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ABSTRACT

Transcription Factor (TF) databases contain multitudes of motifs from various sources, from which

non-redundant collections are derived by manual curation. The advent of high-throughput methods

stimulated the production of novel collections with increasing numbers of motifs. Meta-databases, built

by merging these collections, contain redundant versions, because available tools are not suited to

automatically  identify  and explore biologically  relevant  clusters  among thousands of  motifs.  Motif

discovery  from  genome-scale  data  sets  (e.g.  ChIP-seq  peaks)  also  produces  redundant  motifs,

hampering the interpretation of  results. We present  matrix-clustering,  a versatile tool  that  clusters

similar TFBMs into multiple trees, and automatically creates non-redundant collections of motifs. A

feature unique to matrix-clustering is its dynamic visualisation of aligned TFBMs, and its capability to

simultaneously treat multiple collections from various sources. We demonstrate that matrix-clustering

considerably simplifies the interpretation of combined results from multiple motif discovery tools and

highlights biologically relevant variations of similar motifs. By clustering 24 entire databases (>7,500

motifs), we show that matrix-clustering correctly groups motifs belonging to the same TF families, and

can  drastically  reduce  motif  redundancy.  matrix-clustering is  integrated  within  the  RSAT  suite

(http://rsat.eu/), accessible through a user-friendly web interface or command-line for its integration in

pipelines.

INTRODUCTION

Transcription Factor Binding Motifs (TFBM) – simply called motifs below – are models describing the

binding specificity of a transcription factor (TF). Such motifs are generally obtained by aligning the

sequences of several binding sites, and summarizing the nucleotide frequencies per position. Motifs

are  commonly  represented  as  position-specific  scoring  matrices  (PSSMs)  (1)  and  visualized  as

sequence logos (2). Although the adequacy of PSSMs has been questioned for some particular TF

classes (3–6), e.g. in cases of dependencies between adjacent nucleotides, they are still the most

widely used  method to represent the binding specificity of a TF. Thousands of PSSMs are available in

private  or public  databases,  such as JASPAR (7),  TRANSFAC (8),  Cis-BP (9),  FootprintDB (10),

HOCOMOCO (11), which constitute key resources to interpret functional genomics results. A well-

known issue with these databases is motif redundancy (12), caused by various reasons: ( i) for a given

TF,  multiple  PSSMs can  be  built  from different  collections  of  sites  characterized  with  alternative

methods  (i.e.  DNase-Seq,  SELEX,  Protein-Binding  Microarrays  (PBMs),  ChIP-seq,  etc);  (ii)  the

binding specificity is often conserved between TFs of the same family; (iii) some databases contain

PSSMs obtained from orthologous TFs in different  organisms; (iv)  some unrelated TFs recognize

similar DNA motifs. 

In addition to this intra-database redundancy, inter-database redundancy and the exponential growth

of motif collections are becoming a major issue. Indeed, the development of high-throughput methods
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to characterize genome-wise TF binding locations (e.g. ChIP-seq, ChIP-exo) has led to an explosion

of motifs, with a fast expansion of databases (e.g. JASPAR 2016 almost doubled in size since its 2014

version, from 590 to 1092 motifs) (12). In parallel, recent studies targeting many TFs (13, 14) resulted

in collections with as many motifs as reference databases. This constant increase in the number of

motifs and redundant collections represents a real challenge for the community. Which collection to

use? How important is the overlap between the different collections? Efforts to collect and integrate

numerous up-to-date collections into a single metadatabase like FootprintDB (10) or Cis-BP (9) are

critical for the community. These metadatabases however do not deal yet with the redundancy issue,

and keep increasing in size.  This now constitutes a bottleneck,  by drastically  increasing the time

needed to compare motifs or to scan sequences with a complete motif database.

Analysis  of  high-throughput  datasets  (e.g.,  from  ChIP-seq  experiments)  also  produces  sets  of

redundant motifs. It is common practice to simultaneously use multiple de novo motif discovery tools

(15–18),  in  order  to  benefit  from  their  complementarity.  While  some  motifs  will  be  discovered

exclusively by a given tool,  most  will  be found independently  by different  tools,  hence producing

redundant motifs with small variations in length and/or nucleotide frequencies at some positions. Such

variations may be important biologically, but remain undetected when inspecting unordered collections

of motif logos. 

