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Abstract

In response to reports of inflated false positive rate (FPR) in FMRI group analysis tools, a series
of replications, investigations, and software modifications were made to address this issue.
While these investigations continue, significant progress has been made to adapt AFNI to fix
such problems. Two separate lines of changes have been made. First, a long-tailed model for
the spatial correlation of the FMRI noise characterized by autocorrelation function (ACF) was
developed and implemented into the 3dClustSim tool for determining the cluster-size threshold
to use for a given voxel-wise threshold. Second, the 3dttest++ program was modified to do
randomization of the voxel-wise t-tests and then to feed those randomized t-statistic maps into
3dClustSim directly for cluster-size threshold determination-without any spatial model for the
ACF. These approaches were tested with the Beijing subset of the FCON-1000 data collection.
The first approach shows markedly improved (reduced) FPR, but in many cases is still above
the nominal 5%. The second approach shows FPRs clustered tightly about 5% across all
per-voxel p-value thresholds < 0.01. If t-tests from a univariate GLM are adequate for the group
analysis in question, the second approach is what the AFNI group currently recommends for
thresholding. If more complex per-voxel statistical analyses are required (where
permutation/randomization is impracticable), then our current recommendation is to use the
new ACF modeling approach coupled with a per-voxel p-threshold of 0.001 or below.
Simulations were also repeated with the now infamously “buggy” version of 3dClustSim: the
effect of the bug on FPRs was minimal (of order a few percent).
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Introduction

The reports [1,2] of inflated false positive rates (FPRs) for commonly used cluster-threshold
based FMRI statistics packages (SPM, FSL, AFNI) caused a stir in technical and semi-popular
publications. The responses to the dramatic statement ([2]; since mollified [3]) that, “These
results question the validity of some 40,000 FMRI studies,” have ranged from saying that there
is nothing new here (“tests based upon spatial extent become inexact at low thresholds” [4]), to
cautious-but-concerned commentary [5], to hyperbole about invalidating 15 years of research
due to a software bug [6,7].

The AFNI team takes the question of the inflated FPRs seriously, but does not consider that the
FMRI apocalypse has arrived. In particular, since the specific “bug” referred to in [2,6,7] was in
the AFNI program 3dClustSim, we feel it necessary to report specifically on the changes made
to the AFNI package to adapt to these problems.

This report is divided into two themes. First, looking to the past, we show the effect of the
erstwhile bug within 3dClustSim (non-negligible, but non-monstrous). Secondly, looking
forward, we present two separate approaches that have been taken to rein in the FPRs, both of
whose development is ongoing and which were first presented at the 2016 OHBM meeting [8].
The first is to refine the statistical model underlying the parametric model for calculating
cluster-size thresholds for a given per-voxel p-value threshold. The second approach is to
eschew a direct model and instead use a randomization approach to generate cluster-size
thresholds from the residuals of the inter-subject (group) t-test. Sets of simulations following
those in [2] are presented.

Methods: Simulations

We repeated the simulation steps carried out in [1,2] using the 198 Beijing datasets from the
FCON-1000 collection [9]. The detailed AFNI processing for each subject was somewhat
different than used in [2], since we ran with our most up-to-date recommendations for time
series analyses (eg, using AnatiICOR and nonlinear registration; see afni_proc.py’s helpfile
Example 11), but the results are quite comparable. The group analyses, using 1000 random
sub-collections of the Beijing datasets, were carried out using 3dttest++ in the same way as
described in [2]; in particular, using exactly the same sets of sub-collections (made possible by
the authors of [2] putting their processing scripts on GitHub).

In the initial work [2], various combinations of simulation parameters produced widely varying
levels of agreement or disagreement with the nominal 5% setting for FPRs for all software tools
tested. In order to present a broad description, the comparisons presented here are for the full
set of basic simulations put forth in [2]. This includes investigating the four values of Gaussian
smoothing applied (Full-Width at Half-Maximum (FWHM) of 4, 6, 8 and 10 mm) and two


https://doi.org/10.1101/065862
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/065862; this version posted July 26, 2016. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

different per-voxel p-value thresholds (0.01 and 0.001). Additionally, four separate stimulus
timings were used: blocks of 10 s ON/OFF (“B1”) and 30 s ON/OFF (“B2”), and event-related
paradigms of (regular) 2 s task with 6 s rest (“E1”) and (random) 1-4 s task with 6 s rest (“E2”).

