a locus that has more than two alleles present among the sampled individuals.  
As per our expectation, allowing for multi-allelic variants in the VCF improved the false 
negative rate, decreasing from 21.3% to 17.1% (C.I.: 16.8%-17.3%).  Multi-allelic 
variants may be more common in mtDNA datasets than autosomal due to high relative 
mutation rate of mtDNA. 

We further investigated the effect of decreasing the number of stringency filters in 
the GATK pipeline on the false negative rate. Specifically, we recalled variants using the 
original BAM files using GATK’s UnifiedGenotyper31 with respect to the GRCh37 
reference sequence. The choice of reference genome is significant because most variant 
calling pipelines align to a reference genome from which non-reference variants are 
identified; FN’s are, by default, assumed to carry the reference allele15,34. We ran GATK 
default emit-all parameters (i.e. permissive genotype calling) on each individual sample 
separately (referred to as “single-sample calling”). This pipeline dramatically reduced the 
false negative rate in Illumina data, from 17.1% down to 2.28%. We note that is approach 
is likely associated with a great number of false positive variant calls because these filters 
are built to minimize sequencing error in autosomal sequences – but the experiment 
demonstrates how the majority of the false negatives are present in the short read data 
and erroneously excluded in subsequent filtering processes. In summary, we find that 
most FN variants are missing due to filtering within the post-processing pipeline. 

We then tested whether false negative status of a variant correlates with short read 
coverage. To compute the depth of coverage for each base pair location in each sample in 
our Illumina data, we used GATK’s DepthOfCoverage31. Average coverage for the 
variants identified as false negatives was found to be 2,022x, while that for the variants 
expected from the phylogeny and contained in the VCF files was 2,244x. The difference 
between coverage values of the former group and those of the latter group was shown to 
be significant by a t-test (p < 2.2×10-16, 95% C.I. for the difference in coverage between 
197x and 248x). A best-fit logit linear regression model of the dependence of false 
negative status on coverage based on the same data had an intercept equal to -1.36 and a 
coefficient of the explanatory variable equal to -0.000105. A logit model with these 
parameters predicts that an increase in coverage from 2,000 to 3,000 reads leads to a 
decrease in the probability of false negative status from 17.3% to 15.8%. In other words, 
for our extremely high-coverage data, the effect of coverage on the false negative error 
status via the pipeline filters is significant but not very large. 
 
Estimating error rates using Sanger sequencing data  

Our phylogenetic approach is currently confined to non-recombining homologous 
loci, such as mtDNA and the Y chromosome. While PhyloFaN can be used to 
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systematically explore the effect of pipeline parameters on the false negative using 
haploid systems, it is an imperfect proxy for assaying autosomal data. Future extensions 
using ancestral recombination graphs35, however, hold great potential. We nonetheless 
verified the ubiquity of false negatives in autosomal next-generation sequence data by a 
more conventional approach, comparing NGS variant calls to Sanger-based sequencing. 
We compare public variant call datasets from Illumina and Complete Genomics genomes 
to an independently published Sanger-sequencing experiment36, performed on the same 
individuals (see below, all samples are cell-line derived). This Sanger data consists of 
short 2 kilobase intervals distributed at 40 loci throughout the autosomes. These loci were 
previously chosen to estimate neutral genetic diversity in human populations and hence 
are located at some distance from genes36. These Sanger data differ from prior 
experiments because they were not chosen merely to validate specific NGS variants, as 
typically occurs for most NGS validation experiments. Hence, they represent an unbiased 
estimate of the false negative and false positive rates. Comparable NGS and Sanger 
sequence data were available for 6 Mbuti (MBI), 6 Yoruba (YRI) and 16 Luhya (LWK) 
36. 