Motif redundancy can be automatically reduced by identifying sets of similar motifs and clustering

them. Quantifying the similarity between motifs is nevertheless far from trivial. Many efforts have been

done to develop statistical methods and to find adequate comparison metrics between motifs, each

one with its own strengths and drawbacks (19–36). Despite this intensive research activity to refine

motif similarity metrics, no general consensus has emerged about the best one. Currently, a handful

of tools are available for motif comparison: STAMP (22, 37), TomTom (23), MATLIGN (26), macro-ape

(27), DMINDA (35), DbcorrDB (34) and RSAT compare-matrices (38). Other tools are specialized in

motif clustering: STAMP (22), m2match (25), MATLIGN (26), GMACS (28), DMINDA (35) and motIV

(Bioconductor package) (see Table 1 for a comparison of their capabilities). However, each of these

tools presents some limitations: analysis based on a single metric, restricted number of input motifs,

static visualisation interfaces. 

We have developed matrix-clustering within the RSAT suite (39), motivated by the crucial need for a

tool  to cluster  similar  motifs,  align them to facilitate  visual  comparison,  explore each cluster  in  a

dynamic way, and reduce redundancy either automatically or in a supervised yet user-friendly way.

We  first  show  with  two  study  cases  that  matrix-clustering simplifies  the  interpretation  of  motif

discovery results,  and that  a dynamic view of aligned logos can reveal biologically relevant motif

variants. We then consider two applications encompassing complete databases, which show that the

program regroups motifs  bound by  transcription factors  of  the  same family,  and  can  be used  to
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explore the complementarity between multiple motif collections. This approach paves the way towards

creating systematic non-redundant motif collections.

MATERIAL AND METHODS

Overview

matrix-clustering  first  computes  a  matrix  of  similarity  between  each  pair  of  input  PSSMs,  runs

hierarchical  clustering to  build  a  complete  motif  tree,  which is  then partitioned  to  generate  motif

clusters (Figure 1), based on a combination of thresholds on one or several motif similarity metrics.

Within each cluster, PSSMs are then aligned. The results are displayed on a dynamic user-friendly

web report enabling to collapse or expand subtrees at will.

Input formats and processing time

matrix-clustering receives as input one or several collections of PSSMs (provided as separate files)

with an associated “collection name” (e.g. several PSSM collections obtained from different analyses

or databases). This program supports different file formats: TRANSFAC (default), MEME, HOMER,

JASPAR, etc., and has no restriction on the number of input PSSMs, but users should be aware that

the processing time increases drastically with the number of motifs (Supplementary Figure 1). For

small collections of motifs, the running time enables  matrix-clustering usage via the website (e.g. 7

minutes for the first study case with 66 motifs). Large datasets can be treated with a stand-alone

installation of the RSAT suite.

PSSM comparison

Similarity between each pair of input PSSMs is calculated with the RSAT tool compare-matrices (38,

39), which can compute multiple similarity metrics in a single run: Pearson correlation (cor), Sum Of

Squared  Distances  (SSD),  Mutual  Information,  Information  correlation (Icor),  Euclidean  Distances

(dEucl), Sandelin-Wasserman Similarity (SW), as well as width-normalized versions of some metrics

obtained by dividing the total length of the alignment by the number of columns where the two PSSMs

overlap: normalized correlation (Ncor), normalized information content correlation (NIcor), normalized

Euclidian distance (NdEucl) (see Supplementary Notes for details). Each possible offset is tested for

each pair of PSSMs in both orientations, and the program returns the best matching alignment. 

Hierarchical clustering

To build the global hierarchical tree encompassing all input PSSMs, the user must select one motif

similarity  metric  (to  make  the  motif-to-motif  distance  matrix)  and  one  linkage  method  (average,

complete or single). Some metrics directly measure distances (Euclidean, SSD, SW); for the metrics

measuring similarities (e.g. cor, with a range from -1 to +1),  the values are first transformed into

dissimilarities (i.e. Dcor = 2 - r, where r is the correlation coefficient).  
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Identification of motif clusters by tree partitioning

As  the  RSAT  program  compare-matrices (38) can  return  several  metrics  simultaneously,  any

combination of these can be selected to define thresholds for the partitioning step, thereby enabling to

combine their respective advantages. The global tree is traversed in a bottom-up way and for each

intermediate node, the selected metrics values are computed from all descendent leaves according to

the chosen linkage rule (single, average, complete). Whenever an intermediate node fails to satisfy

any of the threshold values, a new cluster is created by separating its two children branches.  

Progressive alignment of the PSSMs

Once the global tree is partitioned, each subtree is used as a guide to progressively align the PSSMs.

They are first orientated (direct or reverse) and then shifted relative to each other.  Note that this

algorithm does not integrate internal gaps. This process produces one multiple alignment for each

internal node of each tree, ending with a root alignment that encompasses all the PSSMs of a cluster. 

