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ABSTRACT

Transcription Factor Binding Motifs (TFBMs) databases contain many similar motifs, from which non-

redundant collections are derived by manual curation. However, the numbers of motifs and collections

are exploding. Meta-databases merging these collections do not offer non-redundant versions,

because automatically regrouping similar motifs into clusters cannot be easily achieved with available

tools. Motif discovery from genome-scale data sets (e.g. ChIP-seq peaks) also produces redundant

motifs, hampering the interpretation of results. We present matrix-clustering, a versatile tool that

clusters similar TFBMs into multiple trees, and automatically creates non-redundant collections of

motifs. A feature unique to matrix-clustering is its dynamic visualisation of aligned TFBMs, facilitating

and accelerating the analysis of motif collections. It can simultaneously cluster multiple collections

from various sources. We demonstrate how matrix-clustering considerably simplifies the interpretation

of combined results from multiple motif discovery tools. It facilitates the comparison of ChIP-seq

datasets, and highlights biologically relevant variations of similar motifs. By clustering 12 entire

databases (>5000 motifs), we show that matrix-clustering correctly groups motifs belonging to the

same TF families, and can drastically reduce motif redundancy. It is integrated within the RSAT suite

(http://rsat.eu/), accessible through a user-friendly web interface or command-line for its integration in

pipelines.
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INTRODUCTION

Transcription Factor Binding Motifs (TFBM) are commonly represented as position-specific scoring

matrices (PSSMs) (1) and visualized as sequence logos. Although the adequacy of PSSMs has been

questioned for some particular Transcription Factor (TF) classes (2–5), e.g. in cases of dependencies

between adjacent nucleotides, they are still considered as the most suitable method to represent the

binding specificity of a TF. Thousands of PSSMs are available in private or public TFBM databases,

such as JASPAR (6), RegulonDB (7), TRANSFAC (8), CisBP (9), FootprintDB (10), Hocomoco (11),

which constitute key resources to interpret functional genomics results. A well-known issue with these

databases is motif redundancy (10, 12), caused by various reasons: (i) for a given TF, multiple PSSMs

can be built from different collections of sites characterized with alternative methods (i.e. DNAse

footprinting, SELEX, Protein-Binding arrays, ChIP-seq, etc); (ii) the binding specificity is often

conserved between TFs of the same family; (iii) some databases contain PSSMs obtained from

orthologous TFs in different organisms; (iv) some unrelated TFs recognize similar DNA motifs; (v) the

annotations may contain some errors. 

In addition to this intra-database redundancy, inter-database redundancy and the exponential growth

of motif collections are becoming a major issue. Indeed, the development of high-throughput methods

to characterize genome-wise TF binding locations (e.g. ChIP-seq, DNAseI, ATAC-seq) has led to an

explosion of motifs, with a fast expansion of databases (e.g. JASPAR 2016  almost doubled in size

since its 2014 version, from 590 to 1092 motifs) (6, 13). In parallel, recent studies targeting many TFs

(3) (14) (15) resulted in collections with as many motifs as certain databases. This constant increase

in the number of motifs and redundant collections represents a real challenge for the community.

Which collection to use? How important is the overlap between the different collections? Efforts to

collect and integrate numerous up-to-date collections into a single metadatabase like FootprintDB

(10) are critical for the community. This metadatabase however does not deal yet with the redundancy

issue, and keeps increasing in size (9.037 PSSMs as of July 2016). This now constitutes a major

bottleneck, by drastically increasing the time needed to compare motifs to, or to scan sequences with

a whole motif database.

Individual analysis of high-throughput datasets such ChIP-seq also results in sets of redundant motifs.

It is common practice to simultaneously use multiple de novo motif discovery tools (16–21) in order to

benefit from their complementarity. While some motifs will be discovered exclusively by a given tool,

most will be found independently by different tools, hence producing redundant motifs with small

variations in length and/or nucleotide frequencies at some positions. Such variations may be

important biologically, but remain undetected when inspecting unordered collections of motif logos. 

Motif redundancy can be automatically reduced by identifying sets of similar motifs and clustering

them. Quantifying the similarity between motifs is nevertheless far from trivial. Many efforts have been

done to develop statistical methods and to find adequate metrics to compare the motifs, each one

with its own strengths and drawbacks (22–38). Despite this intensive research activity to refine motif
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similarity metrics, no general consensus has emerged about the best motif similarity metric. Currently,

a handful of tools are available for motif comparison: STAMP (26), TomTom (22), matlign (29), macro-

ape (30), DMINDA (39), DbcorrDB (38) and RSAT compare-matrices (40, 41). Other tools are

specialized in motif clustering to automatically identify groups of similarity among a set of input motifs:

STAMP (26), m2match (28), MATLIGN (29), GMACS (31), DMINDA (39) and motIV (38) (see Table 1

for a comparison of their functionalities). However, these tools present limitations in either restricting

the analysis to a single metric, or in the number of input motifs, or in the visualisation interfaces. 

We have developed matrix-clustering within the RSAT suite (40–43), motivated by the crucial need for

a tool to cluster similar motifs, align them to facilitate visual comparison, explore each cluster in a

dynamic way, and reduce redundancy either automatically or in a supervised yet user-friendly way.

We first show with two study cases that matrix-clustering simplifies the interpretation of motif

discovery results, and that a dynamic view of aligned logos can reveal biologically relevant motif

variants. Two more study cases using complete databases demonstrate that the program identifies

groups of motifs belonging to the same TF families, and can be used to explore the complementarity

between multiple motif collections. This paves the way towards creating systematic non-redundant

motif collections. 
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MATERIAL AND METHODS

matrix-clustering overview

matrix-clustering clusters similar motifs using hierarchical clustering, followed by a partitioning step

that generates individual clusters (Figure 1). The partitioning of the tree into a set of clusters relies on

a combination of thresholds on one or several similarity metrics. Within a cluster, PSSMs are aligned

to facilitate visual comparison. The program accepts as input different file formats for the PSSMs,

organized in collections of motifs to trace the provenance of the motifs. The results are displayed on a

dynamic user-friendly web report enabling to collapse or expand subtrees at will.  

Input formats 

matrix-clustering receives as input one, several or many collections of PSSMs. Collections of motifs

are provided as separate files with an associated “collection name” (e.g. several motif collections

obtained with different motif discovery tools, in order to identify which motifs are discovered by each

tool). This program supports different file formats: TRANSFAC (default), MEME, HOMER, JASPAR,

etc; and has no restriction on the number of input PSSMs, but users should be aware that the

processing time increases quadratically with the number of motifs.