 We obtained comparable next-generation sequencing data from 28 human 
genomes sequenced as part of the Human Genome Diversity Project37, Complete 
Genomics public dataset and the 1000 Genomes Project38. The forty 2 kilobase intergenic 
Sanger sequences for 28 individuals were independently aligned to the reference genome 
(GRCh37) using BLAST. We designed a Perl script that used the BLAST trace-back 
operation (BTOP) string to generate a VCF file. For consistency, we excluded indels 
from this analysis so the autosomal and mitochondrial false negative rates could be 
compared. We ensured that both Sanger sequences (one per chromosome) had the same 
start and stop position and manually trimmed problem alignments if necessary (Figure 
1B). We compared the Sanger sequences to single-sample called and multi-sampled 
called variants, as well as imputed and unimputed versions of these callsets (Table 1). In 
order to generate single-sample callsets for the 1000 Genomes and HGDP data, we used 
accessed available BAM files and generated VCFs using GATK’s Genotyper (-
stand_emit_conf 30; -stand_call_conf 30). Emit-all files were generated so depth 
information would be available at all sites. Sites that fall below the stand_emit_conf or 
stand_call_conf are still emitted but with a LowQual flag. Complete Genomics variant 
data were only publically available from their proprietary single-sample calling pipeline. 

We count false negatives by comparing variants identified by Sanger sequencing 
to NGS. Each site receives a score of 0, 1, or 2: 0 indicates concordance between the 
Sanger and NGS genotype call, a score of 1 indicates that one alternate allele was not 
identified by NGS, and a score of 2 indicates that both alternate alleles were missed by 
NGS. To calculate the false negative rate for a sample, the scores for each site are totaled 
and divided by the number of expected calls, that is, the number of alternate alleles from 
the Sanger sequencing and multiplied by 100. Imputation is expected to identify highly 
probable genotypes that were absent in an initial dataset; imputation is a standard 
“refinement” feature of large genome datasets – including publically available 1000G and 
HGDP. We therefore score imputed and unimputed datasets differently, penalizing 
missing variants in an imputed dataset even if there is no coverage at the locus (see Table 
S1). In addition, we penalize sites in our single-sample emit-all VCFs that were called 
variants but marked with LowQual, as these variants would not be included in a typical 
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variant-only file. We count false positives and the false positive rate using a similar 
scoring system. A score of 0 at a given site indicates concordance between the NGS and 
Sanger variants, a score of 1 indicates that one alternate allele was identified by NGS as 
variant but was reference in the Sanger data, and a score of 2 indicates that a site was 
called homozygous alternative by NGS and homozygous reference by Sanger. 
  
False Negative and False Positive Autosomal Rates for Public NGS Callsets 

We first examine the single sample called variants for all three datasets. The 1000 
Genomes and HGDP data represent low coverage autosomal datasets (~7x) 
(Supplementary Information, Table S1), while Complete Genomics represents a high 
coverage dataset (~54x). We expect the high coverage data to have significantly lower 
FN rates due to enhanced read coverage. In the 1000G LWK samples, we observe an 
average false negative rate of 18.3% in the unimputed single-sample callset (Table 1). In 
the HGDP Mbuti samples, the observed mean false negative rate was 7.6% in the single-
sample callset. The observed Complete Genomics YRI genomes single-sample FN rate 
was 5.7% (Table 1). Our results indicate a significant difference between the single-
sample calling of the 1000G false negative rate (18.3%) and the HGDP false negative 
rate (7.6%) which may be due to factors including library preparation, read length, 
sequencing instrument sensitivity, and base or variant recalibration. Both callsets were 
generated using parameters as specified in GATK’s best practices documentation. The 
coverage was marginally higher on average in the 1000G dataset (7.43x) than HGDP 
(6.71x). Surprisingly, the high coverage CG data had a FN rate nearly identical to the low 
coverage HGDP genomes. This demonstrates that coverage alone is not the primary 
determinant of FNs in a dataset; other factors, likely variant filters and sequencing 
technology12 are important determinants.   

