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ABSTRACT

Amyotrophic Lateral Sclerosis (ALS) is one of the most severe neurodegenerative diseases, which is known to affect upper
and lower motor neurons. In contrast to the classical tenet that ALS represents the outcome of extensive and progressive
impairment of a fixed set of motor connections, recent neuroimaging findings suggest that the disease spreads along vast
non-motor connections. Here, we hypothesised that functional network topology is perturbed in ALS, and that this reorganisation
is associated with disability. We tested this hypothesis in 21 patients affected by ALS at several stages of impairment using
resting-state electroencephalography (EEG) and compared the results to 16 age-matched healthy controls. We estimated
functional connectivity using the Phase Lag Index (PLI), and characterized the network topology using the minimum spanning
tree (MST). We found a significant difference between groups in terms of MST dissimilarity and MST leaf fraction in the beta
band. Moreover, some MST parameters (leaf, hierarchy and kappa) significantly correlated with disability. These findings
suggest that the topology of resting-state functional networks in ALS is affected by the disease in relation to disability. EEG
network analysis may be of help in monitoring and evaluating the clinical status of ALS patients.

Introduction
Amyotrophic Lateral Sclerosis (ALS) is one of the most severe neurodegenerative diseases, affecting the upper and lower
motor neurons. All motor functions are progressively invalidated, and life expectancy rarely exceeds 3 years from the onset of
symptoms. However, in contrast to the classical tenet that ALS represents the outcome of extensive and progressive impairment
of a fixed set of motor connections, recent neuroimaging findings suggest that the disease spreads along vast non-motor
connections. Indeed, advanced neuroimaging techniques, which allow for the non-invasive investigation of structural and
functional brain organization, have so far introduced new opportunities for the study of ALS and are currently supporting the
multi-systemic pathophysiology of this disease1, 2.

Recently, modern network science has aided in the understanding of the human brain as a complex systems of interacting
units3, 4. Indeed, the organization of brain networks can be characterised by means of several metrics that allow to estimate
functional integration and segregation, quantify centrality of brain regions, and test resilience to insult5. Moreover, changes in
network topology have been described for a range of neurological and psychiatric disorders4, 6. In this view, structural and
functional network studies based on diffusion tensor imaging (DTI) and functional magnetic resonance (fMRI) have contributed
in elucidating basic mechanisms related to ALS onset, spread and progression.

For instance, Verstraete et al.7 observed structural motor network degeneration and suggested a spread of disease along
functional connections of the motor network. Moreover, the same group has also reported8 an increasing loss of network
structure in patients with ALS, with the network of impaired connectivity expanding over time. Schmidt et al.9, have recently
shown that structural and functional connectivity degeneration in ALS are coupled and that the pathogenic process strongly
affects both structural and functional network organization. Other resting-state fMRI studies10–12 have reported alterations in
specific resting-state networks. Recently, Iyer and colleagues13 have investigated the use of resting-state electroencephalographic
(EEG) as a potential biomarker for ALS, suggesting that a pathologic disruption of the network can be observed in early stages
of the disease. However, it still remains relevant to address methodological issues that may affect both connectivity estimation
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and network reconstruction14.
Although the results described above are promising, it is not yet clearly understood how whole-brain functional networks

are perturbed in ALS patients, and how this relates to disability. Resting-state EEG analysis may represent a practical tool to
evaluate and monitor the progression of the disease. Despite the wide use of EEG in the assessment of brain disorders4, 15, 16, it
has not been used widely to evaluate functional network changes induced by ALS. To test our hypothesis, we reconstructed
functional networks from resting-state EEG recordings in 21 ALS patients and 16 age-matched healthy controls using the phase
lag index (PLI)17, a widely used and robust measure of phase synchronization that is relatively insensitive to the effects of
volume conduction. The topologies of frequency specific minimum spanning trees (MSTs) were subsequently characterised and
compared between groups as it has been shown18, 19 that it avoids important methodological biases that would otherwise limit a
meaningful comparison between the groups20. Moreover, a correlation analysis was performed between the MST parameters
and disability.

Results and Discussion
Age-matching
No significant group differences were observed in age (W=145.5, p = 0.499).

Functional Connectivity
No significant group differences were observed for the global mean PLI in any frequency band (both with and without FDR
correction for number of frequency bands). Descriptive results and statistics are summarized in Table 1. No significant
correlation was observed between the patients’ global mean PLI and the disability score for any frequency band (see Table 2).

MST dissimilarity
A significant MST dissimilarity between ALS patients and healthy controls was found in the beta band using Mann-Whitney U
test (W = 68.00, p = .008) after FRD correction.