Motif comparison

Similarity between each pair of input motifs is computed with the tool RSAT compare-matrices (40,

41), which calculates multiple (dis)similarity statistics in the same analysis: Pearson correlation (cor),

Sum Of Squared Distances (SSD), Mutual Information, Logo Dot Product, Euclidian Distances

(dEucl), Sandelin-Wasserman Similarity (SW), as well as width-normalized version of these metrics

(Supplementary Notes) Each possible comparison is done for each pair of matrices in both

orientations, and the program returns the best matching alignment for each matrix pair. The

corresponding alignment score, relative orientation and offset (shift between the two compared

PSSMs) are used for the subsequent clustering steps.  

Hierarchical clustering

To build the global hierarchical tree encompassing all input motifs, the user must select one of the

motif (dis)similarity metrics and one linkage methods (average, complete, median or single). Some

metrics directly measure distances (Euclidean, SSD, SW); for the metrics measuring similarities (e.g.

cor, with a range from -1 to +1)  the values are first transformed into distances (Dcor = 2 – r, where r is

the correlation coefficient), to create a distance matrix between each motif pair, which serves as input

for the hierarchical clustering. 

Identification of PSSM clusters by tree partitioning

This global tree is segmented into a motif forest, where each sub-tree represents a motif cluster. This

partitioning takes into account one or several user-specified thresholds. As compare-matrices returns
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simultaneously several metrics, any combination of these can be selected to define thresholds for the

partitioning, thereby allowing users to obtain groups of motifs with the desired level of stringency. The

global tree is traversed in a bottom-up way and all the motifs below each node are evaluated with the

multiple thresholds (e.g. Ncor >= 0.5 and cor >= 0.7 and alignment width >= 5 columns). For each

metric selected as threshold, intermediate node values are computed from all descendent nodes

according to the user-selected agglomeration rule (single, average, median or complete). Whenever

an intermediate node fails to satisfy any of the threshold values, a new cluster is created by

separating its two children branches. This means that, if the tree is built with the average

agglomeration rule,  the motifs within each cluster have a mean distance at least as low as the

thresholds. It must be noticed that the tree topology can change according to (i) the agglomeration

rule and (ii) the metric selected to create the hierarchical tree (Supplementary Notes). 

Progressive alignment of the PSSMs

Once the global tree is partitioned into a motif forest, each subtree is used as guide to progressively

align the PSSMs. First, the motifs are orientated (direct or reverse) and then shifted adding empty

columns at their ends. Note that this algorithm does not add internal gaps, in contrast to other

algorithms which support them. The result of this process is one  multiple alignment for each internal

node of each tree, ending with a root alignment including all the motifs of a cluster tree.

Branch-wise PSSMs, logos and consensus sequences

Once the motifs have been aligned, matrix-clustering calculates for each node of the tree a branch-

wise motif by summing or averaging the frequencies of the descendent aligned motifs. These branch-

wise motifs are then used to generate their corresponding consensus sequences and logos. Branch-

wise motifs introduced here are a generalization of the familial binding profiles (FBP) (26, 34)

Dynamic visualisation of the clusters

The clusters are displayed as a motif forest, i.e. a collection of trees with a logo displayed at each

leave. A unique feature of matrix-clustering is that the motif tree can be browsed dynamically: each

branch can be collapsed by clicking, and the resulting sub-tree is replaced by the logo of the branch

motif. A second click on the same node expands it again (Figure 1). 

Cross-coverage of motif collections

When two or more motif collections are given as input, the cross-coverage indicates the percentage of

motifs from each collection found in clusters also containing motifs from another collection. The

coverage of a motif collection A by a motif collection B ( c A ,B )  is calculated as the the number of

motifs from A co-clustered with motifs  from B ( |AwithB| ), divided by the the total number of motifs

in A ( |A| ). 
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c A, B=
|A withB|

|A|

Reciprocally, the coverage of collection B by collection A is computed as follows. 

cB , A=
|Bwith A|

|B|

It must be noted that the coverage is not symmetrical between two collections. This asymmetrical

comparison provides a more realistic interpretation of the importance of the intersection relative to the

respective sizes of collections of different sizes (e.g. a comparison between a very large database

and a small motif set). The cross-coverage is displayed as a heatmap, and a Venn diagram is drawn

for each pair of collections. The percentage of motifs exclusive to each collection is also provided.

Implementation

matrix-clustering is implemented in Perl and R. The Logo trees are implemented in HTML5 with the

D3 JavaScript library for manipulating documents based on data (http://d3js.org/). The website

dynamic elements are implemented using the JavaScript libraries Jquery (http://jquery.com/) and

DataTables (http://www.datatables.net/). 

Motif datasets of the study cases

To illustrate the clustering of redundant motifs we used 359 motifs discovered with the RSAT tool

peak-motifs (16, 17) in 12 TF ChIP-seq peak-sets obtained from Chen et al (44). For the full database

clustering, we analysed 22 taxon-specific collections from 18 motif databases: vertebrates (JASPAR

(6), Hocomoco mouse and human (11), CisBP (9), Jolma 2013 “HumanTF” (3), Jolma 2015

“HumanTF_dimers” (14), Uniprobe (45), Fantom5 'novel' motifs (46), hPDI (47) and epigram (48)),

plants (JASPAR, Athamap (49), CisBp, ArabidopsisPBM (50) and Cistrome (15)) and insects

(OntheFly (51), JASPAR, dmmpmm, idmmpmm (52), CisBP, FlyFactorSurvey (53), DrosphilaTF (54)).

Programs used in study cases

For all the study cases, hierarchical clustering was based on average linkage agglomeration, and the

distance matrix was derived from normalized correlation (Ncor) between all PSSM pairs. For study

case 1, we used MEME-ChIP (20, 55) with the following parameters: (-order 3  -meme-mod zoops

-meme-minw 6 -meme-maxw 20 -meme-nmotifs 3 -meme-minsites 4 -dreme-e 0.05 -dreme-m 10

-centrimo-score 7.0 -centrimo-ethresh 15.0), Homer (56) with these parameters: (-len 10,13,15

-strand both -mis 3 -S 15) and peak-motifs with these parameters (-top_peaks 2000 -max_seq_len

800 -min_markov -2 -max_markov -2 -disco oligos,positions,local_words -nmotifs 4 -minol 6 -maxol 8

-no_merge_lengths -2str -origin center). For the motif comparison in Figure 2C, we used RSAT

compare-matrices with default parameters. The thresholds used in matrix-clustering were: (-lth Ncor

0.45 -lth cor 0.65 -lth w 5). 
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For study case 2, re-ran peak-motifs analyses with the same parameters as in (16), as there has been
some enhancements to the program since i ts publ icat ion ( - top_peaks 0 - task
purge,seqlen,composition,disco,merge_motifs,split_motifs,motifs_vs_motifs,timelog,archive,synthesis,
small_summary -disco oligos,positions -2str -noov -nmotifs 5 -origin center -minol 6 -maxol 8
-min_markov -2 -max_markov -2 -max_seq_len 800 -scan_markov 1) + matrix-clustering (-lth Ncor
0.45 -lth cor 0.65 -lth w 5 ).