False negatives are common at low coverage sites but are also observed at higher 
coverage sites in our dataset, e.g. 17x in a LWK individual (NA19307, chr4, position 
27450119) (Figure S2). With biallelic sampling, the probability of sequencing only one 
gamete 17 times is very low (p=7.6*10-6); however, given the large number of sites 
obtained from whole genome sequencing the expected number of sites obtained from 
only a single gamete is still very large (e.g. ~19,000 assuming even 17x coverage of 
2.5Gb). Not all of these sites, however, will contain a non-reference variant. We 
systematically investigated the range of coverage for false negative variants identified 
from the single-sample called datasets (Figure 3). It is important to note that we do not 
call a site FN in the single-sample callset if there is 0x coverage; however, if there were 
sufficient reads present for the emit-all determination of a reference allele, then we do 
consider the site in our FN rate. We observe FNs at a range of coverages, most of the 
Illumina FNs were covered by 4x or more reads (Figure 3, S2). Coverage is far less 
variable in the smaller Complete Genomics dataset, but we still observe false negatives at 
~40x to almost 90x coverage. Contrary to our expectation, we find that the allele 
frequency for a variant is not a good proxy for estimating the probability of a false 
negative given there is almost an even distribution of false negatives across all allele 
frequencies in our sample population (Figure S3). 

Imputation is often used to ‘fill-in’ missing variants that may be present at 
appreciable frequency in a genomic dataset but are missing in a given individual due to 
variation in coverage or stochastic sampling. We considered the FN rates in multi-sample 
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called and imputed datasets. In the 1000 Genomes LWK samples, we observe an average 
FN rate of 5.9% in the imputed multi-sample callset (Table 1). We were unable to 
calculate the FN in a multi-sample unimputed dataset for these LWK samples as 1000 
Genomes does not make this variant dataset publically available. In the HGDP Mbuti 
samples that were imputed and multi-sample called, we observe an 8.8% FN rate but a 
3.3% FN rate in multi-sample unimputed calls (see Table 1).  

Finally, we also calculated the false positive rates for these samples using the 
same Sanger dataset in order to assess potential trade-offs in sensitivity versus specificity 
(Table 1, Figure S4). False positive rates were indeed much lower than FN rates, 
indicating that calling pipelines implemented for these public datasets were optimized for 
reducing false positives. The 1000G single-sample dataset has a false positive rate of 
2.2% and is further reduced in the imputed multi-sample calls to 0.6%. The HGDP 
callsets have false positive rates of 2.9% in the single-sample callset, 1.2% in the multi-
sample unimputed callset, and 1.1% in the multi-sample imputed dataset. We did not 
observe a single FP in the Complete Genomics dataset, suggesting that the CG variant 
calling pipeline strongly optimizes for accurate specificity of FPs.   

 
mtDNA de novo mutation rate 
 Our results indicate that the false negative rate is sensitive to variant filtering and 
coverage, leading to false negative rates of 6-20% for publically available datasets. We 
illustrate the effect of the FN rate by considering its impact on estimates of the human 
mtDNA germline mutation rate. We estimate the germline mtDNA mutation rate by 
comparing mitochondrial genomes of mothers with those of their children to identify de 
novo mutations. We utilize 131 mother-child pairs from the 1000 Genomes Phase 3 
Complete Genomics samples27 for which genotype calls were provided by proprietary CG 
processing pipelines. We identified 36 mitochondrial SNVs that were present in the child 
but not in the mother (Table 2). For each mother-child pair that had a putative de novo 
mutation, we used HaploGrep to assign haplogroups on the basis of the known 
mitochondrial phylogenetic tree25,32, separately for both the mother and the child. 