Branch-wise PSSMs, logos and consensus sequences

Once the PSSMs of each subtree have been aligned,  matrix-clustering calculates for each node a

branch-wise PSSM by summing (default)  or averaging the frequencies of  the descendent aligned

motifs. It then generates the corresponding consensus sequences and logos. Branch-wise PSSMs

introduced here are a generalization of the so-called familial binding profiles (FBP) (37).

Dynamic visualisation of the clusters 

The clusters are displayed as a PSSM forest, i.e. a collection of trees (one per cluster) with a logo at

each leave.  A unique feature of  matrix-clustering is that trees can be browsed dynamically:  each

branch can be collapsed by clicking, and the resulting sub-tree is replaced by the logo of the branch

PSSM, thereby enabling to produce customized motif trees (Figure 1).

Cross-coverage of motif collections

When two or more motif collections are given as input, the cross-coverage indicates the percentage of

the PSSMs from one collection that  co-occur  in clusters  with PSSM from another  collection.  The

cross-coverage of collection A by collection B ( c A, B )  is the number of PSSMs from A co-clustered

with PSSMs from B ( |Awit hB| ), divided by the total number of motifs in A ( |A| ). 

c A, B=
|Awit hB|

|A|

Reciprocally, the cross-coverage of collection B by collection A is computed as follows. 
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cB, A=
|Bwit h A|

|B|

This  asymmetrical  comparison  provides  a  more  realistic  interpretation  of  the  importance  of  the

intersection relative to the respective sizes of collections (e.g. a comparison between smaller and

bigger databases). The cross-coverage is displayed as a heatmap, and a Venn diagram is drawn for

each pair of collections. The percentage of motifs specific to each collection is also indicated.

PSSM datasets of the study cases

Study cases 1 and 2: in order to illustrate the clustering of ab initio discovered motifs, we used 359

PSSMs obtained with the RSAT tool peak-motifs (15, 40) in 12 TF ChIP-seq peak-sets obtained from

Chen et al (41). We also collected the PSSMs obtained by analysing one ChIP-seq peak set with

MEME-ChIP (16) and Homer (42).

Study cases 3 and 4: for full database clustering, we analysed 24 taxon-specific collections from 18

databases (Supplementary Table 1): vertebrates (JASPAR (7), HOCOMOCO mouse and human (11),

Cis-BP (9), Jolma 2013 “HumanTF” (4), Jolma 2015 “HumanTF_dimers” (13), Uniprobe (43), Fantom5

'novel'  motifs (44), hPDI (45), epigram (46), Homer (42), Encode (47)),  plants (JASPAR, Athamap

(48),  Cis-BP,  ArabidopsisPBM  (49)  and  Cistrome  (14))  and  insects  (OntheFly  (50),  JASPAR,

dmmpmm and idmmpmm (51), Cis-BP (9), FlyFactorSurvey (52), DrosphilaTF (53)). 

Availability

The tool  matrix-clustering is freely available on the RSAT Web servers (http://www.rsat.eu/  ) (39). It

can also be downloaded with the stand-alone RSAT distribution to be used on the Unix shell, allowing

its inclusion in automated pipelines. 

The  complete  results  of  the  study  cases  are  available  on  the  supporting  website:

http://teaching.rsat.  eu  /data/published_data/Castro_2016_matrix-clustering/

Implementation 

matrix-clustering is implemented in Perl and R. The Logo trees are implemented in HTML5 with the

D3 (54) JavaScript library for manipulating documents based on data (http://d3js.org/). The website

dynamic  elements  are  implemented  using  the  JavaScript  libraries  Jquery  (http://jquery.com/)  and

DataTables (http://www.datatables.net/). 

RESULTS

We have developed  matrix-clustering  to deal with the increasing number of motifs and reduce the

inherent redundancy within collections. It takes as input one or more collections of PSSMs, measures
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the  similarity  between  them  using  several  motif  comparison  metrics,  builds  a  similarity  tree  by

hierarchical  clustering,  splits  the  initial  tree  to  obtain  one  separate  tree  per  cluster,  generate  a

consensus and a logo for each branch of each tree, computes branch-wise PSSMs, and generates

different graphical representations, including a dynamic visualization enabling flexible customization of

the display (Figure 1).

Choice of the default clustering parameters

Parameters of matrix-clustering were chosen based on a detailed comparison between clusters of 374

PSSMs from HOCOMOCO human TFBMs (11) and their classification in 21 families taken from the

TFClass database (55). We tested four alternative similarity metrics (cor: correlation, Ncor: normalized

correlation, Icor: information correlation, and NIcor: normalized information correlation), three linkage

rules (single, average or complete), incremental series of partitioning threshold values on each metric

(by step of 0.05), as well as combined thresholds applied on a metric and its normalized version (Ncor

+ cor, or NIcor + Icor).  Based on this study, we defined the default parameters: the motif-to-motif

similarity matrix is computed with the Ncor, with a minimal alignment width of 5 columns, the motif tree

is built with the average linkage rule, and the partitioning threshold combine cor ≥ 0.6 and Ncor ≥ 0.4.