For study case 3, the thresholds used in matrix-clustering were: (-lth Ncor 0.55 -lth cor 0.75) to cluster

the Jaspar vertebrates, HumanTF_dimers, Hocomoco human and mouse motifs. For Jaspar insects,

we used the following thresholds: (-lth Ncor 0.45 -lth cor 0.65), based on empirical observation of the

resulting heatmaps.

For study case 4, the thresholds used in matrix-clustering were: (-lth Ncor 0.65 -lth cor 0.8).

Availability

The tool matrix-clustering is freely available on the RSAT Web servers (http://www.rsat.eu/) (41). It

can also be downloaded with the stand-alone RSAT distribution to be used on the Unix shell, allowing

to include it in automated pipelines. 
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RESULTS

We have developed matrix-clustering to deal with the increasing number of motifs and reduce the

inherent redundancy within collections. It takes as input one or more collections of motifs (PSSMs),

measures the similarity between them using several motif comparison metrics, builds a motif similarity

tree by hierarchical clustering, cuts this tree into a motif forest (one tree per cluster), computes

branch-wise motifs at each branching point, and generates different graphical representations,

including a dynamic visualization enabling fast manual curation (Figure 1). 

As there is no general agreement about the best metric to measure PSSM similarity, we have

systematically tested a  variety of metrics to group the motifs (Supplementary Notes), and chosen as

default  the Normalized Pearson Correlation (Ncor), a corrected version of the Pearson Correlation

(cor) where the normalization factor is the number of overlapping columns between two aligned

matrices divided by the total columns of the alignment (28, 40). In the study cases below, we therefore

used the Ncor metric to cluster the motifs, and then a partitioning rule based on a combination of

thresholds on alignment width, correlation and normalized correlation (see Material & Methods and

Discussion). The web reports for each study case are available on the supplementary website:

http://teaching.rsat.fr/data/published_data/Castro_2016_matrix-clustering/

Case study 1: identification of TF binding motifs variants within motifs discovered with 
multiple tools in ChIP-seq datasets

The first study case aims at comparing motifs detected in ChIP-seq peaks with various ab initio motif

discovery tools: RSAT peak-motifs (16, 17), Homer (56) and MEME-ChIP (20, 55). These motif

discovery programs rely on different detection methods (over-representation, positional bias,

enrichment, expectation maximization). Each tool produced a set of motifs, which were provided as a

separate collection to matrix-clustering with appropriate parameters, to highlight the similarities and

differences between the motifs found by the different tools. 

To obtain the input motif collections, we re-analysed the ChIP-seq peaks for the TF Oct4 (also named

Pou5f1) in mouse embryonic stem cells (ESC) from Chen et al (44). Oct4 binding consensus

sequence is 5'-ATGCAAAT-3'. In ESC, Oct4 often interacts with another TF, Sox2, that binds to the

motif 5'-CATTGTA-3'. The two TFs form an heterodimer that bind a composite motif called SOCT (5'-

CATTGTATGCAAAT-3') and co-regulates specific genes (57). Moreover, Oct4 can form homodimers

that regulate different target genes (58).

In total, we obtained 66 motifs in three collections (22 motifs discovered by RSAT peak-motifs, 25 by

MEME-ChIP and 19 by Homer), which matrix-clustering partitioned into 13 distinct clusters

(Supplementary Figure 1, Supplementary website). Cluster_1 regroups the 37 motifs corresponding to

Sox, Oct and other Oct-like motifs (Figure 2A). Since the name of the source collection (RSAT,

MEME-ChIP, HOMER) is displayed besides each logo, we observe that very similar motifs have

indeed been discovered by multiple tools, and that a given tool also returns several variants of a motif.
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We used the dynamic visualisation to guide us in reducing the redundancy, by collapsing very similar

motifs until finding the non-redundant motifs (Figure 2B). The logo alignments help pinpoint the local

and global similarities of the clustered motifs. We obtained 6 non-redundant motifs and annotated

them by searching for similar motifs in FootprintDB (vertebrate) (10). The tree includes 3 branches

corresponding respectively to the canonical Oct4 (blue box), Sox2 (orange) and the composite SOCT

motif (red) (Figure 2C). Interestingly, the remaining branches of this cluster highlight three motifs

variants documented in the literature, but not stored in databases: an alternative configuration of Oct4

(black) (59), a palindromic motif bound by an Oct-Oct dimer known as MORE (More Palindromic-Oct-

factor-Recognition-Element) (purple) motif (58), and an octamer-repeat motif known as Ocr (60). Of

note, these last two motifs were only found by peak-motifs (Figure 2B). 

The contributions of the respective motif discovery tool to the clusters are unbalanced (Figure 2D).

While peak-motifs contributes to three clusters shared with MEME and HOMER, MEME-CHIP raised

one single-motif cluster (singleton) and HOMER six (Figure 2D, Supplementary Figure 1). The cross-

coverage between the tools (Figure 2E) confirms that altogether, peak-motifs and MEME show a

pretty high overlap, whereas the HOMER motifs are quite dissimilar from those obtained with the

other tools. Of note, many motifs found by HOMER only are actually of low-complexity (2-residue

repeats) and are not likely to correspond to bona fide TFBMs.

Altogether, this study case highlights that matrix-clustering can guide and accelerate human-based

reduction of a highly redundant collection of motifs, arising from separate motif discovery tools. The

clustering moreover highlights the existence of TFBM variants and combinations (e.g. homodimer,

heterodimer).

