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Abstract

Aberrant cell signaling is known to cause cancer and many other diseases, as well as a
focus of treatment. A common approach is to infer its activity on the level of pathways using
gene expression. However, mapping gene expression to pathway components disregards
the effect of post-translational modifications, and downstream signatures represent very
specific experimental conditions. Here we present PROGENy, a method that overcomes
both limitations by leveraging a large compendium of publicly available perturbation
experiments to yield a common core of Pathway RespOnsive GENes. Unlike existing
methods, PROGENYy can (i) recover the effect of known driver mutations, (ii) provide or
improve strong markers for drug indications, and (iii) distinguish between oncogenic and
tumor suppressor pathways for patient survival. Collectively, these results show that
PROGENy more accurately infers pathway activity from gene expression than other

methods.
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Introduction

A wealth of molecular data has become available to describe a cell’s state in different
diseases. The remaining challenge is how to derive predictive and reliable biomarkers for
disease status, treatment opportunities, or patient outcome in a way that is both relevant and
interpretable. Of particular interest are methods which infer and quantify deregulation of
signaling pathways, as those are key for many processes underpinning different diseases.
Here we focus on cancer, which is largely caused by cell signaling aberrations created by
driver mutations and copy number alterations (Hanahan and Weinberg 2000).

Efforts like the TCGA (The Cancer Genome Atlas Research Network et al. 2013) and ICGC
(International Cancer Genome Consortium et al. 2010) have pioneered molecular
characterization of primary tumors on a large scale. The GDSC (Garnett et al. 2012; lorio et
al. 2016) and CCLE (Barretina et al. 2012) have focussed on preclinical biomarkers of drug
sensitivity in cancer cell lines. These initiatives have provided profound insight in the
molecular markup of the disease. However, putting the genomic alterations investigated in
the functional context of the pathways they alter may shed additional light on mechanisms of
pathogenesis and treatment opportunities (Mutation Consequences and Pathway Analysis
working group of the International Cancer Genome Consortium 2015).

With direct measurements of signaling activity not widely available, pathway levels have
mostly been inferred using the expression of predefined gene sets derived from Gene Set
Enrichment Analysis (Subramanian et al. 2005) on Gene Ontology categories (Gene
Ontology Consortium 2004) or pathway resources such as Reactome (Croft et al. 2011).
More sophisticated methods have attempted to quantify the signal flow by taking into
account pathway structure, the best known of which are SPIA (Tarca et al. 2008),
PARADIGM (Vaske et al. 2010), and Pathifier (Drier et al. 2013). All of these methods
however are based on mapping transcript expression on the corresponding signaling
proteins, and hence do not take into account the effect of post-translational modifications
that are known to govern mammalian signal transduction (Fig. 1a). It is therefore unclear if
and under what circumstances the pathway scores obtained by these methods reflect
signaling activity.

Another approach is to look at the downstream effect of pathway activity on gene
expression. Expression levels of genes regulated by transcription factor or kinases have
been used to estimate the activity status of proteins (Chen et al. 2011; Alvarez et al. 2016).
Similarly, the transcripts altered when perturbing a specific pathway can be used to infer
pathway activation from gene expression of other samples, i.e. provide a signature of their
activity. Such signatures have been derived for breast cancer (Bild et al. 2005; Gatza et al.
2010), but they are known to be heterogeneous and not replicate well under different
experimental conditions (Chibon 2013). This property makes them unsuitable as a generally
applicable pathway method.

Here, we overcome the limitations of both approaches by leveraging a large compendium of
publicly available perturbation experiments that yield a common core of Pathway
RespOnsive GENes to a specified set of stimuli. We then used those to infer the upstream
signal mediating downstream expression changes based on building a consensus model
(PROGENYy), improving on an idea we previously suggested (Parikh et al. 2010).
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We performed a systematic comparison of PROGENy and other commonly used pathway
methods for 11 cancer-relevant pathways. We investigated how well each method can
recover pathway perturbations and is able to recover constitutive activity mediated by driver
mutations in The Cancer Genome Atlas (TCGA) (The Cancer Genome Atlas Research
Network et al. 2013). We further examined how well they can explain drug sensitivity to 265
drugs in 805 cancer cell lines in the Genomics of Drug Sensitivity in Cancer (GDSC)
(Garnett et al. 2012; lorio et al. 2016) and patient survival in 7254 primary tumors spanning
34 tumor types using TCGA data. We found that PROGENYy significantly outperforms
existing methods for all these tasks.

Results

Consensus gene signatures for pathway activity

We curated (workflow in Fig. 1b) a total of 208 different submissions to ArrayExpress/GEOQO,
spanning perturbations of the 11 pathways EGFR, MAPK, PI3K, VEGF, JAK-STAT, TGFb,
TNFa, NFkB, Hypoxia, p53 (and DNA damage response) and Trail (apoptosis). Our dataset
consists of 580 experiments and 2652 microarrays, making it the largest study of pathway
signatures to date (Fig. 1c and Supplemental Fig. 1).

We obtained z-scores of gene expression changes for each experiment, for which we
performed a multiple linear regression using the perturbed pathway as input and gene
expression as a response variable. For each pathway, we identified 100 responsive genes
that are consistently deregulated across experiments (Supplemental Fig. 2). These
responsive genes are specific to the perturbed pathway (Supplemental Fig. 3) and do almost
not overlap with genes that comprise it (Supplemental Fig. 4). We use the z-scores of those
pathway-responsive genes in a simple, yet effective linear model to infer pathway activity
from gene expression called PROGENYy (for Pathway RespOnsive GENes, but also to
indicate the descent of the method from previously published experiments; Supplemental
Table 1).

Had we applied the same methodology on individual signatures at the same significance
threshold (10% FDR), those would resemble more the experimental conditions they were
derived from than the perturbed pathway (Fig. 2a, left). Instead, applying PROGENYy on the
input experiments assigns pathway scores that are cluster the input experiments by their
intended activation pattern (Fig. 2a, right), suggesting that our model is able to capture the
common pathway responses in a heterogeneous set of experiments.

Within experiments, our inferred pathway activation is strongly (p<107'°) associated with the
pathway that was experimentally perturbed. The associations with other pathways are
weaker (p>107°) except for EGFR with MAPK/PI3K and TNFa with NFkB/MAPK (Fig. 2b),
where there is biologically known cross-activation (Kant et al. 2011). Relative activation
patterns are consistent across input experiments and not driven by outliers (Fig. 2c). This is
in contrast to methods based on pathway expression that are not able to recover
experimental perturbations by means of their inferred pathway score (Supplemental Fig. 5).
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Across experiments, PROGENYy is able to better rank the perturbations for 10 out of 11
pathways (Fig. 2d and Supplemental Table 6). With the exception of NFKkB and JAK-STAT,
competing methods do not perform significantly better than random. VEGF is not
recapitulated well by any method, possibly because of overlap with other pathways. Overall,
PROGENy more closely corresponds to pathway activation upon perturbation than any
method that maps transcript expression to pathway members.

Knowing how pathway-responsive genes behave when a stimulus is present, we can take
the idea one step further and hypothesize that the existence of a different basal expression
level of the responsive genes may in turn correspond to cell-intrinsic signaling activity. We
find that the correlation between different pathway scores in basal expression (Fig. 2e)
corresponds to the previously observed cross-activation upon perturbation (Fig. 2b and
Supplemental Fig. 6), suggesting that PROGENYy can detect footprints of signaling activity in
basal gene expression. Furthermore, the pathway scores we derive are robust to changes in
the experiments that the model was derived from (Fig. 2f).

