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Abstract

In a closed eco-system, there are only two types of animals: the preda-
tor and the prey. They form a simple food-chain where the predator
species hunts the prey species, while the prey grazes vegetation. The
size of the two populations can be described by a simple system of two
nonlinear first order differential equations formally known as the Lotka-
Volterra equations, which originated in the study of fish populations of the
Mediterranean during and immediately after World War I. Here, we study
numerically this nonlinear parabolic evolution problem and compare the
result of various numerical schemes.

1 Introduction

When species interact the population dynamics of each species is affected. In
general there is a whole web of interacting species, sometimes called a trophic
web, which makes for structurally complex communities (Abrams et al., 2000)(Aziz-
Alaoui et al.,2003). We consider here systems involving 2 or more species, con-
centrating particularly on two-species systems.

There are three main types of interaction. 1. The growth rate of one popula-
tion is decreased and the other increased the populations are in a predator-prey
situation.

2. If the growth rate of each population is decreased then it is competition.
3. If each populations growth rate is enhanced then it is called mutualism or
symbiosis (Murray, 2002).

Last few decades, thousand’s of papers are published in predation-pray
model to investigate the dynamics of the system. The stage-structured predator-
prey model and optimal harvesting policy is studied by (Zhang et al.,2000).
Faria investigate stability and bifurcation for a delayed predator-prey model
and the effect of diffusion (Faria et al., 2001). From the numerical point of view
(Ahmed et al.,2007) find the numerical solutions of fractional order predator-
prey and rabies models and Garvie, Marcus R. studied Finite-difference schemes
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for reaction-diffusion equations modeling predator-prey interactions in matlab
(Garvie,2007). A non-standard numerical scheme for a generalized Gause-type
predator-prey model is also introduced by Moghadas, S. M., M. E. Alexan-
der, and B. D. Corbett (Moghadas et al., 2004). Bandyopadhyay, M., and J.
Chattopadhyay studied Ratio-dependent predator-prey model with the effect of
environmental fluctuation and stability (Bandyopadhyay and Chattopadhyay,
2005). Pascual, Mercedes presented the diffusion-induced chaos in a spatial
predator-prey system (Pascual,1993). In this paper, we investigate some stiff
and non- stiff numerical scheme and compare them for predator-pray model.

2 Mathematical Model

Volterra (1926) first proposed a simple model for the predation of one species by
another to explain the oscillatory levels of certain fish catches in the Adriatic.
If N(t) is the prey population and P(t) that of the predator at time t then
Volterra’s model is

N — N(a — bP),
{ b _ p(en - d), (2.1)

where a, b, c and d are positive constants.
The assumptions in the model are:

e The prey in the absence of any predation grows unboundedly in a Malthu-
sian way; this is the alN term in the first equation of (1).
e The effect of the predation is to reduce the prey’s per capita growth rate by
a term proportional to the prey and predator populations; this is the —bN P
term.
e In the absence of any prey for sustenance the predator’s death rate results in
exponential decay, that is, the —dP term in the second equation of (1).
e The prey’s contribution to the predators’ growth rate is ¢N P; that is, it is
proportional to the available prey as well as to the size of the predator popula-
tion.

The NP terms can be thought of as representing the conversion of energy
from one source to another: b/N P is taken from the prey and ¢NP accrues to
the predators. We shall see that this model has serious drawbacks. Nevertheless
it has been of considerable value in posing highly relevant questions and is a
jumping—off place for more realistic models. The model (1) is known as the
Lotka-Volterra model.

3 Numerical Simulations

In this section, we are studied the model using numerical explicit and implicit
scheme and reported their behaviouras follows.
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Figure 1: Predator- pray behaviour by ode23
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Figure 2: Predator- pray behaviour by ode45
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Figure 3: Predator- pray behaviour by ode23s
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Figure 4: Predator- pray behaviour by ode23t
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Figure 5: Predator- pray behaviour by ode23tb
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Figure 6: Predator- pray behaviour by odell3
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Function | Description

oded5 Nonstiff differential equations,
medium order method.
ode23 Nonstiff differential equations,

low order method.

odell3 Nonstiff differential equations,
variable order method.

odelbs Stiff differential equations and
DAEs, variable order method.
ode23s Stiff differential equations, low
order method.

o0de23t Moderately — stiff — differential
equations and DAEs, trape-
zoidal rule.

ode23tb | Stiff differential equations, low
order method.