MST topology
A significant difference between groups was observed for MST leaf fraction in the beta band (W = 87.5, p = .014). Results
from Mann-Whitney U test statistics are summarized in Table 3. Individual values for each MST parameter in the beta band
are shown in Figure 1. In contrast, significant correlations were observed between some MST parameters (leaf, hierarchy and
kappa) and disability score in the beta band (scatterplots for individual MST parameters and disability scores are reported in
Figure 2).

Discussion
In summary, by applying the PLI and the MST analysis in EEG recordings, this study shows large-scale changes in the
functional brain network organization in ALS patients as identified using MST dissimilarity. Post-hoc analysis revealed that
this difference in network topology between patients and controls was due to a difference in leaf fraction, and that the patients’
network organization in terms of MST parameters significantly correlated with disability, which is of clinical relevance. These
results were observed in the beta band (13 – 30 Hz), where the MST topology was characterized by a significantly lower leaf
fraction in the patients. Together with the significant negative correlation between disability score and leaf fraction, as well as a
positive correlation with the diameter (even though not significant), indicates the tendency to deviate from a more centralized
(star-like topology) towards a more decentralized organization (line-like topology). The negative correlation between tree
hierarchy and disability score suggests that there is a sub-optimal balance between hub overload and functional integration in
the network. Moreover, the negative correlation between disability and kappa, a measure that captures the broadness of the
degree distribution, reflects the detrimental effect of a network topology with a reduced ease of synchronization (i.e., decreased
spread of information across the tree)21.

As hypothesized, these findings suggest that ALS alters the brain network topology, which thus tends to deviate from the
normal, presumably optimal, organization, and suggest that the correlation between MST parameters and the ASLFRS-R
scale maybe be useful in monitoring the progression of the disease. These findings indicate that also at macroscopic scale (as
measured by EEG functional networks), in accordance with previous studies on structural and functional neuroimaging1, ALS
seems to affect extramotor brain regions, a result that is in line with the idea that pathological perturbations are rarely confined
to a single locus22.

Moreover, it is of interest to note that a similar shift towards a more decentralized topology has been previously observed in
multiple sclerosis23 and Parkinson’s disease24 , and that functional networks in epilepsy patients that respond to vagal nerve
stimulation re-organize towards a more centralized topology25. Together, these findings suggest that there is a possible common
pathway in neurological disorders, as has been hypothesised recently4. Group differences and significant correlations between

2/7

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 25, 2016. ; https://doi.org/10.1101/065714doi: bioRxiv preprint 

https://doi.org/10.1101/065714


network topology and disability were found in the beta band, which may not be surprising given its link with motor function26

and that changes in beta activity can occur with ageing, sensorimotor disorders and amyotrophic lateral sclerosis27, 28.
Despite the observed differences between healthy controls and ALS patients in terms of MST dissimilarity and leaf fraction,

and clinically relevant correlations between disability and network topology, we found that the detection of distinctive EEG
network properties still remains a difficult task during the early stages of the disease. This is in contrast with the study by Iyer
and colleagues13, who used a set of connectivity metrics in combination with network analysis. In contrast to their work, we
used different methods of functional connectivity (PLI) and network reconstruction (MST), as well as a conservative statistical
approach. Indeed, the PLI has been shown to be an index of phase synchronization that is robust to biases introduced by
volume conduction and field spread. Moreover, the MST represents a network approach that, although still providing network
characteristics that can be related to conventional graph measures19, is not biased by common methodological issues arising
when reconstructing and comparing networks using traditional approaches (i.e. the use of arbitrary thresholds)20.

Previous studies have shown a direct relation between disability and disease progression29. Interestingly, the observed
correlation between network organization and disease disability suggests that it might be possible to track disease progression
on the basis of EEG network analysis. However, a longitudinal study is needed to confirm this idea. The difference between
groups in terms of overall MST topology (i.e. the MST dissimilarity results), in combination with the change in leaf fraction,
suggests that ALS affects the brain networks at a global level. However, it could be that the networks were reconstructed at a
level that was too coarse, and/or without enough anatomical precision. The study of source-reconstructed time-series would be
of help in investigating the role of specific brain regions, and in identifying whether certain regions are more affected than
others.

In conclusion, this study shows that EEG functional network re-organization in ALS patients, as computed by the PLI and
MST approach, is associated with the patient disability. This finding suggests that resting-state EEG networks analysis may
play an important role in evaluating the status of ALS patients and monitoring disease progression.