Recovering mechanisms of known driver mutations

If our reasoning is correct and pathway-response signatures in basal gene expression
correspond to intrinsic signaling activity, we should be able to see a higher pathway score in
cancer patients with an activating driver mutation in that pathway and a lower score for
pathway suppression compared to patients where no such alteration is present.

We selected all cancer types in the TCGA for which there were tissue-matched normals
available, in order to make full use of the pathway methods that require them. We calculated
pathway scores for those using PROGENYy, Reactome and Gene Ontology enrichment,
SPIA, Pathifier, and PARADIGM. We used an ANOVA to calculate significant associations
between the presence and absence of mutations and copy number alterations and the
inferred pathway scores for our method (Fig. 3a) and others, both with and without
regressing out cancer types (Supplemental Fig. 7).

In terms of proliferative signaling, we find that PROGENYy identifies EGFR amplifications to
activate both the EGFR and MAPK pathways (FDR<10‘2°), and to a lesser extent PI3K,
VEGF, and Hypoxia (FDR<10°). KRAS mutations show an increase in inferred EGFR
activity, and amplifications additionally for MAPK and PI3K (FDR<107%). All other methods fail
to detect a strong activation of the MAPK/EGFR pathways (Fig 3b.; top right and bottom left)
given those alterations. We further find an increase in PI3K activity with ERBB2
amplifications, but also a reduction in the Trail signature (FDR<0.05), suggesting a stronger
relative impact on cell survival. BRAF mutations have a positive effect on EGFR and MAPK
(FDR<10®) but not PI3K (FDR>0.4).

For TP53 mutations PROGENYy finds a significant reduction in p53/DNA damage response
activity (FDR<107"®) and activation of the pathways for MAPK, PI3K, and Hypoxia
(FDR<10*). This is in contrast to loss of TP53, where we only find a reduction in p53/DDR
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(FDR<107) but no modification of any other pathway (FDR>0.15). The dual nature of TP53
mutations and loss are in line with the recent discovery that TP53 mutations can act in an
oncogenic manner in addition to disrupting its tumor suppressor activity, which has been
shown for individual cancer types (Olive et al. 2004; Zhang et al. 2013; Weissmueller et al.
2014; Zhu et al. 2015). In addition, this analysis suggests a link between TP53 mutations
and genes that are induced by activation of canonical oncogenic signaling such as MAPK
and PI3K. Other methods (Fig 3b.; top left) are unable to recover the expected negative
association between these alterations and p53/DDR activity. GO and Reactome showed a
much weaker effect in the same direction, while Pathifier and SPIA showed an incorrect
positive effect. These methods do, however, capture the activation of other oncogenic
pathways, suggesting this effect is driven by expression changes that then leads to changes
in activity.

PROGENYy finds that VHL mutations (which have a high overlap with Kidney Renal
Carcinoma, KIRC) are associated with an expected stronger induction of hypoxic genes
(Maxwell et al. 1999) compared to other cancer types. It is the only one to recover hypoxia
as the strongest link with VHL mutations, while the other methods primarily report expression
changes in unrelated pathways (Fig 3b.; bottom right). More surprisingly, we find that
presence of PIK3CA amplifications and PTEN deletions is also more connected to
increasing the hypoxic response (FDR<10°) compared to an effect on the PI3K-responsive
genes (FDR between 102 and 107). A role of PI3K signaling in hypoxia has been shown
before (Zhou et al. 2004; Yang et al. 2009; Kilic-Eren et al. 2013).

These highlights reflect the more general pattern PROGENYy is able to correctly infer the
impact of driver mutations that other pathway methods are not. The latter are only able to
identify some cases where activity is mediated by changes in the expression level
(Supplemental Table 7).

Associations with drug response

The next question we tried to answer is how well PROGENYy is able to explain drug
sensitivity in cancer cell lines. We took as a measure of efficacy the IC,, i.e. the drug
concentration that reduces viability of cancer cells by 50%, for 265 drugs and 805 cell lines
from the GDSC project (lorio et al. 2016) and performed an ANOVA between those and
inferred pathway scores of PROGENYy, Reactome, Gene Ontology, SPIA, Pathifier, and
PARADIGM.

We found 199 significant associations (10% FDR in Fig. 4a and Supplemental Fig. 7) for
PROGENYy, dominated by sensitivity associations between MAPK/EGFR activity and drugs
targeting MAPK pathway (Fig. 4b) that are consistent with oncogene addiction. In particular,
this includes associations of the MAPK/EGFR pathways with different MEK inhibitors
(Trametinib, RDEA119, CI-1040, etc.), a RAF inhibitor (AZ628) and a TAK1 inhibitor
(7-Oxozeaenol). However, the strongest hit we obtained was the association between
Nutlin-3a and p53-responsive genes. Nutlin-3a is an MDM2-inhibitor that in turn stabilizes
p53, and it has also previously been shown that a mutation in TP53 is strongly associated
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with increased resistance to Nutlin-3a (Garnett et al. 2012). Hence, this is a well-understood
mechanism of sensitivity (presence) or resistance (absence of p53 activity) to this drug that
our method captures but none of the pathway expression-based methods do.

Considering the overall number of associations, the other pathway methods provided a lower
number across the range of significance (Fig. 4a and Supplemental Fig. 7). PROGENYy even
outperforms associations obtained with driver mutations at 10% FDR, as those only yield

136 associations. The latter only provide stronger associations for TP53, where the
signature is a compound of p53 signaling and DNA damage response, and
PLX4720/Dabrafenib, drugs that were specifically designed to target mutated BRAF. For 170
out of 265 drugs covered by significant associations with either PROGENYy or driver
mutations, PROGENYy provided stronger associations for 85, with a significant enrichment in
cytotoxic drugs compared to targeted drugs for mutations (Fisher’s exact test, p<0.002).

However, stratification using PROGENy and mutated driver genes is not mutually exclusive.
Our pathway scores are able to further stratify the mutated and wild-type sub-populations
into more and less sensitive cell lines (Fig. 4c and Supplemental Tables 8-9). This includes,
but is not limited to, BRAF, NRAS or KRAS mutations using MAPK pathway activity and the
MEK inhibitor Trametinib (Fig. 4c; top left) or RAF inhibitor AZ628 (Fig. 4c; bottom left),
BRAF mutations with Dabrafenib (Fig. 4c; top right), and TP53 mutations with p53/DDR and
Nutlin-3a (Fig. 4c; bottom left). For MAPK- and BRAF-mutated cell lines, we find that cell
lines with an active MAPK pathway according to the PROGENYy are 175 (AZ628), 7596
(Trametinib), or 10° fold (Dabrafenib) more sensitive than those where it is inactive. For
Trametinib, cell lines with active MAPK but no mutation in BRAF, KRAS, or NRAS are six
times more sensitive than cell lines that harbor a mutation in any of them but MAPK is
inactive.

Taken together, these results show that PROGENy can be used to complement
mutation-derived biomarkers by either refining them or providing an alternative where no
such marker exists. Associations obtained with other methods do not show strong
interactions between pathways and drugs that target their members.

Implications for patient survival

The implications of inferred pathway activity compared to pathway expression is expected to
be less clear for patient survival than for cell line drug response due the many more factors
that affect the phenotype observed. Nonetheless, we were interested in how our inferred
pathway activity compared to pathway expression methods in terms of overall patient
survival.