Table 1: List of ode solver
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Figure 7: Predator- pray behaviour by odelbs

We used ode23tb, ode23s, odelbs, ode23t which are known as stiff solver.
For a stiff problem, solutions can change on a time scale that is very short com-
pared to the interval of integration, but the solution of interest changes on a
much longer time scale. Methods not designed for stiff problems are ineffective
on intervals where the solution changes slowly because they use time steps small
enough to resolve the fastest possible change.Stiff solvers can be used exactly
like the other solvers. However, we can often significantly improve the efficiency
of the stiff solvers by providing them with additional information about the
problem. We use
1. ode23tb which is an implementation of TR-BDF2, an implicit Runge-Kutta
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formula with a first stage that is a trapezoidal rule step and a second stage that
is a backward differentiation formula of order two. By construction, the same
iteration matrix is used in evaluating both stages. Figure 5 shows the behaviour
of predator- pray model.

2. we use ode23t solver. ode23t is an implementation of the trapezoidal rule
using a free interpolant. If the problem is only moderately stiff and we need a
solution without numerical damping, then we usually use this solver. Figure 4,
demonstrate predator-pray behaviour in three dimension using ode23t at differ-
ent numbers of grids.

3.0de23s is based on a modified Rosenbrock formula of order 2. Because it
is a one-step solver, it may be more efficient than odel5s at crude tolerances. It
can solve some types of stiff problems for which odel5s is not effective. Figure 3
show the behaviour of the predator -pray using ode23s when we are increasing
number of nodes.

4. Finally, we choose odel5s solver. odelbs is a variable-order solver based on
the numerical differentiation formulas (NDFs). Optionally it uses the backward
differentiation formulas, BDFs, (also known as Gears method) that are usually
less efficient. Like odell3, odel5s is a multistep solver. If we suspect that a
problem is stiff or if ode45 failed or was very inefficient, then odelbs is the ulti-
mate choice. In this solver, the maximum order is an integer 1 through 5 used
to set an upper bound on the order of the formula that computes the solution.
By default, the maximum order is 5. Moreover, set BDF on to have odel5s use
the BDFs. By default, BDF is off, and the solver uses the NDFs. For both
the NDFs and BDFs, the formulas of orders 1 and 2 are A-stable (the stability
region includes the entire left half complex plane). The higher order formulas
are not as stable, and the higher the order the worse the stability. Figure 7,
illustrate predator-pray behaviour in the spatio temporal complex phenomenon
using odelbs.

The performance of the stiff solvers varies depending on the format of the
problem and specified options, provided the Jacobian matrix or sparsity pattern
always improves solver efficiency for stiff problems. But since the stiff solvers
use the Jacobian differently, the improvement can vary significantly. Practically
speaking, if a system of equations is very large or needs to be solved many times,
then it is worthwhile to investigate the performance of the different solvers to
minimize execution time. In the case of the Lotka-Voltera equation, ode23s
works efficiently in less amount of time. Other solvers are also able to solve
the L-V equation with longer times than ode23s. From the point of view of
absolute error odelbs is a better solver than other in this case. If we compare
with stiff and non-stiff solver. Then we can say that stiff solver take less time
than non-stiff.
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Figure 8: Phase plane and time series
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Figure 9: Competition between two species

Figure 8 illustrate phase plane and the time series for a = 1, b = 2.666667,
¢ =1 and d = 1 Moreover,Figure 9 shows the competition between two species.

4 Conclusion

We use different numerical scheme for the predator-pray model. We observed
that the stiff solver are more efficient than than the non-stiff solver.We conclude
that the stiffness is a subtle, difficult, and important concept in the numerical
solution of ordinary differential equations. It depends on the differential equa-
tion, the initial conditions, and the numerical method. Dictionary definitions of
the word ”stiff” involve terms like "not easily bent”, ”"rigid”, and ”stubborn”.
We are concerned with a computational version of these properties. An ordinary
differential equation problem is stiff if the solution being sought is varying slowly,
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but there are nearby solutions that vary rapidly, so the numerical method must
take small steps to obtain satisfactory results. Stiffness is an efficiency issue. If
we weren’t concerned with how much time a computation takes, we wouldn’t
be concerned about stiffness. Nonstiff methods can solve stiff problems; they
just take a long time to do it. Nonetheless, we believe this example (Predator-
Pray) is fairly representative with respect to many features.
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