The detailed results of the systematic evaluation, as well as the parameters used for each program,

are described in the Supplementary Notes.

Study case 1: identification of TF binding motif  variants within motifs discovered with multiple
tools in ChIP-seq datasets

It is common practice to perform ab initio motif discovery with several algorithms and to consider the

motifs found by several approaches as robust predictions. Yet, some motif variants can be found only

by a particular algorithm. This first study case aims at comparing motifs detected in ChIP-seq peaks

with three motif  discovery tools:  RSAT  peak-motifs,  Homer and MEME-ChIP. We re-analysed the

ChIP-seq peaks for the TF Oct4 (also named Pou5f1) in mouse embryonic stem cells (ESC) from

Chen et al (41).

Altogether, the three tools produced 66 motifs: 22 discovered by RSAT peak-motifs, 25 by MEME-

ChIP and 19 by Homer.  matrix-clustering separated these 66 PSSMs into 13 clusters (Supporting

website). The largest cluster regroups 37 PSSMs corresponding to Sox, Oct and other Oct-like motifs

(Figure 2A). Since the name of the source collection is automatically displayed besides each logo

(RSAT, MEME-ChIP, HOMER), we readily identify the robust motifs discovered by multiple tools, as

well as motif variants detected by a single algorithm. 

We manually collapsed the cluster tree and identified six non-redundant motifs (Figure 2B) for which

we searched for similarities in JASPAR vertebrates and HOCOMOCO Human (Figure 2C).These six

motifs correspond to the canonical Oct4 (blue box on Fig. 2A and 2B), Sox2 (orange), the composite

SOCT (Sox+Oct) motif (red) (56), an alternative configuration of Oct4 (black) (57), a palindromic Oct
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homodimer (More Palindromic Oct factor Recognition Element, MORE) (purple) (58), and an octamer-

repeat (Ocr) (59). Of note, these last two motifs were only found by RSAT peak-motifs (Figure 2B). 

The contributions of the respective motif discovery tools to the clusters are unbalanced. While RSAT

peak-motifs contributes to three clusters shared with MEME and HOMER, MEME-ChIP raised one

single-PSSM cluster (singleton) and HOMER six (Figure 2D). The cross-coverage between the tools

(Figure 2E) confirms that peak-motifs and MEME show high overlap, whereas the HOMER motifs are

quite dissimilar from those obtained with the other tools. Of note, many PSSMs found by HOMER only

are  actually  of  low-complexity  (2-residue  repeats)  and  are  not  likely  to  correspond to  bona  fide

TFBMs. 

Altogether,  this  study case demonstrates that  matrix-clustering can guide and accelerate  human-

based  reduction  of  a  highly  redundant  collection  of  motifs,  produced  by  running  several  motif

discovery tools on the same sequence set. The clustering moreover highlights the existence of TFBM

variants and combinations (e.g. homodimers, heterodimers). 

Study case 2: identification of exclusive or shared motifs between various ChIP-seq experiments

We extended our previous analysis to the 12 TFs studied by Chen at al (41) in order to identify

common and set-specific motifs among the ChIP-seq peak sets. We ran RSAT peak-motifs in each

peak  set  separately  and  obtained  359  PSSMs,  regrouped  by  matrix-clustering into  28  clusters

(Supporting website).

Some  clusters  contain  set-specific  motifs,  e.g.  Stat3  (cluster_12),  Nanog  (cluster_14),  Ctcf

(cluster_17) and Zfx (cluster_18) (Figure 3A). Other clusters contain motifs found in two or more peak

sets: the Sox  (cluster_10), Myc (cluster_5) and Oct motifs (cluster_1) are respectively found in three

(Oct4, Sox2, and Nanog), two (nMyc and CMyc) and six (Oct4, Sox2, Nanog, Stat3, Tcfcp2l1, cMyc)

peak  sets  (Figure  3A).  These  TFs  are  known  to  cooperatively  regulate  common  target  genes,

explaining why their motifs are found across multiple peak sets (41, 56). The cross-coverage heatmap

(Figure  3B)  provides  a  global  view  of  the  content  similarity  between  motif  collections.  This

representation confirms that PSSMs discovered in Oct, Sox and Nanog peak sets are highly similar,

consistent with the fact that these TFs co-occur in shared enhancers (41). This is also the case for the

cMyc and nMyc motifs, as well as for E2f1 and Zfx, which are functionally related as histone genes

regulators (60).  By contrast,  the motifs discovered in CTCF peak sets are mostly  specific to this

collection. This study case shows that handling multiple motif collections (feature unique to  matrix-

clustering) can highlight their similarities and differences.
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Study case 3: Complete database analyses highlights relationships between motif clusters and TF 
families

We evaluated whether a clustering of complete motif databases enables (i) to identify redundancy

between motifs, and (ii) to regroup PSSMs from the same TF family. TFs are classified in families

according to their DNA-binding domains (DBD) (55, 61), which usually recognize similar binding sites.