Results

We present results of the simulations re-run with the various changes to AFNI. We then
investigate various problems that exist in cluster detection tools, their impacts on results (i.e.,
FPRs), and preliminary means for correcting/addressing them.

The Past-3dClustSim and “The Bug.” The first problem was particular to AFNI: there was a bug
in 3dClustSim. This program works by generating a 3D grid of N(0,1) iid random deviates, then
smoothing them to the level estimated from the residuals of the FMRI data model, then carrying
out voxel-wise thresholding followed by clustering to determine the rate at which clusters of
different sizes occur at the various voxel-wise thresholds. The bug, pointed out by the authors
of [2] in an email, was a flaw in how 3dClustSim rescaled the 3D noise grid after smoothing in
order to bring the variance of the values back to 1.0 (for ease of later p-value thresholding).
This rescaling was off due to improper allowance for edge effects, with the result being that the
cluster-size thresholds computed were slightly too small, so that the FPR would end up
somewhat inflated. During part of the work leading to [1,2], this bug was fixed in May 2015, and
noted in the log of AFNI software changes
(https://afni.nimh.nih.gov/pub/dist/doc/program_help/history_all.html):

12 May 2015, RW Cox, 3dClustSim, level 2 (MINOR), type 5 (MODIFY)
Eliminate edge effects of smoothing by padding and unpadding

Simulate extra-size volumes then smooth, then cut back to the desired
volume size. Can use new '-nopad' option to try the old-fashioned
method. (H/T to Anders Eklund and Tom Nichols.)

Results comparing the pre- and post-fix versions of the standard 3dClustSim (“buggy” and
“fixed”, respectively) are shown in Fig. 1, which presents FPRs from re-running the two-sample
t-tests (40 subjects total per each of 1000 3D tests) of [2]. The effects of the bug were modest,
particularly for p=0.001 where the FPR increases were < 1-2%. At the less stringent per-voxel
p=0.01, where FPRs had been noticeably more inflated for most software packages, the
difference was greatest for the largest smoothing (understandably, given the problem within the
program), approximately < 3-5%. In each case, the difference between the “buggy” and “fixed”
values was very small compared to the estimated FPR, meaning the bug had only a minor
impact. At p=0.001, the “fixed” results for the event-related stimulus timings are not far from the
nominal 5% FPR (Fig. 1, lower panel); however, the corresponding “fixed” results for the
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block-design stimulus timings are still somewhat high. The p=0.01 results are all still far too
high in the “fixed” column (Fig. 1, upper panel).

The Present.Updating “The Flaw”Assumptions about Spatial Smoothness. The second
problem in determining cluster-size is much more widespread (to date) across the tools most
used in the FMRI community: it is the flawed assumption that the shape of the spatial
autocorrelation function (ACF) in the FMRI noise is Gaussian in form. That is, it is generally
assumed that, for voxels separated by Euclidean distance r, the spatial correlation between
noise values has the form exp[-r?/(2b?)], where it is traditional to specify the parameter b by the
equivalent FWHM of [8 In(2)] xb = 2.35482xb. In fact (as pointed out in [2]), the empirical ACF
shape, computed from the FMRI residuals and averaged across the whole brain, has much
longer tails than the Gaussian shape. The heavy-tailed nature of spatial smoothness within the
brain, which had been largely ignored previously, has significant consequences for thresholding
clusters in FMRI analyses.