Case study 2: identification of exclusive or shared motifs between various ChIP-seq 
experiments

To demonstrate how motifs from different experiments can be clustered altogether to identify specific

motifs (found exclusively in one dataset), or shared motifs (found in several or all datasets), we

extended our previous analysis of Oct4 to the 12 TFs studied by Chen at al (44). We applied an ab

initio motif discovery (peak-motifs) in each peak set separately, and obtained 359 PSSMs, from which

matrix-clustering identified 40 non-redundant motif clusters (Supplementary Figure 2, supporting

website). Some clusters contain set-specific motifs, e.g. motifs discovered exclusively in peak sets

from Stat3 (cluster_14), Oct4 (cluster_16), Nanog (cluster_18), Ctcf (cluster_21) and Zfx (cluster_25),

while other clusters are composed of motifs found in two or more peak sets (Figure 3A), such as the

Sox motif (cluster_11) and Oct motif (cluster_1) respectively found in three (Oct4, Sox2, and Nanog)

and five (Oct4, Sox2, Nanog, Stat3, Tcfcp2l1) TF peak sets. These TFs are known to cooperatively

regulate common target genes, explaining why their binding motifs are found across multiple

collections (16, 44). The cross-coverage heatmap (Figure 3B) provides a global view of the

contribution of each collection (12 TF peak sets) to the clusters and the overall overlap of each

collection. This representation confirms that Oct, Sox and Nanog collections contain highly similar

motifs that cluster together. This is also the case for the c-Myc and n-Myc motifs collections, as well
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as for E2f1 and Zfx, which are functionally related as histone genes regulators (61). By contrast, the

motifs discovered in CTCF peak sets are mostly specific to this collection, and the few other motifs

shared with other peak sets are mostly low-complexity motifs (e.g. cluster_19, cluster_20, cluster_24),

likely corresponding to artefactual motifs found in several TF peak sets or locally under-represented

AT-rich motifs (62). Last, motifs discovered in Klf4 peaks were found in the twelve sets, consistent

with its role as pioneer factor in pluripotency maintenance (63).

This second study case shows how matrix-clustering can be used to identify motifs specific to one

collection (e.g. in a single TF peak set) or shared among several of them. By summarizing multiple

motifs sets into a reasonable number of non-redundant motifs (in this case, reduction from 359 to 40

motifs), interpretation becomes less complex. 

Case study 3: full-database analysis of relationships between motif clusters and TF families

TFs are classified in families according to their DNA-binding domain (DBD) (64, 65), which usually

recognize similar binding sites. The binding specificity of these TFs is thus represented by similar

TFBMs, which constitute a source of intra-database redundancy. We separately explored the

redundancy within complete databases: taxon-specific motifs from JASPAR (vertebrates and insects,

resp.), and species-specific motifs from Hocomoco (human and mouse, resp.). The clustering of

JASPAR insects (133 motifs in total) reveals a large cluster of motifs (Figure 4A; Supplementary

website) encompassing almost half of the database. This large cluster (64 motifs manually reduced to

9 visually distinct motifs, Figure 4B) corresponds to homeodomain-containing TFs, whose binding

motif is characterized by the core consensus 5'-TAAT-3' (66). The numerous members of this TF

family in the database reflects a bias in the Insect database, as most of these motifs result from a

single analysis covering many homeodomain TFs (67).

By contrast in vertebrates, Hocomoco human is divided into 255 small clusters with much less

redundancy (Figure 4C, similar results for JASPAR vertebrates and Hocomoco mouse in

Supplementary Figures 3A and 3B, supporting website).  As Hocomoco  includes an annotation of TF

families, we analysed the correspondence between motif clusters produced by matrix-clustering and

TF families. The large majority of the clusters (204 out of 255) indeed regroup motifs bound by TFs of

a single family (Figure 4D). Besides, most of the other clusters actually regroup TFs belonging to

different families of the same class. The remaining clusters encompass TFs from different classes but

nevertheless bound to similar motifs, and thus correctly grouped by matrix-clustering. 

Reciprocally, for each TF family we counted the number of covered clusters (Supplementary Figure

4). Among the 78 families from Hocomoco, 29 are consistently packed in a single cluster, 10 in two

clusters and 16 in three clusters. On the other extreme, some TF families are split into many clusters,

e.g. the Zinc finger families (e.g. for the family “Factors with multiple dispersed zinc fingers”, each

motif comes in a separate cluster). This dispersion is perfectly consistent with the well-known

properties of these TF families: the Zinc finger domain is characterized by a wide variability of binding

motifs, determined by the specific amino acids entering in contact with the DNA (68).
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Of note, the original 641 human motifs in Hocomoco were automatically reduced to a set of 255 non-

redundant motifs, almost one third of the database size (Supplementary website). For this reduction of

intra-database redundancy, we used stringent threshold values (Ncor >= 0.55, cor >= 0.75) which

produced clusters with motifs of similar size.

This third study case demonstrates how matrix-clustering can handle larger collections of motifs and

automatically reduce the redundancy of motifs within a database, while correctly regrouping motifs

belonging to the same TF Family.

Case study 4: inter-database redundancy: comparison and integration of multiple motif 
databases

The growing number of motif databases is becoming a major problem, since it results in partly

redundant collections, and complicates the choice for users who need to use a database for their

projects. To tackle this problem of inter-database redundancy, we performed a more challenging

analysis by merging and clustering 18 full databases encompassing 22 motif collections separated by

taxa, and evaluated the cross-coverage and specificity of these motif collections (see methods for the

complete list of collections).

We first merged the public motif databases for insects (7 databases; 1895 motifs), plants (5

databases; 1590 motifs) and vertebrates (10 databases; 5384 motifs), and then applied matrix-

clustering. We obtained respectively 354 (19%), 306 (19%) and 1757 (33%) clusters for insects,

plants, and vertebrates (supporting website). In this case, two motifs were considered similar if they

satisfied stringent thresholds (cor >= 0.8 and Ncor >= 0.65): the threshold on correlation ensures that

the clustered motifs are highly similar and the additional threshold on normalized correlation selects

the alignments covering most of the motif lengths, in order to separate composite motifs (e.g. bound

by a TF dimer) from their elementary components (specific motifs for each interacting protein). 

Figure 5 shows the cross-coverage between the different motif collections for each taxon. This

representation allows to visualize and quantify the pairwise similarity of the different motif collections.

For the insect databases, CisBP, OnTheFly, FlyFactorSurvey and Jaspar are the most similar in

content, while DrosophilaTF content is drastically different (Figure 5A), likely because these motifs,

discovered exclusively on Drosophila promoters are unknown (54). 

Consistently for the plant databases, Jaspar and CisBP are most similar to each other (Figure 5B).

The two other plant motif databases both have around 50% coverage with CisBP and Jaspar, but are

very different from each other (17% coverage). By contrast the Cistrome database (15) covers Jaspar

and CisBP but is only partly covered by other databases. This is consistent with Cistrome containing

novel motifs obtained by DAP-seq, a new experimental in vitro method.