Across all cancer types, PROGENYy found a strong association with decreased survival for
EGFR, MAPK, PI3K, and Hypoxia (Fig. 5a). Gene Ontology found much weaker
associations for those pathways, and the other methods missed them almost entirely. In
terms of Trail activity, PROGENYy is the only method to find an increase in survival, while the
other methods show either a decrease or no effect. For JAK-STAT, NFkB, p53, and VEGF
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there are no significant associations that are picked up by more than one method
(FDR<0.05). In comparison, driver mutations did not provide any significant associations
except for TP53 (FDR<0.03 vs. FDR>0.2) with a weaker effect size compared to PROGENYy.

For individual cancer types, PROGENYy finds a similar separation between oncogenic and
tumor-suppressor pathways (Fig. 5b) that other methods fail to provide (Supplemental Fig.
9). Our associations are significant for more cancer types and more specific to individual
pathways. We find cancer-specific associations of pathways with no effect in the pan-cancer
setting. Adrenocortical Carcinoma (ACC) shows a significant survival increase with p53
activity (FDR<10%), supported by the fact that it not harbor any previously reported
gain-of-function TP53 variants (Zhu et al. 2015). Kidney Renal Clear Cell Carcinoma (KIRC)
and Low-Grade Glioma (LGG) show decreased survival with TNFa and JAK-STAT
respectively, pathways where activating mutations are much less well established than for
EGFR/MAPK. For these three associations, the top and bottom quartiles of PROGENy
pathway activity were able to stratify patients in groups with over 25% difference in one year
survival (Fig. 5¢). Compared to mutations, PROGENYy also provided stronger associations
for cancer-specific survival (FDR 107 vs. 10%).

Discussion

The explanation of phenotypes in cancer, such as cell line drug response or patient survival,
has largely been focussed on genomic alterations (mutations, copy number alterations, and
structural variations). While this approach has generated many important insights into cancer
biology, it does not directly make statements about the impact of those aberrations have on
cellular processes and signal transduction in particular. Pathway methods, mostly used on
gene expression, have so far largely fallen short on delivering actionable evidence. This can
in part be due to lack of robustness, as suggested by the heterogeneity in responses of
individual signatures (Fig. 2a), but arguably also by the fact that extracting features that
reflect pathway activity from gene expression is not trivial. With proteomics lagging behind
sequencing data for the foreseeable future, we have a need to address both the accurate
inference of pathway activity from gene expression, as well as the issue of irreproducible
gene signatures.

We developed PROGENYy in order to overcome these limitations. PROGENYy leverages a
large compendium of pathway-responsive gene signatures derived from a wide range of
different conditions in order to identify genes that are consistently deregulated. The result is
a simple linear model that outperforms competing pathway methods that are orders of
magnitude more complex and computationally expensive.

We found that despite the heterogeneity of individual gene expression experiments,
PROGENy more closely corresponds to pathway perturbations than other methods.
PROGENYy can recover the impact of known driver mutations from basal gene expression,
but also identify cases where a pathway is active without their presence. Pathway mapping
only recovers known associations where this effect is mediated by expression changes, such
as TP53 oncogene activation or copy number aberrations.
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In terms of drug sensitivity, we showed that PROGENYy provides stronger associations than
available pathway methods that also correspond better to known interactions. It can be used
to refine mutation-derived biomarkers, as well as to provide novel markers with no
associated mutation. Pathway expression is further removed and thus more likely to be a
consequence rather than a cause of the drug sensitivity mediated by a signaling aberration.
The fact that competing methods do not recover oncogene addiction patterns supports this
claim.

For survival associations, only PROGENYy finds the pathways that we would most expect to
decrease patient survival by accelerating tumour growth (EGFR and MAPK) and promoting
survival by apoptosis (Trail) to be associated with the respective outcome in both the
pan-cancer as well as the tissue-specific cohorts. Other methods fail to separate those, only
obtain significant associations for a very limited number of cancer types, and show high
correlation between pathways.

Overall, our results suggest that PROGENYy provides a better measure of pathway activity
than other pathway methods, irrespective of whether the latter was derived from gene sets
or directed paths. We have shown that PROGENYy is able to refine our understanding of the
impact of mutations, as well as their utility for cell line drug response and patient survival. It
provides a strong evidence that in order to infer pathway activity, a downstream readout
should be used instead of mapping transcript expression levels to signaling molecules.

Methods

Data from The Cancer Genome Atlas (TCGA)

To obtain TCGA data, we used the Firehose tool from the BROAD institute
(http://gdac.broadinstitute.org/), release 2016_01_28.

For gene expression, we used all data labelled “Level 3 RNA-seq v2”. We extracted the raw
counts from the text files for each gene, discarded those that did not have a valid HGNC
symbol, and averaged expression levels where more than one row corresponded to a given
gene. We then performed a voom transformation (limma package, BioConductor) for each
TCGA study separately, to be able to use linear modeling techniques with the count-based
RNA-seq data. The data used corresponds to 34 cancer types and a total of 9737 tumor and
641 matched normal samples.

From clinical data, we extracted the vital status and used known survival time or known time
of last follow-up as the survival time for the downstream analyses. We converted the time in
days to months by dividing by 30.4. The overlap of TCGA data where we could obtain both
MRNA expression levels as well as survival times is 10544 distributed across 33 cancer
types. For comparing different pathway methods, we only used cancer types with
tissue-matched controls, leaving 5927 samples in 13 cancer types.
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Data from the Genomics of Drug Sensitivity in Cancer (GDSC) project

We used version 17a of the GDSC data (lorio et al. 2016), comprised of molecular data for
1,001 cell lines and 265 anticancer drugs, specifically microarray gene expression data
(ArrayExpress accession E-MTAB-3610) and the IC,, values for each drug-cell line
combination. For computing pan-cancer associations, we used the subset with TCGA-like
cancer type label, leaving 768 cell lines.

Curation of Perturbation-Response Experiments

Our method is dependent on a sufficiently large number publicly available perturbation
experiments that activate or inhibit one of the pathways we were looking at. The following
conditions needed to be met in order for us to consider an experiment: (1) the compound or
factor used for perturbation was one of our curated list of pathway-perturbing agents
(Supplemental Note 2); (2) the perturbation lasted for less than 24 hours to capture genes
that belong to the primary response; (3) there was raw data available for at least two control
arrays and one perturbed array; (4) it was a single-channel array; (5) we could process the
arrays using available BioConductor packages; (6) the array was not custom-made so we
could use standard annotations.

We curated a list of known pathway activators and inhibitors for 11 pathways, where the
interaction between each compound and pathway is well established in literature. We then
used those as query terms for public perturbation experiments in the ArrayExpress database
(Parkinson et al. 2007) and included a total of 223 submissions and 573 experiments in our
data set, where each experiment is a distinct comparison between basal and perturbed
arrays. If there were multiple time points, different cells, different concentrations, or different
perturbing agents within a single database submission, they were considered as different
experiments.

Microarray Processing

Started from the curated list of perturbation-induced gene expression experiments, we
included all single-channel microarrays with at least duplicates in the basal condition with
raw data available that could be processed by either the limma (Smyth 2005), oligo
(Carvalho and Irizarry 2010), or affy (Gautier et al. 2004) BioConductor packages and for
which there was a respective annotation package available. Multiple concentrations or time
points in a series of arrays were considered as individual experiments.