Fig. 2 illustrates the problem, along with the current solution adopted in AFNI. The empirical
correlation falls off rapidly with r at first, but then tails off much slower than the Gaussian
function. We found that the empirical ACF estimates are typically well fit by a function of the
mixed Gaussian plus mono-exponential form

a exp[-r*/(2b%)] + (1-a) exp[-r/c], withO0<a<1andb, c>0, (1)

which is illustrated in Fig. 2. Once the inadequacy of the pure Gaussian model was realized,
3dClustSim was modified to allow the generation of random 3D fields with autocorrelation given
by (Eq 1), using a FFT approach (which does not lead to prohibitive runtimes). FPRs from
re-running the 2-sample t-tests of [2], using the (hopefully bug-free) ACF model option in
3dClustSim are also shown in Fig. 1.

This mixed ACF model is now available in AFNI, but is not yet incorporated into the default
processing stream (afni_proc.py).
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Figure 1. False Positive Rates (FPRs) for various software scenarios, with 1000 2-sample t-tests (as in [1,2]) using
20 subjects’ data in each sample. “buggy” and “fixed” means the cluster-size thresholds were selected using the
Gaussian shape model with the FWHM being the median of the 40 individual subject’s values: “buggy” via 3dClustSim
before the bug fix, “fixed” via 3dClustSim after the bug fix. “mixed ACF” means the cluster-size threshold was selected
using the (Eq 1) model for spatial correlation of the noise, with the a,b,c parameters being the median of the 40
individual subject’s values (estimated via program 3dFWHMx). Two different per-voxel p-value thresholds (1-sided
tests, as used in [2]) are shown. The black line shows the nominal 5% false positive rate (out of 1000 trials), and the
gray band shows its theoretical 95% confidence interval, 3.65-6.35%. As in [2], different smoothing values were tested
(4-10 mm). B1 =10 s block; B2 = 30 s block; E1 = regular event related; E2 = randomized event related.
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Figure 2. An example comparison of the empirical ACF (black) and the estimated Gaussian fit (green), which have
large differences (importantly, in the tail drop-off above r ~ 8 mm). The proposed mixed model after fitting parameters
as described in (Eq 1) provides a much better fit of the data.

For the per-voxel threshold of p=0.01, the impact of the bug fix is much smaller than that of the
long tails in the mixed ACF model. For per-voxel threshold p=0.001, the impact of the bug fix is
about the same as that of the long tails in the mixed ACF model (paired t-test), as these
estimates were closer to the nominal 5% rate already. In every case, the bug fix reduced the
FPR, as did the change to the mixed ACF model.

For the block design stimulus timings (“B1” and “B2”, 10 and 30 s blocks of “task”), the FPRs
are still a little high even with the mixed ACF model. Preliminary results indicate this bias is
partly due to the fact that the spatial smoothness of the FMRI noise is a function of temporal
frequency-the FMRI noise at lower temporal frequencies is smoother than at higher frequencies.
The two event-related stimulus timings (“E1” and “E2,” the regular and random 2 second
events, respectively) are at higher temporal frequencies, so the noise that corrupt their results
are somewhat less smooth than the noise corrupting the block design results. Since the
smoothness parameters (FWHM or a,b,c) are estimated from all the residuals of the
task-activation analysis, they tend to be biased towards the more numerous higher frequency
bands.
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The Future-A Third Problem with Cluster-Threshold Detection Tools. A third standard
assumption (present in AFNI, as well as FSL and SPM) also makes the idea of using a global
cluster-size threshold somewhat questionable. In fact, the spatial smoothness of the FMRI
noise is not spatially stationary-it is significantly smoother in some brain regions (eg, the
precuneus and other large areas involved in the default mode network) than in others (this
effect is also noted in [1,2]). Variable smoothness means that the density of false positives for
a fixed cluster-size threshold will vary across the brain, especially since the FPR is strongly
nonlinear in the cluster-size threshold. Using the same cluster-size threshold everywhere in
such brain data can result in higher FPRs than expected in the smoother areas and lower FPRs
than expected in the less-smooth areas.