For the vertebrate motifs (Figure 5C), five databases have a similar content (Hocomoco human and

mouse, Jaspar, CisBp, Jolma 2013 “HumanTF”), which is explained, as above, by the integration of

Hocomoco and Jaspar in CisBP, as well as the similitude of the original datasets used to build the

TFBMs (mostly public ChIP-seq and Selex-seq datasets), e.g. 87% of Jaspar motifs are found in
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clusters having CisBP (9) motifs, which is coherent with the fact that CisBP is a metadatabase that

integrates Jaspar, among other databases (Figure 5D). The Uniprobe collection has a lower coverage

with these databases, possibly because it relies solely on universal Protein Binding Microarray (PBM)

to build the TFBMs, which indicates a possible bias in the results of this type of data as discussed by

Zhao and Stormo (69). This is also the case for the hPDI (human Protein-DNA interactome) motifs,

which are built from a restricted number of sites (17 per motif on average), which is very low

compared to the hundreds of sites used to built motifs from high-throughput experiments (SELEX,

ChIP-seq). The Fantom5 collection of “novel” motifs has a very low coverage with all other databases

(<1.2%). This is in agreement with the particularity of this collection, which, by definition, is restricted

to the motifs without any matches in reference databases (6). Similarly, the epigram motifs are not

covered well by (and do not cover well) the other collections, since these motifs, constructed from 9-

mers over-represented across several histone marks and cell types, do not match known motifs (15).

Last, the heatmap shows that humanTF_dimers (14) differs considerably from the other databases,

reflecting the distinct grouping of dimers and monomers by matrix-clustering. The content of this

collection slightly covered by the other collections is explained by the few composite motifs

corresponding to TF dimers (e.g. SOCT motifs) present in other motif databases.

In summary, this fourth study case highlights how matrix-clustering can be used to automatically

reduce motif redundancy across multiple databases, even if the overall motif number is very large

(several thousands of motifs). The concise representation provided by the cross-coverage heat map

enables to intuitively grasp the overlap between each pair of individual collections.

Comparison with other motif clustering tools

Table 1 provides a list of features supported by existing motif clustering tools. For the sake of

comparison, we submitted some of our study cases to alternative motif clustering tools (using default

parameters): STAMP (26), m2match (28), Matlign (29) and Gmacs (31). A detailed report of the

results is available in the Supplementary notes and the supporting website. 

This analysis was restricted to study cases 1 and 3, since no other tool currently supports multiple

collections as those of our study cases 2 and 4. In summary, none of the tested tools presents

functionalities equivalent to matrix-clustering. In particular, matrix-clustering is the only tool enabling a

dynamic browsing of motif trees with custom collapsing/expansion of branches, and the comparison

of multiple motif collections. It provides multiple ways to inspect the results: logos forest; motif

correlation heat map; searchable table of motifs and clusters; contributions of the respective

collections to each cluster; cross-coverage heat map between collections. Of course, this flexibility

has a certain cost in computing time (see Supplementary notes for a comparison of time efficiency

between STAMP and matrix-clustering). 
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DISCUSSION

With the advent of large-scale experimental approaches to uncover TF binding specificity such as

ChIP-seq, Selex-seq, and Protein Binding microarrays, the number of TFBMs has recently exploded,

and motif redundancy has become a critical bottleneck for sequence analyses. Although other studies

propose new metrics and software tools to measure motif similarity in the perspective of matching de

novo motifs with reference motifs databases, only a few tools are truly specialized in motif clustering.

We have performed a comprehensive survey of motif clustering tools and compared their

functionalities (Table 1), which revealed many limitations that prompted us to develop matrix-

clustering. 

The key feature that distinguishes matrix-clustering from the other tools is its dynamic interface to

browse hierarchies of clustered TFBMs. This feature substantially facilitates the visual exploration and

reduces the time for human-driven analysis of the motif dataset. Notably, this visualization has

enabled us to identify the Ocr motif in the Oct4 ChIP-seq dataset (Figure 2). This motif was already

present in our previous analysis of this dataset (16), but we had not been able to detect this subtle

motif variation among all other motifs, despite our experience in visual comparison of logos. We thus

foresee that this dynamic visualisation of motif clusters will be beneficial to both experts and non-

experts users, by providing support for human-based annotation of motif variants. Furthermore, the

dynamic exploration of motif trees might serve to develop user-friendly interfaces to directly browse

motif databases on their own websites. The other advantages of matrix-clustering compared to other

clustering algorithms are: (i) partitioning of the input motif set into separated trees (forest), rather than

forcing a single motif tree, (ii) generation of branch-wise motifs (also known as Familial Binding

Profiles, FBPs) at each node of the trees, rather than just at the roots, (iii) specification of thresholds

on custom combinations of similarity metrics to integrate multiple criteria for motif partitioning, (iv)

support for multiple input motif sets (collections), (v) alternative representations of the clusters

(hierarchical trees with logo alignments, searchable motif table, motif similarity heat maps and

collection cross-coverage heat maps), (vi) automated production of non-redundant motif collections.

Our method relies on hierarchical clustering and on a bottom-up partitioning combining thresholds on

multiple metrics (e.g. width >= 5, Ncor >= 0.5 and cor >= 0.7). The tree is thus segmented based on

the similarity between all the descendent motifs of each branch, which strongly differs from the usual

cut-off at an arbitrary height of the clustering tree. We also evaluated an alternative segmentation

method called dynamic tree cut, which relies on tree topology to produce balanced clusters (70).

However, for TFBMs, our multi-threshold heuristics produces more relevant results (not shown).

Although hierarchical clustering is known to produce 'frozen' artefacts (i.e. a pair of nodes early

grouped in the tree cannot be relocated in later steps) and motifs are not free to move across the tree

(31). Note that this is not the case for the alignment-free methods (25, 31, 37), while this is issue is

circumvented by iterative refinement in STAMP (26). In matrix-clustering, these limitations are
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compensated by the flexible partitioning step. Indeed, when such artefacts occur, setting a more

stringent threshold or selecting another metric will properly separate the clusters. 

The size and composition of the clusters are determined by the chosen agglomeration method in

combination with the partitioning threshold (Supplementary Notes). This threshold should be tuned by

the user to reach the desired granularity of clusters, as shown in the study cases. In the first study

case, we used loose thresholds (Ncor >= 0.4 and cor >= 0.6) to group the motifs of the same TFs and

observe motifs variants within a single cluster. To identify TFs from the same TF Family (study case

3), we took intermediate thresholds (Ncor >= 0.55 and cor >= 0.75). To obtain a non-redundant

collection of motifs (study case 4), stringent thresholds can be used (Ncor >= 0.65 and cor >= 0.80),

which ensures the motifs are highly similar in information content and width.

The running time grows quadratically because hierarchical clustering relies on a matrix indicating the

distance between each pair of input motifs. For small-sized motif collections such as motif discovery

results, the running time enables matrix-clustering usage via the website (e.g. 7 min for the first study

case with 66 motifs). Very large datasets (e.g. full databases) have to be treated locally (e.g. 85 min

on a single CPU to treat the 643 motifs of Hocomoco human). 