We first calculated a probe-level for 573 full series of arrays, where we performed quality
control of the raw data using RLE and NUSE cutoffs under 0.1 and kept all arrays below that
threshold. If after filtering less than two basal condition arrays remained, the whole
experiment was discarded. For the remaining 568 series we normalized using the RMA
algorithm and mapped the probe identifiers to HGNC symbols.
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Building a Linear Model of Pathway-Response Genes

For each HGNC symbol, we calculated a model based on mean and standard deviation of
the gene expression level, and computed the z-score as average number of standard
deviations that the expression level in the perturbed array was shifted from the basal arrays.
We then performed LOESS smoothing for all z-scores in a given experiment using our null
model, as described previously (Parikh et al. 2010).

From the z-scores of all experiments and all pathways, we performed a multiple linear
regression with the pathway as input and the z-scores as response variable for each gene
separately:

Ze~M .. Vg

Where Z, is the z-score for a given gene g across all input experiments (as a column vector
of experiments). M is a coefficients matrix (rows are experiments, columns pathways, Fig.
1b) that has the coefficient 1 if the the experiment had a pathway activated, — 1 if inhibited,
and 0 otherwise. For instance, the Hypoxia pathway had experiments with low oxygen
conditions set as 1, HIF1A knockdown as — 1, and all other experiments as 0. The same is
true for EGFR and EGF treatment vs. EGFR inhibitors respectively, with the additional
coefficients of MAPK and PI3K pathways set to 1 because of known cross-talk (for a full

structure of the cross-talk modeled, see Fig. 1c). As these are fold changes, we do not allow
an intercept.

From the result of the linear model, we selected the top 100 genes per pathway according to
their p-value and took their estimate (the fitted z-scores) as coefficient. We set all other gene
coefficients to 0, so this yielded a matrix with HGNC symbols in rows and pathways in
columns, where each pathway had 100 non-zero gene coefficients (Supplemental Table 1).

PROGENYy scores

Each column in the matrix of perturbation-response genes corresponds to a plane in gene
expression space, in which each cell line or tumor sample is located. If you follow its normal
vector from the origin, the distance it spans corresponds to the pathway score P each
sample is assigned (matrix of samples in rows, pathways in columns). In practice, this is
achieved by a simple matrix multiplication between the gene expression matrix (samples in
rows, genes in columns, values are expression levels) and the model matrix (genes in rows,
pathways in columns, values are our top 100 coefficients):

P=ExG

We then scaled each pathway or gene set score to have a mean of zero and standard
deviation of one, in order to factor out the difference in strength of gene expression
signatures and thus be able to compare the relative scores across pathways and samples at
the same time.
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Pathway and Gene Ontology scores

We matched our defined set of pathways to the publicly available pathway databases
Reactome (Croft et al. 2011) and KEGG (Kanehisa and Goto 2000), and Gene Ontology
(GO) (Gene Ontology Consortium 2004) categories (Supplemental Tables 2-3), to obtain a
uniform set across pathway resources that makes them comparable. We calculated pathway
scores as Gene Set Variation Analysis (GSVA) scores that are able to assign a score to
each individual sample (unlike GSEA that compares groups).

SPIA scores

Signaling Pathway Impact Analysis (SPIA) (Tarca et al. 2008) is a method that utilizes the
directionality and signs in a KEGG pathway graph to determine if in a given pathway
structure the available species are more or less available to transduce a signal. As the
species considered for a pathway are usually mRNAs of genes, this method infers signaling
activity by the proxy of gene expression. In order to do this, SPIA scores require the
comparison with a normal condition in order to compute both their scores and their
significance.

We used the SPIA Bioconductor package (Tarca et al. 2008) in our analyses, focussing on a
subset of pathways (Supplemental Table 4). We calculated our scores either for each cell
line compared to the rest of a given tissue where no normals are available (i.e. for the GDSC
and drug response data) or compared to the tissue-matched normals (for the TCGA data
used in driver and survival associations).

Pathifier scores

As Pathifier (Drier et al. 2013) requires the comparison with a baseline condition in order to
compute scores, we computed the GDSC/TCGA scores as with SPIA. As gene sets, we
selected Reactome pathways that corresponded to our set of pathways (Supplemental Table
3), where Pathifier calculated the “signal flow” from the baseline and compared it to each
sample.

PARADIGM scores

We used the PARADIGM software from the public software repository
(https://github.com/sbenz/Paradigm) and a model of the cell signaling network (Cancer
Genome Atlas Network 2012) from the corresponding TCGA publication
(https://tcga-data.nci.nih.gov/docs/publications/coadread_2012/). We normalized our gene
expression data from both GDSC and TCGA using ranks to assign equally spaced values
between 0 and 1 for each sample within a given tissue. We then ran PARADIGM inference
using the same options as in the above publication for each sample separately. We used
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nodes in the network representing pathway activity to our set of pathways (Supplemental
Table 5) to obtain pathway scores that are comparable to the other methods, averaging
scores where there were more than one for a given sample and node.

Associations with known driver mutations and CNAs

For comparing the impact of mutations across different pathway methods, we used TCGA
cohorts where tissue-matched controls were available, leaving 6549 samples across 13
cancer types. For mutated genes, we considered all genes that had a change of coding
sequence (SNP, small indels in MAF files) as mutated and all others as not mutated. For
copy number alterations (CNAs), we used the thresholded GISTIC (Beroukhim et al. 2007)
scores, where we considered homozygous deletions (-2) and strong amplifications (2) as
altered, no change (0) as basal and discarded intermediate values (-1, 1) from our analysis.
We focussed our analysis of the mutations and copy number alterations on the subset of 464
driver genes that were also used in the GDSC. We used the sets of mutations and CNAs to
compute the linear associations between samples for all different methods we looked at. We
did not regress out the cancer type in order to keep associations where mutations/CNAs are
highly correlated with it, but highlighted all associations that passed the significance
threshold of FDR<5% (for each pathway method individually) after such a correction.

Drug associations using GDSC cell lines

We performed drug association using an ANOVA between 265 drug IC.,s and 11 inferred
pathway scores conditioned on MSI status, doing a total of 2915 comparisons for which we
correct the p-values using the false discovery rate. For pan-cancer associations, we used
the cancer type as a covariate in order to discard the effect that different tissues have on the
observed drug response. While this will also remove genuine differences in pathway
activation between different cancer types, we would not be able to distinguish between those
and other confounders that impact the sensitivity of a certain cell line from a given tissue to a
drug. Our pan-cancer association are thus the same of intra-tissue differences in drug
response explained by inferred (our method, GO, or Reactome) pathway scores.

We also selected two of our strongest associations to investigate whether they provide
additional information of what is known by mutation data. For two MEK inhibitors, we show
the difference between wild-type and mutant MAPK pathway (defined as a mutation in either
NRAS, KRAS, or BRAF) with a discretized pathway score (upper and lower quartile vs. the
rest), as well as the combination between the upper quartile of tissue-specific pathway
scores and presence of a MAPK mutation.

Survival associations using TCGA data

Starting from the pathway scores derived with GO/Reactome GSEA, SPIA, Pathifier,
PARADIGM, and our method on the TCGA data as described above, we used Cox
Proportional Hazard model (R package survival) to calculate survival associations for
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pan-cancer and each tissue-specific cohort. For the pan-cancer cohort, we regressed out the
effect of the study and age of the patient, and fitted the more for each pathway and method
used. For the tissue-specific cohorts, we regressed out the age of the patients. We adjusted
the p-values using the FDR method for each method and for each method and study
separately. We selected a significance threshold of 5 and 10% for the pan-cancer and
cancer-specific associations for which we show a matrix plot and a volcano plot of
associations, respectively.