TF belonging to the same families are thus often associated with similar TFBMs, which constitute a

source of redundancy. 

We clustered the complete set of taxon-specific motifs from JASPAR (vertebrates and insects), and

species-specific motifs from HOCOMOCO (human and mouse). The clustering of JASPAR insects

(133 motifs) reveals a large cluster of 70 PSSMss (Figure 4A; Supporting website) encompassing

almost half of the database. This corresponds to homeodomain-containing TFs, whose binding motifs

are  characterized  by  the  core  consensus  5'-TAAT-3'  (62).  The  dynamic  browsing  capabilities  of

matrix-clustering enable to manually reduce these 70 PSSMs to 10 distinct motifs (Figure 4B). The

numerous members of this family in the insect database reflect an annotation bias, as most of these

PSSMs result from a single analysis covering many homeodomain TFs (63).

By contrast in vertebrates, the 641 human PSSMs of HOCOMOCO are reduced to 127 small clusters

(Figure 4C). We obtained similar results for JASPAR vertebrates and HOCOMOCO mouse collections

(Supplementary Figures 2A and 2B, supporting website). As HOCOMOCO includes the information

about TF families imported from TFclass (55), we analysed the correspondence between clusters

produced by  matrix-clustering and these TF families. The majority of the clusters (77 out of 127)

indeed regroup motifs bound by TFs from a single family (Figure 4D). Furthermore, most of the other

clusters actually regroup TFs belonging to different families of the same class. The remaining clusters

encompass TFs from different classes but nevertheless bound to similar motifs, and thus correctly

grouped by matrix-clustering.

Reciprocally,  for  each  TF  family  we  counted  the  number  of  covered  clusters  (Figure  4E,

Supplementary Figure 3). Among the 78 families from HOCOMOCO, 29 are consistently packed in a

single cluster, 10 in two clusters, and 16 in three clusters. On the other extreme, some TF families are

split into many clusters, in particular the Zinc finger families (e.g. for the family “Factors with multiple

dispersed  zinc  fingers”,  each  PSSM comes  as  a  separate  cluster).  This  dispersion  is  perfectly

consistent  with the well-known properties of these TFs:  the sequence bound by each Zinc finger

domain is determined by the four specific amino acids entering in contact with the DNA (64).

As  above  mentioned,  we  explored  the  impact  of  clustering  parameters  on  the  correspondence

between clusters of PSSMs from Human HOCOMOCO (11) and the families of the bound TFs (see

section “Choice of the default  parameters”  and Supplementary Notes). The highest accuracy was

achieved with Ncor as matrix-to-matrix comparison metric, a tree built with the average linkage rule,

which is partitioned according to a combined threshold on Ncor (≥ 0.4) and cor (≥ 0.6) (Figure 4F). 
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This  study  case demonstrates how  matrix-clustering can handle  large collections of  PSSMs and

automatically reduce their redundancy within a database, while correctly regrouping motifs belonging

to the same TF Family.

Study case 4: Comparison and integration of multiple motif databases

To evaluate inter-database redundancy and to automatically produce a non-redundant motif set, we

clustered 24 motif collections and measured their cross-coverage (see Supplementary Table 1 and

Material and Methods for the complete list of collections).

We  first  merged  these  public  databases  to  obtain  three  taxon-specific  collections  for  insects  (7

databases; 1895 PSSMs), plants (5 databases; 1590 PSSMs) and vertebrates (12 databases; 7781

PSSMs), respectively. We then applied matrix-clustering  and obtained 354 clusters for insects (19%

of  the  total  merged  PSSM  collection),  306  for  plants  (19%)  and  1757  for  vertebrates  (33%)

(supporting website). In order to obtain non-redundant motifs whilst preserving specificity, we used

more stringent partitioning criteria than the default (cor >= 0.8 and Ncor >= 0.65): the threshold on

correlation  ensures  that  the  clustered  motifs  are  highly  similar  and  the  additional  threshold  on

normalized correlation selects the alignments covering most of the motif lengths, in order to separate

composite motifs (e.g. bound by a TF dimer) from their elementary components. 