Several motif databases like Jaspar and Hocomoco already provide non-redundant collections,

obtained by a time-consuming manual curation, which will become complicated with the increasing

number of available motifs. An advantage of matrix-clustering is to provide in a single command a full

workflow for motif comparisons, clustering, partitioning and visualisation, whereas many other studies

use distinct tools to run these tasks step by step (15, 24, 46, 48). Moreover, the dynamic visualization

of aligned motif logos can significantly reduce the curation time. Of note, in most motif databases, the

term non-redundant denotes the restriction to one motif per TF (6). However, distinct TFs may also

bind very similar motifs (e.g. Oct4, Oct9, and Oct11). In matrix-clustering results, the term non-

redundant refers to a single TFBM summarizing a set of highly similar motifs, independently of the

binding TF. Groups of similar TFBMs are thus reduced to a single motif with a generic name (e.g.

cluster_14 in study case 2), while all names of the original motifs are retained (e.g. the list of Oct

motifs composing cluster_22 derived from the Jaspar vertebrate, supporting website). Still, there is no

one-to-one correspondence between motif clusters and TF families (Supplementary Figure 3), as

shown with Zinc fingers sharing similar DNA-binding domains, but not recognizing the same DNA

sequences (68). 

Reducing the size of motif collections is becoming indispensable to limit the processing time of tools

relying on full motif databases (e.g. motif enrichment, motif comparisons, identification of regulatory

variants). Additionally, the interpretability of the results is also limited by the multiplicity of partially

redundant motifs. As a proof-of-concept, we have shown that matrix-clustering can be used to

compare full collections, but also to drastically reduce the inter-database redundancy: in study case 4

above, motifs were merged from 22 collections of different sources, to build taxon-specific collections.
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The selection of non-redundant motifs respectively reduced the insect, plant and vertebrate

collections to 19%, 19% and 32% of their original sizes. We thus foresee that meta-databases, such

as footprintDB (10), could benefit from matrix-clustering to offer a non-redundant motif collection. 

The possibility to cluster several collections simultaneously makes matrix-clustering a versatile tool,

as demonstrated with the chosen study cases (identification of motif variants, integration of motifs

found by multiple motif discovery tools, comparison of motifs obtained from 12 datasets). It could also

be used to compare motifs obtained in different experimental conditions. Given the compatibility with

many PSSMs formats (Transfac, MEME, HOMER) and its Web access, this tool will be of interest to

the broad community of biologists and bioinformaticians involved in the analysis of regulatory

sequences.
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TABLE AND FIGURES LEGENDS

Table 1.  Features of software tools available to perform clustering of PSSMs.

Figure 1. Schematic flow chart of the matrix-clustering algorithm. The program takes as input

one (or several) collection(s) of PSSMs, and calculates the motif similarity using several metrics. One

of these metrics is used to group the motifs with hierarchical clustering. A threshold consisting in a

combination of metrics is used to cut the global tree in a set of subtrees (forest). Each resulting tree

then serves as a guide to progressively align the motifs. The root motifs of each tree are exported as

the non-redundant motifs. The trees can be collapsed or expanded at each node dynamically when

displayed on the Web page. 

Figure 2. Clustering of PSSMs discovered in the Oct4 ChIP-seq peaks using several motif

discovery tools. The TF peaks of Oct4 identified by Chen et al (44) were submitted to three de novo

motif discovery programs: RSAT peak-motifs, MEME-ChIP and HOMER. All discovered PSSMs were

clustered simultaneously by matrix-clustering. A. Hierarchical tree corresponding to cluster_1 (37

motifs), where different Oct motif variants and Sox2 motifs can be observed (highlighted with different

colored boxes). The leaves are annotated with the name of the submitted motif, and the name of its

collection (one of the three programs). B. Reduced tree showing six non-redundant motifs, obtained

after manual curation of the cluster_1, by collapsing the branches. C . Annotation of the 6 non-

redundant variants (“branch motifs”) by alignment to reference motifs (see main text). When available

in databases (Jaspar or Hocomoco), the ID of the reference motif is indicated. Otherwise, it is

replaced by the PMID of the publication where the motif is mentioned. D. Heatmap summarising the

number of motifs from each collection found in each cluster. E. Heatmap of the cross-coverage

between each collection.

Figure 3. Clustering of 12 sets of motifs discovered in mouse ESCs TF ChIP-seq peaks. A. Motif

tree for one of the 40 clusters identified from 359 motifs discovered in ChIP-seq peak-sets for 12

different TFs involved in ESC pluripotency and proliferation.  This cluster contains the Oct-binding

motif. The bold black text displayed at each leaf indicates the name of the collection where the motif

was discovered. B . Heatmap showing the cross-coverage between the 12 motif collections

corresponding to the ESC peak-sets. Each row and column corresponds to one TF-specific peak-set.

The color of each cell indicates the percentage of motifs from the column-associated collection found

in clusters also containing motifs of the row-associated collection. Columns and rows were clustered

independently in order to highlight the similarities between motif collections. The table is thus

asymmetrical. 

Figure 4. Clustering of full Insect and Human motif databases. A. Heatmap representing the

distance (Ncor) between all 133 motifs of JASPAR Insects. The grouping of these motifs into 43

clusters is indicated with a colored bar above the heatmap. The black square indicate the large cluster

(almost half of the motifs) containing the very similar Homeodomain motifs. B. The 64 Homeodomain

motifs were manually reduced via manually collapsing the tree branches into 9 motifs. The collapsed
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tree is displayed along with the corresponding aligned branch motifs. C. Heatmap representing the

distance (Ncor) between all 641 motifs of Hocomoco Human. The grouping of these motifs into 255

clusters is indicated with a colored bar above the heatmap. The black squares highlights the multiple

small clusters that correspond to different TF Families (e.g. Fox, Gata, Sox, Gli, Stat, etc) . D.

Repartition of the transcription factor (TF) families within clusters. The barplot indicates that most

clusters are composed of a single TF family. The pie chart represents the reasons for observing

multiple TF families in a single cluster. The text data used to generate these plots is available as

Supplementary Supp_data_Fig_4D.tab

Figure 5. Cross-coverage of public motif databases. Several full public collections were merged

and clustered, separately by taxa. The heatmaps of the cross-coverage between each collection is

plotted for A. Seven insect collections, B. Five plant databases and C. Ten vertebrate databases. The

heatmaps show the cross-coverage of the motifs between all the databases. Note that there are not

symmetrical matrices because the number of motifs of each database differs (see methods). D. Venn

diagrams showing the asymmetry on cross-coverage between two databases of different size.
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Supplementary Figures

Supplementary Figure 1. Forest of motifs obtained with study case 1. See supporting website for

a dynamically browsable version.

Supplementary Figure 2. Forest of motifs obtained with study case 2. See supporting website for

a dynamically browsable version.