One way to address this problem is to perform spatially variable smoothing, with the aim that
each brain region reaches a target level of smoothness (as opposed to current approaches,
which apply a single constant smoothing FWHM of a user-specified level). Since the ACF is not
Gaussian-shaped, this approach requires making a local estimate of the (Eq 1) model
parameters in order to guide the variable smoothing algorithm. A new AFNI program,
3dLocalACF, has been written to estimate the a, b, ¢ parameters locally (in a ball, constrained
within a brain mask) around each brain voxel. In this case, the non-Gaussian smoothness is
characterized by a new parameter called the “Full-Width at Quarter-Maximum” (FWQM), which
characterizes the scale of the model in (Eq 1) at a broader point than the FWHM used in the
simple Gaussian case; in the limiting case that the ACF is Gaussian, then FWQM =
2"2xFHWM.

An example of the FWHM and FWQM smoothness estimates for one subject are shown in Fig.
3. Work is underway to use this program’s results to control spatially variable smoothing to a
target (via a finite difference approach to solving a parabolic PDE), and then test the FPR via
simulation. Preliminary results are encouraging, but further simulations are needed before this
method can be recommended for regular practice.
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0 15 mm

Figure 3. Images of the FMRI noise FWHM and the Full Width at Quarter Maximum (FWQM) from one subject
(#11344) in the Beijing dataset (after nominal smoothing with a Gaussian kernel of 4 mm FWHM during
preprocessing). The scale in both images is linear from black = 0 to white = 15 mm. If the ACF were Gaussian,
FWQM = 2"2xFHWM. The FWHM map shows that the noise smoothness is not uniform in space (even within gray
matter), and the FWQM map shows that the non-Gaussianity of the noise smoothness is also non-uniform. The
magnitude of this effect on the FPR and how to allow for it in thresholding are still under investigation.

The Present.A Non-Parametric Approach to Cluster-Size Thresholding. A second approach to
adjusting the FPR in cluster-size thresholding has been implemented in the AFNI program
3dttest++ (a program that is also capable of incorporating between-subjects factors and
covariates, in addition to carrying out simple voxel-wise t-tests; this point is discussed more
later). The procedure is straightforward:

e Compute the residuals of the model at each voxel at the group level,

e Generate a null distribution by randomizing among subjects the signs of the residuals in
the test, repeat the t-tests (with covariates, if present), and iterate 10,000 times;

e Take the 10,000 3D t-statistic maps from the randomization and use those as input to
3dClustSim (with no additional smoothing): threshold the maps, cluster-ize them, and
then count the false positives.

All these steps are carried out inside the 3dttest++ program, if the new command line option
‘-Clustsim’ is added. Each simulation run of 3dttest++ took 6-7 minutes of clock time to run on
a 16 core node of the NIH Linux cluster (the randomized t-tests and 3dClustSim are
multi-threaded).

The output is a table of cluster-size thresholds for a range of per-voxel p-value thresholds and a
range of cluster-significance values. Such a table is produced for each of the clustering
methods that AFNI supports: 1%, 2", and 3™ nearest neighbors, and 1-sided or 2-sided
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voxel-wise thresholding. (In general, we prefer 2-sided t-statistic thresholding in AFNI as
providing more transparency about and more rigorous FPR control of the results, but do allow
for 1-sided thresholding.) These tables are saved in text format, and also stored in the header
of the output statistics dataset for use in interactive thresholding in the AFNI GUI.

For comparison here, the 1000 2-sample t-tests described above were re-run for the 16 cases
(4 blurring levels times 4 stimulus timings) with this new ‘-Clustsim’ option, and tested against
each of the 6 combinations of thresholding-sidedness and clustering-neighborliness possible in
AFNI, over a range of per-voxel p-value thresholds. The results were similar across all 96
cases. The results for the 1-sided 1% nearest neighbor clustering approach are shown
graphically in Fig. 4; all false positive rates are within the “nominal” 95% confidence interval for
the FPR (3.65-6.35%) over the collection of per-voxel p-value thresholds tested. At this time,
we recommend the use of this option for cases where the group analysis is simple enough to
carry out via a GLM with 3dttest++ (such as a 1- or 2-sample t-test).