We  then  explored  the  mutual  overlap  between  the  original  collections  by  computing  the  cross-

coverage (Figure 5).  For the insect databases, Cis-BP, OnTheFly, FlyFactorSurvey and JASPAR are

the most similar to each other, while DrosophilaTF is drastically different from all of them (Figure 5A),

likely  because  this  collection  was  built  by  selecting  motifs  discovered  exclusively  on  Drosophila

promoters, and whose binding factors are unknown (53).

For the plant databases, JASPAR and Cis-BP are most similar to each other (Figure 5B), which is

coherent  with  Cis-BP being  an  integrative  motif  collection  encompassing  other  public  collections

(including JASPAR).  The three other databases focus on sets of  motifs characterized by specific

experimental methods (PBM for ArabidopsisPBM, binding sites curated from literature for Athamap,

DAP-seq for CisTrome). 

Regarding  vertebrates,  five  databases have  a similar  content  (HOCOMOCO human and  mouse,

JASPAR, Cis-BP, Jolma 2013 “HumanTF”), which is explained by the integration of HOCOMOCO and

JASPAR in Cis-BP, as well  as by the similarity  of  the original  datasets used to build the TFBMs

(mostly public ChIP-seq, Selex-seq and PBM), yet with different algorithms (Figure 5C). Note that the

cross-coverage is not reciprocal since the number of motifs and the motif diversity differ among these

databases.  For  example  JASPAR  includes  62%  of  the  content  of  Cis-BP,  whereas  the  latter

encompasses  86%  of  JASPAR  motifs  (Figure  5D).  We  observed  that  the  motif  diversity  is  not

proportional to the database size (e.g. the 641 JASPAR vertebrate PSSMs cover 82% of the 1800
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Cis-BP Human PSSMs).  In  contrast,  the contents  of  the remaining databases differ  considerably

according to the different methods and data used to build the motifs: a single type of data (Uniprobe,

derived from PBMs only), restricted numbers of sites (hPDI, 17 sequences per motif on average), data

from  ChIP-seq  experiments  targeting  histone  marks  in  different  cell  types  (epigram),  or  motifs

modelling TF dimers (HumanTF_dimers). The low cross-coverage of Fantom5 collection of “novel”

motifs is consistent with th definition if this database, which is restricted to motifs without any matches

in reference databases (44). 

In summary, this study case highlights how  matrix-clustering can be used to automatically reduce

motif  redundancy  across  multiple  databases  into  non-redundant  taxon-wise  motif  collections

(available as Supporting files 1-3 and on the supporting website) encompassing several thousands of

PSSMs. The concise representation provided by the cross-coverage heatmap enables to intuitively

grasp the overlap between each pair of individual collections. 

Comparison with alternative motif clustering tools

RSAT  matrix-clustering  is  the  only  tool  supporting  dynamic  browsing  of  motif  trees  with  custom

collapse/expansion of branches, and providing multiple ways to inspect the results: motif forest with

branch motifs at each level of each tree, similarity heatmap, searchable table of motifs and clusters,

comparison between multiple collections with contingency tables summarizing relationships between

clusters and collections, as well as cross-coverage between collections. See Table 1 with a list of

features supported by existing motif clustering tools. This flexibility has a cost in computing time (see

Supplementary notes for a comparison of time efficiency between STAMP and matrix-clustering).

We performed a detailed comparison with STAMP, varying its parameters, and observed that its accuracy

(based on a single metric) is lower than matrix-clustering using two metrics to separate the clusters

(Figure 4F, see details in Supplementary Notes). 

We furthermore submitted two of our following study cases to several motif clustering tools (using default

parameters): STAMP (22), m2match (25), Matlign (26) and Gmacs (28). This analysis was restricted

to case studies 1 and 3, since no other tool currently supports the clustering of multiple collections.

The results are detailed in the Supplementary Notes. 

DISCUSSION

With the advent of large-scale experimental approaches to uncover TF binding specificity such as

ChIP-seq, Selex-seq and PBMs, the number of TFBMs has recently exploded, and motif redundancy

is becoming a critical bottleneck for sequence analyses. Although many software tools are available to

measure motif similarity, only a few tools are truly specialized in motif clustering. A basic survey of

motif clustering tools and their functionalities (Table 1) revealed many limitations that prompted us to

develop matrix-clustering.
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A key  feature that  distinguishes  matrix-clustering from the  other  tools  is  its  dynamic  interface to

browse  clustered  PSSMs.  This  feature  substantially  facilitates  the  manual  control  of  cluster

visualization and reduces the time for human analysis of motif sets. Notably, this visualization has

enabled us to identify the Ocr motif in the Oct4 ChIP-seq peaks (Figure 2). This motif was already

present in our previous analysis of the same dataset (15), but we had not been able to detect this

subtle variation among all other unclustered motifs. We thus expect that this dynamic visualisation of

motif clusters will be beneficial to both experts and non-experts users. Furthermore, matrix-clustering

dynamic interface can be used and integrated in the website of motif databases. 