Next, to confirm maternal assignment for each duo, we compared the haplogroups 
that HaploGrep assigned to the mother and the child for each of the pairs. We retain pairs 
for which either (a) the mother’s haplogroup was the same as the child’s, (b) the child’s 
haplogroup was contained within the mother’s or (c) the mother’s haplogroup was 
contained within the child’s. Two of the 34 candidate de novo mutations came from 
mother-child pairs whose haplogroup pairs did not fall in either of the above-mentioned 
categories indicating sample swaps or non-maternity. For each of the remaining candidate 
mutations, we then checked the variant call in the mother’s data. We excluded 15 
candidate de novo mutations that had been identified within segments that had a ‘no-call’ 
status in the mother (Table 2). We then applied our phylogenetic method of identifying 
false negatives to each of the remaining 19 candidate de novo mutations to test whether 
the absence of each of these variants in the mother’s sequence was due to a false negative 
call at the locus in question. For 9 of the remaining candidate mutations, the variants in 
the mother’s sequence were predicted to be present based on the mother’s phylogenetic 
lineage, so the corresponding candidate mutations were excluded. This left us with 10 
candidate de novo mutations: 8 in the coding region and 2 in the control region. 
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In order to assess whether our final de novo mutation candidates could still be 
false positives, we compared their variant quality scores (varScoreVAF column in the 
Complete Genomics VAR files for children that had the corresponding SNVs) with those 
of all SNVs identified in our Complete Genomics data (Figure S5). The ten de novo 
mutation candidates have significantly lower variant quality scores than the rest of the 
SNVs in the dataset (Mann-Whitney test, p = 0.02) indicating that many of them are 
likely spurious variants. Only 4 variants had a varScoreVAF (derived from maximum 
likelihood model) greater than 5000.   

Using the 131 duo dataset, we could then compare the NGS mtDNA coding 
region mutation rate with earlier Sanger sequencing estimates. By dividing the number of 
putative de novo mutations by the total called sequence length (see Supplemental 
Methods), we obtain an estimate of 8 / 1,981,090 = 4.04×10-6 mutations per base pair per 
generation (95% CI: 1.74×10-6 - 7.96×10-6) in the human mitochondrial coding region and 
2 / 146,610 = 1.36×10-5 mutations per base pair per generation in the control region (95% 
CI: 1.65×10-6 and 4.93×10-5). However, if we consider only the two coding region 
mutations which have a quality score greater than 5000, then we obtain an estimate of μ = 
1.01×10-6/bp/g. Howell and colleagues23 produce a Sanger pedigree-based estimate of the 
coding region mutation rate of 6.0×10-7 bp/g (99.5% CI: 8.0×10-8 - 2.0×10-6 bp/g), after 
conversion from the divergence rate to the mutation rate and assuming 20 years per 
generation; inclusion of all 8 mutations in Table 1 results in a mutation rate outside of the 
earlier confidence interval, while our more conservative 1.01×10-6/bp/g is consistent with 
Howell et al.’s meta-analysis. A recent mtDNA genome μ estimate of 2.7×10-7/bp/g from 
extremely high coverage NGS sequencing of 39 mother-child duos is significantly lower 
than the pedigree estimate here; however Rebolledo-Jaramillo et al.39 note that they 
heavily filtered variant calls in order to confidently discern heteroplasmies from 
sequencing artifacts, and therefore their estimate should be seen as a lower bound. We 
note that multi-generational pedigrees are needed to discriminate de novo germline 
mutations from somatic mutations. Assuming that the true FN detection rate in the CG 
dataset is ~20%, one could also argue that our μ should be corrected by 20% to account 
for missing de novo variant calls in the child (Table S2).  
 
Conclusions:  

We demonstrate that false negative mutations are significant feature of short-read, 
next-generation sequencing data sets. Gross characterization of the expected false 
negative rate is difficult because the FN rate is primarily sensitive to post-processing 
variant calling pipeline parameters. Previously, these pipeline parameters have been 
optimized for false positive removal (Table 1). We provide a computational tool 
[PhyloFaN] for rapid estimation of the FN rate in new genomic datasets, which will allow 
optimization of the FN rate without relying on new Sanger sequencing data. Autosomal 
FN results presented here range between 6%-18% for large publically available genome 
datasets. While 80 total kilobases per individual contains relatively few SNPs, our 
approach is unique for using an unbiased dataset that was not chosen to specifically 
validate de novos. Finally, we explore implications of FNs and FPs in 131 high-coverage 
mtDNA duos from 1000 Genomes. We find that the majority (89%) of putative de novos 
identified in the child are due to either variant quality issues or false negatives in the 
mother (resulting in a ‘false positive’ de novo for the child). Accurate identification of de 
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novo mutations remains a critical challenge for Mendelian disease, cancer genomics and 
mutation rate estimation. 
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Figure Legends: 
 
Figure 1: Two Schematics Illustrating False Negative Identification. A) A schematic 
representation of (1) the process that was used to obtain mitochondrial SNV data for each 
individual (before the “assign to tree” arrow) and (2) the algorithm that was used to 
identify false negatives in such data (i.e. SNVs that should have been present, but were 
not) based on an independently obtained phylogenetic tree (phylotree.org). B) Schematic 
summarizing NGS false negative identification with Sanger validation. Each box 
summarizes the steps and data formats that were used to identify NGS false negatives 
assuming that the Sanger sequenced fragments represented the true variation. 
 