Nonparametric clustering: "3dClustSim" and "3dttest++ -Clustsim"
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Figure 4. FPRs with cluster-size thresholds now determined from the ‘-Clustsim’ option of 3dttest++ (1-sided tests
with 15! nearest neighbor clustering). See Fig. 1 for description of labels, but note that the y-axis range has been
changed here for visual clarity.
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Discussion and Conclusions

A Note on “The Bug” and Bugs in General. Of the many features investigated here, we first
comment on one of the most publicly highlighted ones-the bug in the older versions of
3dClustSim (and its precursor AlphaSim). As shown here and noted before, this is actually a
minor feature-the effect of the bug on FPR is relatively small. Correcting the underlying feature
did indeed reduce the false positive rates in these tests, but the change in results is not a major
factor in the overall FPR inflation. Both before and after the bug fix, 3dClustSim performed in
comparable manner to the other software tools being investigated [2]. This is not to say that the
presence of the bug was not unfortunate, but it was not research-destroying. In order to have
significant changes in the results of 3dClustSim, new methods were required, which were also
presented and which are discussed further below.

“‘Reproducibility” has been a major topic in the field of FMRI, with several proposals of “best
practices” put forth in various forms. It is obvious that the presence of bugs in software (as well
as misuses of software settings inappropriate in the context) damages the validity and
reproducibility of reported results, and there is no greater concern for those writing
software-particularly when it is intended for public use-than preventing bugs. However, practical
realities are that (a) not every user will program her/his own software tools, and (b) every large
software distribution is essentially guaranteed to contain bugs (mistakes, invalid assumptions,
etc) at some level. Much of the discussion surrounding [2], particularly in comments to and
take-aways chosen by the popular press, focused on the bug that was present in 3dClustSim.
The discovery of this bug was highlighted and hyped as a major component for rejecting 15
years of brain studies and (up to) 40,000 peer-reviewed publications on the brain’, under the
tacit or explicit assumption that the reported results would be unreproducible.

However, rather than being evidence for “a crisis of reproducibility” within the field of FMRI, the
advertisement of the bug is itself an important verification of the reproducibility of FMRI
analysis. In this imperfect-world context, the philosophy for maintaining AFNI has always been
to correct any bugs and to update the publicly available software as soon as practicable, often
posting on the public Message Board for significant changes, and maintaining a permanent,
public list of updates/changes/bugs online. This specific bug, which had been tested and found
to be small, was able to be advertised so publicly in part because the software maintainers
actively advertised it (see the AFNI change log note in the Introduction).

While certainly an annoying moment for both the researchers who used 3dClustSim and those
who maintain the software, the knowledge and dissemination of this bug is part of the
reproducibility process. The existence of software bugs is unfortunate but likely inevitable-even

'"These estimates have since been greatly reduced and de-emphasized by the authors. In a paper focused on
reducing the number of false positives in FMRI studies, it is slightly ironic that there were such large “false
positive” conclusions reported.
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huge distributions such as Python, Windows, Mac, and Linux release bug fixes regularly.
Clarity of description and speed of repair are the best tools for combatting their effects once
discovered.

The state of clustering. There were many valuable points raised in the work of [2]. Several of
these were important for general consideration within the FMRI field, such as the assumption of
most clustering approaches that spatial smoothness was well-enough approximated by a
Gaussian shape. To address this point, we have shown how an updated approach within AFNI
using an estimated non-Gaussian ACF greatly improves the FPR controllability within the test
datasets. Additionally, there is also a new nonparametric method for clustering within AFNI that
shows promise; however, this type of approach currently appears to be limited by practical
considerations (that hold across software implementations) to relatively basic group analyses
that can be performed through univariate GLM.