Our method relies on hierarchical clustering with a bottom-up partitioning. The tree is thus segmented

based on the similarity between all the descendant PSSMs of each branch, which strongly differs from

the usual cut-off at an arbitrary height of the clustering tree. We evaluated an alternative segmentation

method called dynamic tree cut, which relies on tree topology to produce balanced clusters (66), but

we kept our approach because it allows to cut the tree based on motif similarity rather than on the

sole tree topology.  One caveat of hierarchical  clustering is to produce 'frozen' clusters, i.e. nodes

regrouped early in the tree cannot be relocated in later steps (28). Note that some motif clustering

tools avoid this problem by using iterative assignment algorithms, such as k-medoids (28), and that

STAMP circumvents it by refining the tree a posteriori (22). 

Partitioning thresholds should be tuned to reach the desired granularity of clusters. Based on the

systematic evaluation of HOCOMOCO motifs we used as default thresholds (Ncor >= 0.4 and cor >=

0.6) to group the TF binding variants and motifs from the same TF family within the same cluster.

However, in order to favour specificity and obtain non-redundant collection of motifs (study case 4),

stringent thresholds can be used (Ncor >= 0.65 and cor >= 0.80).

Several  databases  like  JASPAR  and  HOCOMOCO  already  provide  non-redundant  collections,

obtained by a time-consuming manual curation, which will become complicated to maintain with the

increasing  number  of  motifs.  Of  note,  in  motif  databases,  the  term  non-redundant  denotes  the

restriction to one PSSM per TF (7). However, distinct TFs may also bind very similar motifs (e.g. Oct4,

Oct9, and Oct11), and in some cases a same TF might bind to alternative motifs (e.g. TF complexes,

or multi-domain TFs). In this study, the term non-redundant refers to a single PSSM summarizing a

set of highly similar motifs, independently of the binding TF.

Reducing the size of motif collections is becoming crucial to limit the processing time of tools relying

on full motif databases (e.g. motif enrichment, motif comparisons, identification of regulatory variants).

As a proof-of-concept, we have shown that matrix-clustering can be used to compare full collections,

but also to drastically reduce inter-database redundancy: in case study 4 we produced non-redundant

motifs collections that reduced the insect, plant and vertebrate collections to 19%, 19% and 32% of

their original sizes, respectively. We thus expect that meta-databases, such as footprintDB (10) or

Cis-BP (9) could benefit from matrix-clustering to offer non-redundant motif collections.
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Non-redundant motif collections would reduce computing time when scanning big sequence sets with

large collections of PSSMs. However, it should be noted that merged motifs resulting from clustering

are by definition less specific than the original motifs, more so if they have a poor quality. Still, for

motifs built from a few binding sites, a merged motif could be more specific (Supplementary Notes).

We suggest  that  merged PSSMs could be used to represent a group of  similar motifs to reduce

computing time for tasks affected by motif redundancy (e.g. comparison of discovered motifs with

reference databases). For more precise tasks, such as TFBS prediction, they can be suboptimal.

The possibility to cluster several collections simultaneously makes matrix-clustering a versatile tool,

as demonstrated with the four case studies considered (identification of motif variants, integration of

motifs found by multiple motif discovery tools, comparison of motifs obtained from many collections).

The same tool could be used to compare motifs obtained in different experimental conditions. Given

the compatibility with many PSSMs formats (TRANSFAC, MEME, HOMER) and its Web access, this

tool  will  be of  interest  to the broad community of  biologists and bioinformaticians involved in the

analysis of regulatory sequences.
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TABLE AND FIGURES LEGENDS

Table 1.  Features of software tools available to perform clustering of PSSMs.

Figure 1. Schematic flow chart of the  matrix-clustering algorithm. The program takes as input

one (or several) collection(s) of PSSMs, and calculates the motif similarity using several metrics. One

of these metrics is used to group the motifs with hierarchical clustering. A threshold consisting in a

combination of metrics is used to cut the global tree in a set of subtrees. Each resulting tree then

serves as a guide to progressively align the PSSMs. The PSSMs at the root of each tree are exported

as non-redundant motifs. The trees can be collapsed or expanded at each node dynamically on the

resulting Web page. 