In order to get distinct classes needed for interpretable Kaplan-Meier survival curves (Fig.

4c), we split all obtained pathway scores in upper, the two middle, and lower quartile and
respectively to show for the three examples of associations found.

Code availability

PROGENY [will be] available as an R package on Bioconductor. The code used for the
analysis in this paper is available at https://github.com/saezlab/footprints.

Acknowledgements

MS is funded by a MRC Case fellowship awarded to JSR and Joanna Betts (GSK). NB
acknowledges funding by BMBF (OncoPath). MJG is supported with funding from the
Wellcome Trust (102696), Stand Up To Cancer (SU2C-AACR-DT1213), The Dutch Cancer
Society (H1/2014-6919) and Cancer Research UK (C44943/A22536). We thank Francesco
lorio, Florian Markowetz and Alvis Brazma for useful discussions.

Author contributions

MS designed research, performed all analyses, and wrote the manuscript. BK, MK, NB and
MJG supported result interpretation. JSR supervised the project and contributed to writing
the manuscript.

References

Alvarez MJ, Shen Y, Giorgi FM, Lachmann A, Ding BB, Ye BH, Califano A. 2016. Functional
characterization of somatic mutations in cancer using network-based inference of
protein activity. Nat Genet. http://dx.doi.org/10.1038/ng.3593.

Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar
J, Kryukov GV, Sonkin D, et al. 2012. The Cancer Cell Line Encyclopedia enables
predictive modelling of anticancer drug sensitivity. Nature 483: 603—607.

Beroukhim R, Getz G, Nghiemphu L, Barretina J, Hsueh T, Linhart D, Vivanco |, Lee JC,
Huang JH, Alexander S, et al. 2007. Assessing the significance of chromosomal
aberrations in cancer: methodology and application to glioma. Proc Natl Acad Sci U S A
104: 20007-20012.


https://github.com/saezlab/footprints
http://paperpile.com/b/OeFDE1/4c1b
http://paperpile.com/b/OeFDE1/4c1b
http://paperpile.com/b/OeFDE1/4c1b
http://paperpile.com/b/OeFDE1/4c1b
http://paperpile.com/b/OeFDE1/4c1b
http://dx.doi.org/10.1038/ng.3593
http://paperpile.com/b/OeFDE1/4c1b
http://paperpile.com/b/OeFDE1/PvkG
http://paperpile.com/b/OeFDE1/PvkG
http://paperpile.com/b/OeFDE1/PvkG
http://paperpile.com/b/OeFDE1/PvkG
http://paperpile.com/b/OeFDE1/PvkG
http://paperpile.com/b/OeFDE1/PvkG
http://paperpile.com/b/OeFDE1/PvkG
http://paperpile.com/b/OeFDE1/2fns
http://paperpile.com/b/OeFDE1/2fns
http://paperpile.com/b/OeFDE1/2fns
http://paperpile.com/b/OeFDE1/2fns
http://paperpile.com/b/OeFDE1/2fns
http://paperpile.com/b/OeFDE1/2fns
http://paperpile.com/b/OeFDE1/2fns
https://doi.org/10.1101/065672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/065672; this version posted August 28, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, Joshi M-B, Harpole D, Lancaster
JM, Berchuck A, et al. 2005. Oncogenic pathway signatures in human cancers as a
guide to targeted therapies. Nature 439: 353—-357.

Cancer Genome Atlas Network. 2012. Comprehensive molecular characterization of human
colon and rectal cancer. Nature 487: 330-337.

Carvalho BS, Irizarry RA. 2010. A framework for oligonucleotide microarray preprocessing.
Bioinformatics 26: 2363—2367.

Chen EY, Xu H, Gordonov S, Lim MP, Perkins MH, Ma’ayan A. 2011. Expression2Kinases:
mRNA profiling linked to multiple upstream regulatory layers. Bioinformatics 28:
105-111.

Chibon F. 2013. Cancer gene expression signatures — The rise and fall? Eur J Cancer 49:
2000-20009.

Croft D, O'Kelly G, Wu G, Haw R, Gillespie M, Matthews L, Caudy M, Garapati P, Gopinath
G, Jassal B, et al. 2011. Reactome: a database of reactions, pathways and biological
processes. Nucleic Acids Res 39: D691-7.

Drier Y, Sheffer M, Domany E. 2013. Pathway-based personalized analysis of cancer. Proc
Natl Acad Sci U S A 110: 6388-6393.

Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW, Greninger P,
Richard Thompson I, Luo X, Soares J, et al. 2012. Systematic identification of genomic
markers of drug sensitivity in cancer cells. Nature 483: 570-575.

Gatza ML, Lucas JE, Barry WT, Kim JW, Wang Q, Crawford MD, Datto MB, Kelley M,
Mathey-Prevot B, Potti A, et al. 2010. A pathway-based classification of human breast
cancer. Proc Natl Acad Sci U S A 107: 6994—6999.

Gautier L, Cope L, Bolstad BM, Irizarry RA. 2004. affy--analysis of Affymetrix GeneChip data
at the probe level. Bioinformatics 20: 307—-315.

Gene Ontology Consortium. 2004. The Gene Ontology (GO) database and informatics
resource. Nucleic Acids Res 32: D258-D261.

Hanahan D, Weinberg RA. 2000. The Hallmarks of Cancer. Cell 100: 57—70.

International Cancer Genome Consortium, Hudson TJ, Anderson W, Artez A, Barker AD,
Bell C, Bernabé RR, Bhan MK, Calvo F, Eerola I, et al. 2010. International network of
cancer genome projects. Nature 464: 993—-998.

lorio F, Knijnenburg TA, Vis DJ, Bignell GR, Menden MP, Schubert M, Aben N, Gongalves
E, Barthorpe S, Lightfoot H, et al. 2016. A Landscape of Pharmacogenomic Interactions
in Cancer. Cell. http://dx.doi.org/10.1016/j.cell.2016.06.017.

Kanehisa M, Goto S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic
Acids Res 28: 27-30.

Kant S, Swat W, Zhang S, Zhang Z-Y, Neel BG, Flavell RA, Davis RJ. 2011. TNF-stimulated
MAP kinase activation mediated by a Rho family GTPase signaling pathway. Genes
Dev 25: 2069-2078.