Further work will be required to more fully develop satisfactory cluster detection levels within
FMRI, in particular being able to address the inhomogeneity of smoothness and structure in the
brain while trying to detect ‘true positives’ that are either in very small regions (eg, the
hippocampus and amygdala) or very large volumes. In the absence of a “gold standard” correct
answer, further methods development will continue, likely without producing a single “best”
answer. For example, the authors of [2] investigated 4 different software packages, and there
were 6 different “standard” methods among them! While computer power is impressive these
days, very few labs perform daily analyses on GPUs, and even so, permutation tests of
complex models (e.g., complex AN(C)OVA or LME) become extremely computationally
expensive. Furthermore, issues of smoothness and the inhomogeneity of both underlying and
noise structure in brain images present challenges for any method.

An interesting feature of the large volume of work performed by the authors of [2] is that there
were consistent differences in method performance based on simulation paradigm and
parameters themselves. This suggests that a number of issues with FPRs can also be
addressed significantly with careful experimental design-for example, the benefits of
event-related designs and, in particular, random event-related tasks were apparent in all cases.
The choice of voxelwise p-value is also paramount-all software packages produced fairly
reasonable results for p~0.001 or below; in fact, this single user-defined choice could solve
many of the problems presented by [2] to a very large degree.

Is a Parametric Approach to Cluster-Size Thresholding Desirable? A permutation or
randomization approach seems able to provide proper FPR control with few apparent
assumptions; so why not use this approach for everything in FMRI group analysis?

The primary answer is practical: not all statistics are easily re-computable thousands of times.
For example, linear mixed effects (LME) analysis requires nonlinear regression at each voxel,
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and is computationally intensive itself [10]. Repeating it massively with permuted or
randomized data is not feasible at the present juncture.

A secondary answer is that it is not easy nor practicable to permute or randomize in
complicated group analysis setups, with a mixture of between- and within-subject factors and
covariates, multi-way AN(C)OVA-like analyses outputting various statistics to test for
interactions, conjunctions, etc. Additionally, a permutation test is not always required, and it
may sacrifice power in some cases (e.g., a fixed number of permutations would set a lower
bound for the p-value that could be achieved, leading to failure to detect a small cluster with a
potentially very high significance level that would survive through a parametric approach).
While permutation testing may be useful and even necessary in some situations, a general rule
for determining those cases is not clear, and it may be computationally or methodologically
prohibitive to use (e.g., in the common case of including covariates, mixed effects, etc.).
Further work is required on this important issue.

Final (for now) Thoughts on Statistics in FMRI. While false positive rates are important, we
cannot also forget about not wanting to use methods that give overly large false negative rates.
The presence of persistent over-stringency in clustering methods (eg, failing to survive
statistical significance thresholding when real effects actually exist) would be as much a
problem for interpreting findings in the brain as highlighting weak differences. Certainly, when
using a cluster-wise p-value, one would hope that a method would reliably reflect the nominal
rates. But, in conjunction with other trending discussions in the statistics literature, p-value
thresholds are not sacred boundaries so that results around them live or die by tiny fractions
above or below them. Thresholding is a convenience for focusing reporting, but they are only
part of the story. Our point here ties into discussions of reducing ‘p-hacking’ and emphasizing
effect sizes in results reporting for FMRI [11].

Statistical testing and reporting is far from the end of a neuroscientific FMRI paper; in fact, it is
just the technical prelude to the neuroscientific interpretation-which is not (often) statistical at
the present time, but rather is qualitative, built on previous work and knowledge, adding in new
information from the present experiment. It is very hard to decide without close examination if a
weak positive cluster in a brain map is actually critical to forming the paper’s conclusions.

In other words, don’t throw the baby out with the bathwater.just state clearly if “the baby” is
borderline statistically significant.
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Supplementary Tables: Data used in Figures 1 and 4

Supplementary Table 1. FPRs for various software scenarios, with 1000 2-sample t-tests (as in [1,2]) using 20
subjects’ data in each sample. “buggy” and “fixed” means the cluster-size thresholds selected using the Gaussian
shape model with the FWHM being the median of the 40 individual subject’s values; “buggy” is using 3dClustSim
before the bug fix, “fixed” is using 3dClustSim after the bug fix, “mixed ACF” means the cluster-size threshold selected
using the (Eq 1) model for spatial correlation of the noise, with the a,b,c parameters being the median of the 40
individual subject’s values (estimated via program 3dFWHMXx). Two different per-voxel p-value thresholds (1-sided
tests, as used in [2]) are shown. The 95% confidence interval for the expected 5% false positives out of 1000 trials is
0.036-0.064.