Figure 2.  Clustering of  PSSMs discovered in the Oct4 ChIP-seq peaks using several  motif

discovery tools. The TF peaks of Oct4 identified by Chen et al (41) were submitted to three de novo

motif discovery programs: RSAT peak-motifs, MEME-ChIP and HOMER. All discovered PSSMs were

clustered simultaneously by  matrix-clustering.  (A) Hierarchical  tree corresponding to cluster_1 (37

motifs),  where  different  Oct  motif  variants  and  Sox2  motifs  are  highlighted  with  different  colored

boxes. The leaves are annotated with the name of the submitted motif, and the name of its collection

(one of  the three programs).  (B)  Reduced tree showing six  non-redundant  motifs,  obtained after

manual curation of the cluster_1, by collapsing the branches. (C) Annotation of the six non-redundant

variants (“branch PSSMs”) based on alignments to reference motifs (see main text). When available

in databases (JASPAR or HOCOMOCO), the ID of the reference motif is indicated. Otherwise, it is

replaced by the PMID of the publication mentioning the motif. (D) Heatmap summarising the number

of motifs from each collection found in each cluster. (E) Heatmap of the cross-coverage between each

collection.

Figure 3. Clustering of 12 sets of PSSMs discovered in mouse ESC TF ChIP-seq peaks. (A)

Matrix showing the cluster composition by motif collection. Examples of motifs found in one or several

collections (and their corresponding logos) are indicated with green and blue arrows, respectively.  (B)
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Heatmap showing the cross-coverage between the 12 motif collections corresponding to the ESC TF

peak-sets. 

Figure 4. Clustering of complete Insect and Human motif databases. (A) Heatmap representing

the similarity (Ncor) between all 133 PSSMs of JASPAR Insects. The 40 clusters found are indicated

with a colored bar above the heatmap. The black square emphasizes the large cluster (almost half of

the PSSMs) containing the very similar Homeodomain motifs. (B) The 70 Homeodomain motifs were

manually reduced by collapsing the tree branches into ten motifs. The collapsed tree is displayed

along with the corresponding aligned branch motifs.  (C) Heatmap representing the similarity (Ncor)

between  all  641  PSSMs  of  HOCOMOCO  Human.  (D) Repartition  of  the  clusters  formed  from

HOCOMOCO Human with TF families. The bar plot indicates that most clusters are composed of a

single TF family. The pie chart illustrates the reasons for observing multiple TF families in a single

cluster.  (E) Scatterplot comparing the number of members of each TF family as a function of the

number of covered clusters. The name of the families with more than 20 members are shown.  (F)

Scatterplot showing the trade-off between sensitivity and specificity by clustering PSSMs from the

same  family  with  either  matrix-clustering or  STAMP,  using  different  parameters  to  compute  a

similarities between each pair of input matrices, build the trees and define the clusters. For  matrix-

clustering, the curves denote a series of tests performed with different threshold values on the same

dissimilarity  metric.  For  STAMP the  number  of  clusters  is  defined  automatically.  Dot  sizes  are

proportional to the geometric accuracy. The ideal clustering would be in the top-right corner.

Figure 5. Cross-coverage of public motif databases. Several full public collections were merged

and clustered, separately by taxa. The heatmaps of the cross-coverage between each collection is

plotted for (A) seven insect collections, (B) five plant databases, and (C) twelve vertebrate databases.

The heatmaps show the cross-coverages for each pair of databases. Note that the heatmaps are not

symmetrical  because the  numbers  of  motifs  in  the  different  databases differ.  (D) Venn diagrams

showing the asymmetry of cross-coverage between two databases with different sizes.
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Table 1

Page 1

Matlign STAMP m2match DMINDA motIV GMACS matrix-clustering

Year 2007 2007 2013 2014 2014 2015 2016

Clustering method

Hierarchical YES YES YES no YES no YES

SOTA no YES no no YES no no

Genetic Algorithm no no no no no YES no

minimum-spanning-tree no no no YES no no no

Multiple alignment of logos no no YES no no no YES

Alignment with internal gaps no YES no no no no no

Logo tree no no YES no no no YES

Familial binding profiles YES YES YES no YES no YES

Partitioning of input motif set in distinct clusters no YES YES no no YES YES

Consensus/Logo at tree root no YES YES no YES no YES

Consensus/Logo at each branch no no no no no no YES

Multiple collections as input no no no no no no YES

Accessible via website YES YES YES YES no no YES

Restriction on number of matrices no no 30 (trial account) no no no no

Publication PMID: 17559640 PMID: 17478497 PMID: 23555204 PMID: 24753419 PMID: 25627106 This articleBioconductor 
package
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