http://paperpile.com/b/OeFDE1/VPA4
http://paperpile.com/b/OeFDE1/VPA4
http://paperpile.com/b/OeFDE1/VPA4
http://paperpile.com/b/OeFDE1/VPA4
http://paperpile.com/b/OeFDE1/VPA4
http://paperpile.com/b/OeFDE1/VPA4
http://paperpile.com/b/OeFDE1/VPA4
http://paperpile.com/b/OeFDE1/VrKO
http://paperpile.com/b/OeFDE1/VrKO
http://paperpile.com/b/OeFDE1/VrKO
http://paperpile.com/b/OeFDE1/VrKO
http://paperpile.com/b/OeFDE1/VrKO
http://paperpile.com/b/OeFDE1/VrKO
http://paperpile.com/b/OeFDE1/WOZf
http://paperpile.com/b/OeFDE1/WOZf
http://paperpile.com/b/OeFDE1/WOZf
http://paperpile.com/b/OeFDE1/WOZf
http://paperpile.com/b/OeFDE1/WOZf
http://paperpile.com/b/OeFDE1/dhyH
http://paperpile.com/b/OeFDE1/dhyH
http://paperpile.com/b/OeFDE1/dhyH
http://paperpile.com/b/OeFDE1/dhyH
http://paperpile.com/b/OeFDE1/dhyH
http://paperpile.com/b/OeFDE1/dhyH
http://paperpile.com/b/OeFDE1/dhyH
http://paperpile.com/b/OeFDE1/rXhK
http://paperpile.com/b/OeFDE1/rXhK
http://paperpile.com/b/OeFDE1/rXhK
http://paperpile.com/b/OeFDE1/rXhK
http://paperpile.com/b/OeFDE1/rXhK
http://paperpile.com/b/OeFDE1/rXhK
http://paperpile.com/b/OeFDE1/MuFa
http://paperpile.com/b/OeFDE1/MuFa
http://paperpile.com/b/OeFDE1/MuFa
http://paperpile.com/b/OeFDE1/MuFa
http://paperpile.com/b/OeFDE1/MuFa
http://paperpile.com/b/OeFDE1/MuFa
http://paperpile.com/b/OeFDE1/MuFa
http://paperpile.com/b/OeFDE1/Rb0z
http://paperpile.com/b/OeFDE1/Rb0z
http://paperpile.com/b/OeFDE1/Rb0z
http://paperpile.com/b/OeFDE1/Rb0z
http://paperpile.com/b/OeFDE1/Rb0z
http://paperpile.com/b/OeFDE1/Rb0z
http://paperpile.com/b/OeFDE1/i9Kc
http://paperpile.com/b/OeFDE1/i9Kc
http://paperpile.com/b/OeFDE1/i9Kc
http://paperpile.com/b/OeFDE1/i9Kc
http://paperpile.com/b/OeFDE1/i9Kc
http://paperpile.com/b/OeFDE1/i9Kc
http://paperpile.com/b/OeFDE1/i9Kc
http://paperpile.com/b/OeFDE1/hMfF
http://paperpile.com/b/OeFDE1/hMfF
http://paperpile.com/b/OeFDE1/hMfF
http://paperpile.com/b/OeFDE1/hMfF
http://paperpile.com/b/OeFDE1/hMfF
http://paperpile.com/b/OeFDE1/hMfF
http://paperpile.com/b/OeFDE1/hMfF
http://paperpile.com/b/OeFDE1/jbBu
http://paperpile.com/b/OeFDE1/jbBu
http://paperpile.com/b/OeFDE1/jbBu
http://paperpile.com/b/OeFDE1/jbBu
http://paperpile.com/b/OeFDE1/jbBu
http://paperpile.com/b/OeFDE1/jbBu
http://paperpile.com/b/OeFDE1/9tju
http://paperpile.com/b/OeFDE1/9tju
http://paperpile.com/b/OeFDE1/9tju
http://paperpile.com/b/OeFDE1/9tju
http://paperpile.com/b/OeFDE1/9tju
http://paperpile.com/b/OeFDE1/9tju
http://paperpile.com/b/OeFDE1/LGFb
http://paperpile.com/b/OeFDE1/LGFb
http://paperpile.com/b/OeFDE1/LGFb
http://paperpile.com/b/OeFDE1/LGFb
http://paperpile.com/b/OeFDE1/LGFb
http://paperpile.com/b/OeFDE1/dxIL
http://paperpile.com/b/OeFDE1/dxIL
http://paperpile.com/b/OeFDE1/dxIL
http://paperpile.com/b/OeFDE1/dxIL
http://paperpile.com/b/OeFDE1/dxIL
http://paperpile.com/b/OeFDE1/dxIL
http://paperpile.com/b/OeFDE1/dxIL
http://paperpile.com/b/OeFDE1/UdOi
http://paperpile.com/b/OeFDE1/UdOi
http://paperpile.com/b/OeFDE1/UdOi
http://paperpile.com/b/OeFDE1/UdOi
http://paperpile.com/b/OeFDE1/UdOi
http://dx.doi.org/10.1016/j.cell.2016.06.017
http://paperpile.com/b/OeFDE1/UdOi
http://paperpile.com/b/OeFDE1/jciy
http://paperpile.com/b/OeFDE1/jciy
http://paperpile.com/b/OeFDE1/jciy
http://paperpile.com/b/OeFDE1/jciy
http://paperpile.com/b/OeFDE1/jciy
http://paperpile.com/b/OeFDE1/jciy
http://paperpile.com/b/OeFDE1/1tsW
http://paperpile.com/b/OeFDE1/1tsW
http://paperpile.com/b/OeFDE1/1tsW
http://paperpile.com/b/OeFDE1/1tsW
http://paperpile.com/b/OeFDE1/1tsW
http://paperpile.com/b/OeFDE1/1tsW
http://paperpile.com/b/OeFDE1/1tsW
https://doi.org/10.1101/065672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/065672; this version posted August 28, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Kilic-Eren M, Boylu T, Tabor V. 2013. Targeting PI3K/Akt represses Hypoxia inducible
factor-1a activation and sensitizes Rhabdomyosarcoma and Ewing’s sarcoma cells for
apoptosis. Cancer Cell Int 13: 1-8.

Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC,
Pugh CW, Maher ER, Ratcliffe PJ. 1999. The tumour suppressor protein VHL targets
hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271-275.

Mutation Consequences and Pathway Analysis working group of the International Cancer
Genome Consortium. 2015. Pathway and network analysis of cancer genomes. Nat
Methods 12: 615-621.

Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT, Crowley D, Jacks T. 2004.
Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119:
847-860.

Parikh JR, Klinger B, Xia Y, Marto JA, Blithgen N. 2010. Discovering causal signaling
pathways through gene-expression patterns. Nucleic Acids Res 38: W109-17.

Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, Coulson R, Farne A,
Holloway E, Kolesnykov N, Lilja P, Lukk M, et al. 2007. ArrayExpress—a public
database of microarray experiments and gene expression profiles. Nucleic Acids Res
35: D747-D750.

Smyth GK. 2005. limma: Linear Models for Microarray Data. In Bioinformatics and
Computational Biology Solutions Using R and Bioconductor, Statistics for Biology and
Health, pp. 397-420, Springer New York.

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A,
Pomeroy SL, Golub TR, Lander ES, et al. 2005. Gene set enrichment analysis: a
knowledge-based approach for interpreting genome-wide expression profiles. Proc Nat/
Acad Sci U S A 102: 15545-15550.

Tarca AL, Draghici S, Khatri P, Hassan SS, Mittal P, Kim J-S, Kim CJ, Kusanovic JP,
Romero R. 2008. A novel signaling pathway impact analysis. Bioinformatics 25: 75—-82.

The Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, Mills GB, Mills
Shaw KR, Ozenberger BA, Ellrott K, Shmulevich |, Sander C, Stuart JM. 2013. The
Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45: 1113—-1120.

Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, Zhu J, Haussler D, Stuart JM. 2010.
Inference of patient-specific pathway activities from multi-dimensional cancer genomics
data using PARADIGM. Bioinformatics 26: i237—-i245.

Weissmueller S, Manchado E, Saborowski M, Morris JP 4th, Wagenblast E, Davis CA, Moon
S-H, Pfister NT, Tschaharganeh DF, Kitzing T, et al. 2014. Mutant p53 drives pancreatic
cancer metastasis through cell-autonomous PDGF receptor 8 signaling. Cell 157:
382-394.