Figure 2: Histogram of mtDNA False Negatives by Chromosomal Location. Grey 
bars indicate areas of repetitive sequence on the mitochondrial chromosome, obtained by 
the application of RepeatMasker (including simple repeats) to the mitochondrial 
sequence.  
 
Figure 3: Autosomal False Negative Sites by Coverage and Allele Frequency. Each 
dot represents an NGS autosomal false negative (FN) site in one individual from the 
single-sample variant calling dataset. FNs are colored by project (Table 1). The Complete 
Genomics dataset has higher mean coverage than the two Illumina datasets in our study. 
To calculate allele frequency, Sanger data from the three African populations were 
combined and the allele frequency across the dataset was estimated as the non-reference 
allele frequency. The y-axis represents the non-reference allele frequency relative to 
hg19. False negatives span the full frequency range in all three datasets. 
 
Table 1: Autosomal False Negative Rates Assessed from Sanger Sequencing 
 
Table 2: Candidate de novo mitochondrial mutations from 131 duos  
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Figure 3: 
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 Table 1: Autosomal False Negative Rates Assessed from Sanger Sequencing 

Population Sample ID Multi-sample Imputed Multi-sample Unimputed Single-sample Calls 

    FN1 FP2 FN1 FP2 FN1 FP2 

LWK 
 

(1000G) 

NA19027 - - - - 12.1% 3.30% 

NA19028 6.0% 0.0% - - 18.8% 2.01% 

NA19041 8.1% 0.7% - - 14.9% 2.70% 

NA19044 6.3% 1.2% - - 29.9% 2.87% 

NA19046 5.0% 0.6% - - 32.0% 2.87% 

NA19307 9.3% 0.6% - - 15.4% 1.65% 

NA19308 7.0% 0.0% - - 4.7% 0.58% 

NA19309 6.0% 0.0% - - 11.1% 1.51% 

NA19317 4.2% 0.6% - - 18.1% 3.01% 

NA19319 5.1% 0.6% - - 14.2% 1.70% 

NA19346 3.1% 0.0% - - 19.8% 0.62% 

NA19350 5.3% 0.0% - - 22.3% 0.97% 

NA19360 3.9% 0.6% - - 12.8% 1.67% 

NA19371 9.6% 2.3% - - 31.5% 3.93% 

NA19373 6.3% 0.0% - - 21.4% 3.14% 

NA19380 3.9% 1.7% - - 13.7% 3.30% 
Mean (SD) 5.9% ±0.5% 0.6% ±0.2% - - 18.3% ±1.9% 2.2% ±0.3% 

MBI 
 

(HGDP) 