buggy fixed mixed ACF | buggy fixed mixed ACF

blur stim p=0.01 p=0.01 p=0.01 p=0.001 | p=0.001 p=0.001
4 mm | blk10 (B1) 0.384 0.355 0.274 0.117 0.111 0.109
6 mm | blk10 0.406 0.358 0.203 0.149 0.123 0.097
8 mm | blk10 0.367 0.346 0.276 0.125 0.114 0.113
10 mm | blk10 0.321 0.272 0.137 0.125 0.108 0.087
4 mm | blk30 (B2) 0.367 0.346 0.276 0.125 0.114 0.113
6 mm | blk30 0.352 0.322 0.192 0.124 0.109 0.098
8 mm | blk30 0.317 0.260 0.162 0.112 0.096 0.081
10 mm | blk30 0.250 0.222 0.136 0.097 0.083 0.064
4 mm | ereg (E1) 0.150 0.136 0.071 0.033 0.030 0.028
6 mm | ereg 0.217 0.173 0.071 0.079 0.064 0.042
8 mm | ereg 0.242 0.178 0.078 0.100 0.071 0.048
10 mm | ereg 0.231 0.181 0.078 0.106 0.075 0.049
4 mm | eran (E2) 0.238 0.212 0.125 0.069 0.062 0.057
6 mm | eran 0.257 0.240 0.101 0.099 0.074 0.059
8 mm | eran 0.288 0.232 0.097 0.103 0.075 0.059
10 mm | eran 0.259 0.215 0.092 0.100 0.078 0.059
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Supplementary Table 2: Analogous to Table 1, but with cluster-size thresholds now determined from the ‘-Clustsim’
option of 3dttest++ (1-sided tests with 1! nearest neighbor clustering). Results from the 5 other possible combination
of sidedness and neighborliness are very similar.

blur stm | p=0.01 | p=0.007 | p=0.005 | p=0.003 | p=0.002 | p=0.0015 | p=0.001
4mm | blk10 0.048 | 0.050 | 0.048 | 0.050 | 0.047 | 0.046 0.042
6mm | blk10 0.045 | 0.043 | 0.047 | 0.050 | 0.049 | 0.045 0.046
8mm | blk10 0.051 | 0.051 | 0.050 | 0.046 | 0.046 | 0.044 0.044
10 mm | blk10 0.044 | 0.051 | 0.056 | 0.056 | 0.052 | 0.052 0.046
4mm | blk30 0.048 | 0.055 | 0.045 | 0.049 | 0052 | 0.053 0.046
6mm | blk30 0.048 | 0.046 | 0.050 | 0.052 | 0.049 | 0.050 0.047
8mm | blk30 0.051 | 0.050 | 0.050 | 0.050 | 0.048 | 0.053 0.052
10 mm | blk30 0.047 | 0.045 | 0.051 | 0.047 | 0045 | 0.043 0.047
4mm | ereg 0.048 | 0.049 | 0.049 | 0.050 | 0.045 | 0.040 0.038
6mm | ereg 0.051 | 0.053 | 0.051 | 0.046 | 0.051 0.054 0.049
8mm | ereg 0.050 | 0.049 | 0.048 | 0.051 | 0052 | 0.049 0.050
10 mm | ereg 0.057 | 0.057 | 0.055 | 0.051 | 0.053 | 0.050 0.049
4mm | eran 0.042 | 0.044 | 0048 | 0.043 | 0042 | 0.038 0.036
6mm | eran 0.044 | 0048 | 0042 | 0.044 | 0.041 0.043 0.039
8mm | eran 0.048 | 0.048 | 0.045 | 0.050 | 0.044 | 0.047 0.045
10 mm | eran 0.048 | 0.048 | 0.049 | 0.048 | 0.046 | 0.048 0.046
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