Yang X-M, Wang Y-S, Zhang J, Li Y, Xu J-F, Zhu J, Zhao W, Chu D-K, Wiedemann P. 2009.
Role of PI3K/Akt and MEK/ERK in mediating hypoxia-induced expression of HIF-1alpha
and VEGEF in laser-induced rat choroidal neovascularization. Invest Ophthalmol Vis Sci
50: 1873-1879.


http://paperpile.com/b/OeFDE1/q5Ik
http://paperpile.com/b/OeFDE1/q5Ik
http://paperpile.com/b/OeFDE1/q5Ik
http://paperpile.com/b/OeFDE1/q5Ik
http://paperpile.com/b/OeFDE1/q5Ik
http://paperpile.com/b/OeFDE1/q5Ik
http://paperpile.com/b/OeFDE1/q5Ik
http://paperpile.com/b/OeFDE1/0nrW
http://paperpile.com/b/OeFDE1/0nrW
http://paperpile.com/b/OeFDE1/0nrW
http://paperpile.com/b/OeFDE1/0nrW
http://paperpile.com/b/OeFDE1/0nrW
http://paperpile.com/b/OeFDE1/0nrW
http://paperpile.com/b/OeFDE1/0nrW
http://paperpile.com/b/OeFDE1/OmD5
http://paperpile.com/b/OeFDE1/OmD5
http://paperpile.com/b/OeFDE1/OmD5
http://paperpile.com/b/OeFDE1/OmD5
http://paperpile.com/b/OeFDE1/OmD5
http://paperpile.com/b/OeFDE1/OmD5
http://paperpile.com/b/OeFDE1/OmD5
http://paperpile.com/b/OeFDE1/oNfo
http://paperpile.com/b/OeFDE1/oNfo
http://paperpile.com/b/OeFDE1/oNfo
http://paperpile.com/b/OeFDE1/oNfo
http://paperpile.com/b/OeFDE1/oNfo
http://paperpile.com/b/OeFDE1/oNfo
http://paperpile.com/b/OeFDE1/oNfo
http://paperpile.com/b/OeFDE1/zhKv
http://paperpile.com/b/OeFDE1/zhKv
http://paperpile.com/b/OeFDE1/zhKv
http://paperpile.com/b/OeFDE1/zhKv
http://paperpile.com/b/OeFDE1/zhKv
http://paperpile.com/b/OeFDE1/zhKv
http://paperpile.com/b/OeFDE1/PFeR
http://paperpile.com/b/OeFDE1/PFeR
http://paperpile.com/b/OeFDE1/PFeR
http://paperpile.com/b/OeFDE1/PFeR
http://paperpile.com/b/OeFDE1/PFeR
http://paperpile.com/b/OeFDE1/PFeR
http://paperpile.com/b/OeFDE1/PFeR
http://paperpile.com/b/OeFDE1/suQ5
http://paperpile.com/b/OeFDE1/suQ5
http://paperpile.com/b/OeFDE1/suQ5
http://paperpile.com/b/OeFDE1/suQ5
http://paperpile.com/b/OeFDE1/suQ5
http://paperpile.com/b/OeFDE1/suQ5
http://paperpile.com/b/OeFDE1/suQ5
http://paperpile.com/b/OeFDE1/42Hn
http://paperpile.com/b/OeFDE1/42Hn
http://paperpile.com/b/OeFDE1/42Hn
http://paperpile.com/b/OeFDE1/42Hn
http://paperpile.com/b/OeFDE1/42Hn
http://paperpile.com/b/OeFDE1/42Hn
http://paperpile.com/b/OeFDE1/42Hn
http://paperpile.com/b/OeFDE1/42Hn
http://paperpile.com/b/OeFDE1/4Jtg
http://paperpile.com/b/OeFDE1/4Jtg
http://paperpile.com/b/OeFDE1/4Jtg
http://paperpile.com/b/OeFDE1/4Jtg
http://paperpile.com/b/OeFDE1/4Jtg
http://paperpile.com/b/OeFDE1/4Jtg
http://paperpile.com/b/OeFDE1/eVd9
http://paperpile.com/b/OeFDE1/eVd9
http://paperpile.com/b/OeFDE1/eVd9
http://paperpile.com/b/OeFDE1/eVd9
http://paperpile.com/b/OeFDE1/eVd9
http://paperpile.com/b/OeFDE1/eVd9
http://paperpile.com/b/OeFDE1/eVd9
http://paperpile.com/b/OeFDE1/pTDC
http://paperpile.com/b/OeFDE1/pTDC
http://paperpile.com/b/OeFDE1/pTDC
http://paperpile.com/b/OeFDE1/pTDC
http://paperpile.com/b/OeFDE1/pTDC
http://paperpile.com/b/OeFDE1/pTDC
http://paperpile.com/b/OeFDE1/pTDC
http://paperpile.com/b/OeFDE1/V1OY
http://paperpile.com/b/OeFDE1/V1OY
http://paperpile.com/b/OeFDE1/V1OY
http://paperpile.com/b/OeFDE1/V1OY
http://paperpile.com/b/OeFDE1/V1OY
http://paperpile.com/b/OeFDE1/V1OY
http://paperpile.com/b/OeFDE1/V1OY
http://paperpile.com/b/OeFDE1/V1OY
http://paperpile.com/b/OeFDE1/YCgs
http://paperpile.com/b/OeFDE1/YCgs
http://paperpile.com/b/OeFDE1/YCgs
http://paperpile.com/b/OeFDE1/YCgs
http://paperpile.com/b/OeFDE1/YCgs
http://paperpile.com/b/OeFDE1/YCgs
http://paperpile.com/b/OeFDE1/YCgs
https://doi.org/10.1101/065672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/065672; this version posted August 28, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Zhang C, Liu J, Liang Y, Wu R, Zhao Y, Hong X, Lin M, Yu H, Liu L, Levine AJ, et al. 2013.
Tumour-associated mutant p53 drives the Warburg effect. Nat Commun 4: 2935.

Zhou J, Schmid T, Frank R, Briine B. 2004. PI3K/Akt Is Required for Heat Shock Proteins to
Protect Hypoxia-inducible Factor 1a from pVHL-independent Degradation. J Biol Chem
279: 13506-13513.

Zhu J, Sammons MA, Donahue G, Dou Z, Vedadi M, Getlik M, Barsyte-Lovejoy D, Al-awar
R, Katona BW, Shilatifard A, et al. 2015. Gain-of-function p53 mutants co-opt chromatin
pathways to drive cancer growth. Nature 525: 206-211.