Methods

Subjects
Twenty-one patients (7 female; mean age 66, standard deviation 9 years) diagnosed with ALS according to the revised El
Escorial criteria30, who attended the ALS Centre of the Azienda Ospedaliera Universitaria of Cagliari (Italy), were included in
the study. A control group, consisting of sixteen age- and gender- matched healthy subjects (9 female; mean age 65, standard
deviation 7 years), was also included. The local Ethical Committee approved the study (NP/2013/1496) and written informed
consent was obtained from the participants. The clinical ALSFRS-R score29, a validated rating instrument for monitoring
the progression of disability in patients with ALS, was evaluated at the time of EEG recording. This score was converted to
a disability score by subtracting it from the maximum obtainable score, i.e. 48 - ALSFRS-R. That is, a disability score of 0
means that you are healthy.

Recordings
Five minutes EEG signals were recorded using a 61 EEG channels system (Brain QuickSystem, Micromed, Italy) during an
eye-closed resting-state condition. The reference electrode was placed in close proximity of the electrode POz. Signals were
digitized with a sampling frequency of 256 Hz and offline re-referenced to the common average reference (excluding channels
Fp1, AF3, AF7, Fp2, AF4 and AF8). For each subject the first four epochs (avoiding as possible contaminations from eye
blinks, eye-movements, muscle activity, ECG, as well as systems- and environmental artifacts) of 2048 samples (8 s)31 were
selected and band-pass filtered in the classical frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta
(13–30 Hz).

Functional connectivity
The phase lag index (PLI)17, which evaluates the asymmetry of the distribution of instantaneous phase differences between
pairs of channels, was used to estimate functional connectivity (FC). Computing FC between all pair wise combinations of EEG
time-series resulted in a weighted adjacency matrix of 58 x 58 entries (after excluding bad channels form both patients and
healthy subjects) for each epoch. Mean PLI was also computed across epochs and channels. MST reconstruction. The MST is
an acyclic sub-network, which connects all nodes minimizing the link weights (for the computation of the MST, the link weight
is defined as 1 – PLI). The MST was obtained using the Kruskal algorithm32. The topology of the MST was characterised using
several measures. The diameter (largest distance between any two nodes), the normalized leaf fraction (number of nodes with
degree of 1 divided by the total number of nodes), kappa (broadness of degree distribution) and the tree hierarchy (balance
between hub overload and network integration) were extracted from the MSTs18, 19, 33. The procedure was repeated for each
subject, each epoch and each frequency band separately.
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MST dissimilarity
MST dissimilarity, which assesses the overlap between MSTs34, was estimated between MSTs of ALS patients and healthy
controls. In this study the MST reconstructed from the average connectivity matrix of all healthy subjects was used as reference
in order to compute MST dissimilarities for both patients and controls23.

Statistical analysis
Statistical differences in age, mean PLI, and MST dissimilarity between groups were evaluated using the non-parametric
Mann-Whitney test. The value used for significance was set to p ¡ .05 and a correction for multiple comparisons was performed
by the false detection rate (FDR), correcting for the four frequency bands35. In case we found significant MST dissimilarity,
post-hoc analysis was performed to find out which MST parameters were different. Moreover, a Spearman’s rank correlation
coefficient was computed to assess the relationship between the network topology (in terms of mean PLI and MST parameters)
and disease severity (in terms of the disability score). Statistical analysis was performed using JASP (version 0.7.5 beta 2 for
Mac OS X)36.
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Figure 1. MST parameters for the patients and controls in the beta band. Horizontal bars indicate mean and standard
deviation. Each dot or square represents a single ALS patients or healthy control, respectively.

mean PLI Group N mean SD MW p-value Cohen’s d
delta PLI ALS 21 0.170 0.017 170.0 .964 1.057

Controls 16 0.167 0.014
theta PLI ALS 21 0.144 0.034 185.0 .617 1.624

Controls 16 0.137 0.012
alpha PLI ALS 21 0.153 0.041 165.0 .940 -0.396

Controls 16 0.155 0.043
beta PLI ALS 21 0.070 0.008 113.0 .095 -2.589

Controls 16 0.073 0.007

Table 1. Group descriptive and statistics from Mann-Whitney U test for the global mean PLI.

Disability score
delta PLI Spearman’s rho .021

p-value .929
theta PLI Spearman’s rho - .218

p-value .343
alpha PLI Spearman’s rho - .198

p-value .389
beta PLI Spearman’s rho - .351

p-value .119

Table 2. Correlations between global mean PLI and disability score.
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Figure 2. Scatter plots for MST parameters versus disability score in the beta band. Disability score was computed as (48 –
ALSFRS-R), thus higher scores refer to higher disability.

Beta band
W p-value mean differences SE differences Cohen’s d

leaf 87.50 .014 -0.033 0.012 -5.202
diameter 186.00 .591 0.005 0.009 2.027
hierarchy 104.00 .051 -0.017 0.009 -3.730
kappa 111.00 .083 -0.299 0.189 -3.405

Table 3. Group differences in the beta band.
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