Supplementary Figure 3. Clustering of full motif databases. A. Heatmap representing the

distance (Ncor) between all motifs of Hocomoco Mouse. The grouping of these motifs into clusters is

indicated with a colored bar above the heatmap. B. Heatmap representing the distance (Ncor)

between all  motifs of Jaspar Vertebrates. The grouping of these motifs into  clusters is indicated with

a colored bar above the heatmap. 

Supplementary Figure 4. Clustering of Hocomoco human motifs. A. The barplot shows the

distribution of number of clusters per TF family. The left side of the histogram corresponds to

consistently clustered families, and the right side to families dispersed across many clusters. B.

Scatterplot comparing the number of members of each TF family as a function of the number of

covered clusters. The name of the families with more than 20 members are shown.
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Table 1

Page 1

Matlign STAMP m2match DMINDA motIV GMACS matrix-clustering

Year 2007 2007 2013 2014 2014 2015 2016

Clustering method

Hierarchical YES YES YES no YES no YES

SOTA no YES no no YES no no

Genetic Algorithm no no no no no YES no

minimum-spanning-tree no no no YES no no no

Multiple alignment of logos no no YES no no no YES

Alignment with internal gaps no YES no no no no no

Logo tree no no YES no no no YES

Familial binding profiles YES YES YES no YES no YES

Partitioning of input motif set in distinct clusters no YES YES no no YES YES

Consensus/Logo at tree root no YES YES no YES no YES

Consensus/Logo at each branch no no no no no no YES

Multiple collections as input no no no no no no YES

Accessible via website YES YES YES YES no no YES

Restriction on number of matrices no no 30 (trial account) no no no no

Publication (PMID or biorxiv DOI) 17559640 17478497 23555204 24753419 25627106 This articleBioconductor
package
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Impact of the similarity metrics and linkage rules (hierarchical clustering step)

Since the last  decade there are continuous efforts of the community to explore alternative

ways to measure the similarity between motifs, but any metric proposed so far fails to capture

some  similarities  considered  as  relevant  from  the  inspection  of  logos,  or  for  biological

reasons.  Hence,  no  ideal  metric  has  been found yet. To  face  this  issue, matrix-clustering

supports  all  the  metrics  implemented  in the companion  program compare-matrices 1,2,

including the most commonly used metrics (correlation, Euclidian distance, SSD, Sandelin-

Wasserman) as well as some custom metrics, e.g. logo dot product, correlation of information

content,  width-normalized  versions  of  the  Pearson  Correlation  Coefficient  (Ncor)  and

Euclidian  Distance  (NdEucl),  where  the  values  are  normalized  by the  number  of  aligned

columns divided by the total columns of the alignment.

For the hierarchical clustering step, we used distance matrices derived from all the similarity

metrics  supported  in compare-matrices,  and  focused  more  particularly  on  the  popular

Pearson's correlation (cor) and Euclidian Distance (dEucl). A previously reported drawback of

these metrics is that the motifs may be aligned on positions with low-information content, at

the  extremities  of  the  motifs 3,4. Figure  Ia shows an  example  of  such spurious  alignment

obtained with Pearson's correlation (cor) using as similarity cutoff cor >= 0.8. 

Figure  I:  Example  of  motif  alignments  obtained  with  RSAT compare-matrices.  a. Spurious  alignment

obtained with Pearson's correlation (cor), where the motifs are aligned on one or two positions at the extremities

of  the  motifs. b. Correct alignments obtained when using the normalized version of the Pearson's correlation

(Ncor).

One approach to filter out such spurious alignment is to impose a threshold on the width of the

alignment (e.g. at least 5 columns should be shared), but this would systematically discard

small motifs from the alignments. A more suitable solution to this problem is to use width-
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normalized Pearson correlation (Ncor) 1,4. When using these normalized metrics, the spurious

alignments are indeed not observed anymore (Fig. Ib) 1,4.

In addition of the similarity metric, another parameter that strongly impacts on the number and

composition of the clusters is the linkage rule used to build the global tree. This parameter

affects not only the number of clusters, but also the structure of the trees (order of motif

incorporation  in  the  progressive  alignment),  and  hence  the  motifs  repartition  among  the

clusters and the branch logos. To illustrate this, we analysed the study case 1 (Oct4 motifs

discovered by HOMER, MEME and RSAT) by running matrix-clustering (Ncor as metric to

build the tree, and Ncor >= 0.4, cor >= 0.6 as combined threshold for partitioning) with three

alternative agglomeration rules: single, average, complete linkage (Fig. II). There are notable

differences of tree topologies and motif clusters, depending on the linkage rule. The 66 motifs

are  regrouped respectively  in  9  (single  linkage),  13  (average),  19  (complete)clusters.  The

largest cluster (in red) obtained with single and average rules (Fig. IIa, IIb) is split into 4

smaller clusters (red, green, light green and orange) with the complete linkage (Fig. IIc). As

the complete linkage is the most restrictive one, the number of clusters is generally higher

than with the other methods. By contrast, the single linkage is the most permissive, it allows

more motifs to be grouped together and hence defines a smaller number of clusters. Generally,

we suggest to run matrix-clustering using the average linkage method. 

Figure II: Effect of the linkage rules on the final clusters. The data of study case 1 (Oct4 motifs obtained with

Homer, MEME and RSAT) is clustered with the same parameters except for the agglomeration rule: single (a),

average (b) or complete linkage (c). Heatmaps represent the all-versus-all  motifs, with a color scale reflecting
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the width-normalized correlation (Ncor). The hierarchical tree derived from the Ncor distance matrix is depicted

above. Clusters are highlighted with a color bar below the trees.
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Impact of the threshold (partitioning step)

We analysed the impact of different thresholds on the number of clusters with the data of

study case 3 (JASPAR Insects).  We systematically tested all combinations of thresholds on

cor and Ncor, for values ranging from 0 to 1 with an increment of 0.1. For each result, we

counted the number of clusters in order to observe the impact of the combination of thresholds

(Fig.  III).  For very  low cor and Ncor values,  most motifs are grouped in a single cluster,

whilst with higher values the number of clusters increases, to a point where all motifs are

separated  in  singletons. In  our  experience,  relevant  results  are  obtained  with  thresholds

ranging from Ncor >= 0.4-0.7 combined with cor >=0.6-0.8 (Fig. III, red square).

Figure III: Impact of threshold Combinations on the number of clusters. Heatmap showing the number of

clusters obtained with threshold combinations of Ncor and cor ranging from 0 to 1. The red square highlights the

combinations that usually result in coherent clusters.