http://paperpile.com/b/OeFDE1/vaNt
http://paperpile.com/b/OeFDE1/vaNt
http://paperpile.com/b/OeFDE1/vaNt
http://paperpile.com/b/OeFDE1/vaNt
http://paperpile.com/b/OeFDE1/vaNt
http://paperpile.com/b/OeFDE1/vaNt
http://paperpile.com/b/OeFDE1/RyHu
http://paperpile.com/b/OeFDE1/RyHu
http://paperpile.com/b/OeFDE1/RyHu
http://paperpile.com/b/OeFDE1/RyHu
http://paperpile.com/b/OeFDE1/RyHu
http://paperpile.com/b/OeFDE1/RyHu
http://paperpile.com/b/OeFDE1/jPCq
http://paperpile.com/b/OeFDE1/jPCq
http://paperpile.com/b/OeFDE1/jPCq
http://paperpile.com/b/OeFDE1/jPCq
http://paperpile.com/b/OeFDE1/jPCq
http://paperpile.com/b/OeFDE1/jPCq
http://paperpile.com/b/OeFDE1/jPCq
https://doi.org/10.1101/065672
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/065672; this version posted August 28, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figures
a GO, pathway enrichment b
L8 e W
\/W Experlment
curation
SPIA, Pathifier, PARADIGM .
Expression S
*"* Y —> 71> contrasts i,
o St
C [~ @
Signatures, PROGENy @ z-scores g perturbed
f ) control I~
—>Y —>Z>_ g,\ ;‘L
W , —— o —
W
e Multiple linear regression
C PROGENy voeme pathways
1%
cll1]2
Z s ~ Ello
/ & @Q ! ) H Sllo]o
> EGFR (106) & & ] 3
‘© & *_59 =l )
b A ¥ v
o _pathways
b z coefficients — | T g
5 matrix Za|zs| |@
s MAPK (88) NFkB (46) |VEGF (36) genes— = 1 :U’
5 expression y|[efe ol
@ matrix — o[ ¥ g
O g P53 (23) E| [ [¢) 5
TNFa (o) | &° Ry scores HEE
Trail (10) matrix —— 3 pathways

1. Deriving pathway-response signatures for 11 pathways

A. Reasoning about pathway activation. Most pathway approaches make use of either the
set (top panel) or network (middle panel) of signaling molecules to make statements about a
possible activation, while our approach considers the genes affected by perturbing the
pathway.

B. Workflow of data curation and model building. (1) Finding and curation of 208 publicly
available experiment series in the ArrayExpress database, (2) Extracting 556 perturbation
experiments from series' raw data, (3) Performing QC metrics and discarding failures, (4)
Computing z-scores per experiment, (5) Using a multiple linear regression to fit genes
responsive to all pathways simultaneously obtaining the z-coefficients matrix, (6) Assigning
pathway scores using the coefficients matrix and basal expression data. See methods
section for details. Image credit Supplemental Note 1.

C. Size of the data set compared to an individual gene expression signature experiment. The
amount of experiments that comprise each pathway is shown to scale and indicated.
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2. Evaluation of pathway-response signatures

A. T-SNE plots for separation of perturbation experiments with different pathway
perturbations in different colors. Fold changes of genes in individual perturbation
experiments (10% FDR) do not cluster by pathway (left). Using a consensus signature of
genes whose z-score is most consistently deregulated for each pathway instead, we can
observe distinct clusters of perturbed pathways (right). Details Supplemental Note 2.

B. Associations between perturbed pathways and the scores obtained by the model of
pathway-responsive genes (PROGENYy). Along the diagonal each pathway is strongly
(p<107°) associated with its own perturbation. Significant off-diagonal elements are sparse
and only occur (p<107?) where there is biologically known cross-activation.

C. Heatmap of relative pathway scores in each perturbation experiment. 523 experiments in
columns, annotated with the perturbation effect (green for activation, orange for inhibition)
and pathway perturbed (same order as b). Pathway scores in rows cluster between
EGFR/MAPK and to a lesser extent PI3K, and TNFa/NFkB. Color indicates activation or
inhibition strength.

D. ROC curves for different methods ranking perturbation experiments by their pathway
score. PROGENYy show better performance for all pathways except JAK-STAT and NFkB,
where other methods are equal. Gene Ontology and Reactome scores obtained by Gene
Set Variation Analysis (GSVA). Pathifier using Reactome gene sets.

E. Correlation of pathway scores in basal gene expression of cell lines in the GDSC panel.
Positive correlation in blue, negative in red. Circle size and shade correspond to correlation
strength. Pathways that showed cross-activation in point b are more highly correlated in
basal expression as well.

F. Stability of basal pathway scores when bootstrapping input experiments. The variance of
pathway scores in cell lines given bootstraps more than five times as high compared to the
variance of bootstraps given cell lines for all pathways except two (Trail and VEGF), where it
is roughly twice as high.
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3. Ability of pathway methods to recover well-known mutations

A. Volcano plot of pan-cancer associations between driver mutations and copy number

aberrations with differences in pathway score. Pathway scores calculated from basal gene
expression in the TCGA for primary tumors. Size of points corresponds to occurrence of

aberration. Type of aberration is indicated by superscript “mut” if mutated and “amp”/"del” if
amplified or deleted, with colors as indicated. Effect sizes on the horizontal axis larger than
zero indicate pathway activation, smaller than zero inferred inhibition. P-values on the
vertical axis FDR-adjusted with a significance threshold of 5%. Associations shown without
correcting for different cancer types. Associations with a black outer ring are also significant
if corrected.

B. Comparison of pathway scores (vertical axes) across different methods (horizontal axes)
for TP53 and KRAS mutations, EGFR amplifications and VHL mutations. Wald statistic
shown as shades of green for downregulated and red for upregulated pathways. P-value
labels shown as indicated. White squares where a pathway was not available for a method.
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4. MAPK and p53 scores drive drug response across all cancer types

A. Comparison of the associations obtained by different pathway methods. Number of
associations on the vertical, FDR on the horizontal axis. PROGENYy yield more and stronger
associations than all other pathway methods. Mutation associations are only stronger for
TP53/Nutlin-3a and drugs that were specifically designed to bind to a mutated protein.
PARADIGM not shown because no associations < 10% FDR.

markers (green) and greater than zero resistance markers (red). P-values FDR-corrected.

B. Pathway context of the strongest associations (Supplemental Fig. 8) between
EGFR/MAPK pathways and their inhibitors obtained by PROGENy.

C. Comparison of stratification by mutations and pathway scores. MAPK pathway (BRAF,
NRAS, or KRAS) mutations and Trametinib on top left panel, AZ628 bottom left, BRAF
mutations and Dabrafenib top right, and p53 pathway/TP53 mutations/Nutlin-3a bottom right.
For each of the four cases, the leftmost violin plot shows the distribution of IC,;s across all
cell lines, followed by a stratification in wild-type (green) and mutant cell lines (blue box). The
three rightmost violin plots show stratification of all the cell lines by the top, the two middle,
and the bottom quartile of inferred pathway score (indicated by shade of color). The two
remaining violin plots in the middle show mutated (BRAF, KRAS, or NRAS; blue color) or
wild-type (TP53; green color) cell lines stratified by the top- and bottom quartiles of MAPK or
p53 pathways scores (Mann-Whitney U test statistics as indicated).
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5. Response signatures outperform pathway methods for patient survival

A. Pan-cancer associations between pathway scores and patient survival. Pathways on the
horizontal, different methods on the vertical axis. Associations of survival increase (green)
and decrease. Significance labels as indicated. Shades correspond to effect size, p-values
as indicated.

B. Volcano plot of cancers-specific associations between patient survival and inferred
pathway score using PROGENYy. Effect size on the horizontal axis. Below zero indicates
increased survival (green), above decreased survival (red). FDR-adjusted p-values on the
vertical axis. Size of the dots corresponds to number of patients in each cohort.

C. Kaplan-Meier curves of individual associations for kidney (KIRC), low-grade glioma (LGG)
and adrenocortical carcinoma (ACC). Pathway scores are split in top- and bottom quartiles
and center half. Lines show the fraction of patients (vertical axis) that are alive at a given
time (horizontal axis) within one year. P-values for discretized scores.
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