HGDP00449 7.4%  1.0% 5.0% 2.0% 8.4% 3.5% 

HGDP00456 4.7%  0.05% 2.6% 1.6% 3.2% 2.1% 

HGDP00462 13.6%  1.6% 4.2% 1.6% 12.6% 2.1% 

HGDP00471 6.9%  0.6% 1.3% 0.6% 6.3% 1.3% 

HGDP00474 6.6% 1.5%  4.1% 0.5% 4.6% 2.6% 

HGDP00476 13.2%  1.5% 2.9% 1.0% 10.8% 5.9% 

Mean (SD) 8.8% ±1.5%  1.1% ±0.6%  3.3% ±0.6% 1.2% ±1.7% 7.6% ±1.5% 2.9% ±0.7% 

YRI 
 

(1000G)3 
(CG)3 

NA18501 2.9% 0.0% - - 9.4% 0.0% 

NA18502 1.7% 0.0% - - 9.6% 0.0% 

NA18505 4.6% 0.0% - - 9.9% 0.0% 

NA18517 1.6% 0.0% - - 0.0% 0.0% 

NA19238 - - - - 9.4% 0.0% 

NA19239 - - - - 8.7% 0.0% 

Mean (SD) 2.7%   ±1.4% 0.0% - - 7.8% ±1.6% 0.0% 
1 Indicates the false negative rate as assessed from comparison to 80 kilobases of Sanger 
sequencing from the same individual. 
2 Indicates the false positive rate as assessed from comparison to 80 kilobases of Sanger 
sequencing from the same individual. We assume the Sanger sequencing does not contain 
spurious mutational errors. 
3 The multi-sample imputed column represents low-coverage data from 1000G; the single-sample 
column represents the high-coverage Complete Genomes data. 
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Table 2: Candidate de novo mitochondrial mutations from 131 duos 
Mother ID Child ID Source Haplogroup 

Assignment 
Candidate de 

novo mutation1 
FP in child due 
to ‘No call’ in 

Mother2 

FP in child due to 
FN in Mother3 

GS000016020 GS000016048 LCL U4b1b1 8655 (242)   

    10566 (22)   

GS000016039 GS000016539 LCL H2a5b / H2a5 9835 (8342) 3166 (7413)  

GS000016041 GS000016538 LCL U5b2a1a+16311 
/ U5b2 

204 (9262)   

GS000016398 GS000016412 LCL T2 / T2b 14050 (629)   

GS000016456 GS000016408 LCL H52 2351 (2147)   

GS000016465 GS000016380 LCL H5b1 279 (13042)   

    14569 (8028)   

GS000017172 GS000017223 LCL L3e2b1a2 2045 (1342) 2483 (73) 16189 (516, L3e2b) 

GS000017130 GS000017271 Blood B2 3173 (2494)   

GS000016414 GS000016400 LCL U5a1a2b  750 (2424) 1700 (6051, U5a1a) 

     1438 (1584) 3197 (17404, U5a'b) 

     2706 (10860) 11467 (6271, U) 

     10915 (8882) 14793 (8883, U5a) 

     14766 (4244) 15218 (8736, U5a1) 

     15326 (10230)  

GS000016469 GS000016540 LCL H3a1a  4769 (129)  

GS000017276 GS000017275 Buffy L1b1a15  3936 (1003)  

GS000016396 GS000016409 LCL U3a1a/U3a1  8860 (205)  

GS000016011 GS000016459 LCL W1c1  2706 (12255)  

     4769 (305)  

GS000017242 GS000016026 LCL U5a1  2706 (11788)  

     8994 (1864)  

GS000017185 GS000017173 LCL L2a1f   16192 (4551, L2a1f) 

GS000017227 GS000017119 LCL L2b3a   16213 (6945, L2b) 

GS000017045 GS000017047 Buffy L1b1a15     16355 (6228, L1b1a15) 

   Total count 10 15 9 
1  Mitochondrial base pair position for each candidate de novo mutation which appeared in the 
child but not the mother. The variant quality score for the child’s SNV is indicated in parentheses. 
Quality scores greater than 5000 are indicated in bold (see supplemental Figure S3 for bimodal 
distribution of variant quality scores). 
2 mtDNA position of candidate de novo mutations which were inferred to be false positives due to 
a ‘no call’ in the mother. The variant quality score for the child’s SNV is indicated in parentheses. 
3 mtDNA position of candidate de novo mutations which were inferred to be false positives in the 
child inferred from the local mtDNA phylogeny; mother’s allele was indicated as reference but 
the mutation was derived in the derived haplogroup (i.e. a haplogroup defining mutation). 
Haplogroup defined in parentheses. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 26, 2016. ; https://doi.org/10.1101/066043doi: bioRxiv preprint 

https://doi.org/10.1101/066043


	 22	

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 26, 2016. ; https://doi.org/10.1101/066043doi: bioRxiv preprint 

https://doi.org/10.1101/066043