In general, we made two observations: (i) a threshold consisting in a combination of multiple

metrics improves the consistency of the clusters, (ii) given that the hierarchical tree is  built on

one  metric,  the  normalized  metrics  group  the  motifs  more  coherently  than  those  not

normalized.
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Negative control with column-permuted motifs

In order to test the relevance of the clusters returned by matrix-clustering, the program can

create negative controls by randomly permuting the input PSSM's columns using the tool

RSAT convert-matrix. This approach has the advantage of maintaining the residue frequencies

and the information content of each PSSM, but the consensus and the order of the relevant

positions (the biological properties) are usually lost after permutation. The exact number of

clusters in the negative control varies each time the set of matrices is permuted. To have an

estimate of how many clusters can be found each time the motifs are permuted, we generated

100 sets of permutations of each collection. 

Figure  IV  displays  the  clustering  of  the  study  case  3  collections  (JASPAR insects  and

Hocomoco  human),  where  all  motifs  are  column-permuted.  For  the  insects  motifs  (133

motifs), the number of clusters is quite high after permutations (Fig IVa, IVc), with a median

at 85 clusters for 133 motifs, meaning that many clusters are singletons. However, we noticed

in study case 3 that most insect motifs are grouped in a big cluster containing a high number

of the Hox-like motifs. Permuting these short motifs with ATTA core produces similar motifs

that can still be grouped together. This behavior is also observed in low-complexity motifs

(e.g. A-rich motifs). For human motifs (641 motifs), after permutation, the number of cluster

is drastically increased, with a median of 590 clusters over the 100 repetitions, thus with even

more singletons than for the insect collection (Fig IVb, IVd). 

This test shows the importance of the order of the conserved residues in the motifs as a factor

which  affects  considerably  the  similarity.  Indeed,  these  permuted  matrices  have  the  same

information content as the real motif; the only difference is that the columns were sorted in a

different  way.  This  test  also  shows  the  adequacy  of  the  agglomeration  rule  and  selected

thresholds to separate unrelated motifs. 
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Figure IV: Clusters obtained after permutations of full collections. (a,  c) Column-permuted  motifs  from

Jaspar core insects. (b,d) Column-permuted motifs from Hocomoco human.  Heatmap color scales indicate the

width-normalized correlation (Ncor) of all-versus-all motifs. Clusters are highlighted with a color bar above the

heatmap. The distribution of the number of clusters across 100 permutations is shown as a boxplot.

8/12 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 27, 2016. ; https://doi.org/10.1101/065565doi: bioRxiv preprint 

https://doi.org/10.1101/065565
http://creativecommons.org/licenses/by/4.0/


Comparison with other motif clustering tools

Table 1 provides a list of features supported by existing motif clustering tools.

For the sake of comparison, we submitted some of our study cases to alternative motif

clustering tools. This analysis was restricted to study cases 1 and 3, since no other tool

currently supports multiple collections as those of our study cases 2 and 4. For study case 1,

we merged the 66 motifs from peak-motifs, MEME and HOMER in a single file in order to

submit it to the alternative matrix clustering tools. Moreover, the public Web interface of

m2match is restricted to 30 motifs, we thus restricted the analysis to the 22 motifs discovered

by peak-motifs. Each tool was run on its web interface, with default parameters. In addition,

we ran STAMP on the command line, because the Web interface does not enable to activate

the tree partitioning option. 

All results  are available on the supporting Web site: 

http://teaching.rsat.fr/data/published_data/Castro_2016_matrix-clustering/

STAMP

With our first study case, STAMP returns a tree whose main branches correctly separate the

Oct, SOCT (composite Oct-Sox), and the GC-rich motifs. The familial binding profile

summarizes the clustering tree as a whole, and only retains the 8 most conserved columns of

the alignment between input motifs, which corresponds to the canonical Oct binding motif.

When used on the command line, stamp supports an option to partition the tree in separate

clusters6. STAMP identified 14 clusters among the 66 merged motifs discovered by MEME,

Homer and Oct4, whereas matrix-clustering found 13 clusters. 

With Insect JASPAR database, STAMP web interface produces a single tree regrouping all the

133 motifs, together with a multiple alignment of all their consensus strings, encompassing

very different motifs, which would a priori seem non-alignable (e.g. GMCCCCCCGCNG and

TATGCAAATNA). The global multiple alignment is summarized by the familial binding

profile “ATTA” which corresponds to the core binding consensus of the Hox factors. This

reflects the over-representation of Hox motifs in Jaspar insects, but is not representative of the

diversity of motifs in the full database. Besides, STAMP presents all alignments in the form of

consensus strings, whereas matrix-clustering represents them as logos. Its command-line
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interface however allows to activate a tree partitioning option, which identifies 33 clusters (43

clusters obtained with matrix-clustering), however it does not produce any graphical output

(logos, tree views). The clustering of the full HOCOMOCO Human database gives similar

results: all motifs are regrouped into a single tree (website) which is partitioned in 180 clusters

(command-line version) in contrast with the 255 clusters produced by matrix-clustering.

In summary, STAMP Web interface and command-line produce complementary information,

whereas matrix-clustering provides both the clusters and a rich and dynamic browsable

visualization interface, irrespective of the submission mode (Web or command line). 

STAMP is remarkably fast as compared to matrix-clustering, especially for motif collection of

moderate size (Supp. Table 1). Note that for matrix-clustering, the relationship between

database size and computing time is not monotonous. The processing time depends on the

structure of the dataset (number of clusters, cluster sizes, singletons, ...). Also note that matrix-

clustering produces branch motifs and logos for each branch of each tree, whereas STAMP

only produces on family-binding profile (FBP) per cluster. 

Supp. Table I: comparison of time required for matrix-scan and STAMP to cluster full motif

databases. 

Collection Motif nb Matrix-clustering

(minutes)

STAMP 

(minutes)

 Jaspar Insects 133 10 1

Hocomoco mouse 427 20 13

Jaspar vertebrate 519 98 23

 Hocomoco human 641 55 42
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Matalign

Matlign7 splits the 66 Oct motifs into 22 clusters. The result is presented as a bitmap image

where motif names are unreadable due to the vertical orientation of the tree, followed by a

detailed list of merged matrices corresponding to the different nodes of the tree.

m2match

m2match is part of TRANSFAC tools4, which are under license. However, the public interface

allows to submit a restricted number of motifs (max 30). We tested the tool with the 22 motifs

discovered by RSAT peak-motifs in the Oct4 ChIP-seq peaks. The tool produces a tree, which

is partitioned into distinct clusters, whose matrices are aligned to produce branch motifs

(“Familial Binding Profiles”) and logos. 

Gmacs

Gmacs8 only runs as a command line tool. It is extremely easy to install and run, with a very

few options. However, it only produces a text file indicating the cluster composition, without

any other information (for example there is no motif alignments). The use of this version is

thus rather limited.
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