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Abstract 

The functions of human brains highly depend on the precise temporal regulation of 

gene expression, and substantial transcriptome changes across lifespan have been 

observed. While cell type composition is known to be temporally variable in brains, it 

remains unclear whether it is the primary cause of age-related transcriptome changes. 

Here, taking advantage of published human brain single-cell RNA-seq data, we 

applied a two-step transcriptome deconvolution procedure to the public age series 

RNA-seq data to quantify the contribution of cell type composition in shaping the 

temporal transcriptome in human brains. We estimated that composition change 

contributed to around 25% of the total variance and was the primary factor of 

age-related transcriptome changes. On the other hand, genes with substantial 

composition-independent temporal expression changes were also observed, which had 

diverged expression properties, functions and regulators as genes with temporal 

expression changes related to composition. This indicates a second independent 

mechanism shaping the human brain’s temporal transcriptome properties, which is 

important for human brain functions. 
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Introduction 

The development and aging of human brains are complex processes, which are shaped 

by anatomical and molecular changes 1-4. With the emergence of high-throughput 

measurement of different molecules, dozens of studies have been conducted to 

characterize age-related molecular changes in human brains, especially at the 

transcriptome level 5-8. 

The human brain, however, is a highly complex and heterogeneous organ comprised 

of numerous different cell types, including neurons, multiple classes of non-neuronal 

glial cells – such as astrocytes, oligodendrocytes, oligodendrocyte precursor cells and 

microglia – as well as vascular, such as endothelial, cells. Each of those cell types 

expresses a distinct set of genes 9 and plays a unique and essential role in the 

development and functions of the brain 10. Different cell types are also known to show 

different spatial-temporal distributions. Neurons, for instance, are well-known to 

emerge in early embryonic development, while the remaining glia cells appear much 

later 11. The cell-type composition of a brain also keeps on changing after birth. For 

example, myelination – a process largely linked to oligodendrocytes – is known to 

continue for at least 10 years after birth 12. Such complexity thus raises the 

unanswered questions: how much of the age-related molecular change in human 

brains, or specifically the age-related transcriptome change, is the direct consequence 

of the cell type composition change? And, besides the age-related changes caused by 

composition changes, what’s the biological meaning of the rest? 

In order to comprehensively answer these questions, an accurate estimation of cell 

type composition in human brains is required. Although experiments including stained 

cell counting 13-16 and large scale single-cell RNA-seq 17,18 have the potential to 

provide these data, these methods are either too labor-intensive or costly at present. 

Thus, the computational method of inversing sample heterogeneity, i.e. deconvolution, 

is one of the best alternative solutions to estimate the mixing percentage of different 

cell types 19,20. The recent emergence of the human brain single cell RNA-seq data, 

covering all the main cell types in the human brain 17, now renders this approach more 

feasible. 

Meanwhile, quantifying the contribution of cell type composition changes in human 

brain differences, especially age-related molecular changes, also requires the proper 

decomposition of molecular profiles into components related or not to the cell type 

composition change. The typically used linear regression model 21,22 does not account 

for the nonnegative nature of the molecular signatures, e.g. gene expression levels 

measured in RNA-seq. Furthermore, most of those studies only scratched the surface, 

and provided no further investigation into the underlying biological characteristics 
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and meaning, especially for variance independent of composition. 

In this study, we used two-step nonnegative deconvolutions to estimate the cell type 

composition changes in the human brain after birth, as well as to quantitatively 

decompose the human brain transcriptome profiles across lifespan into 

composition-dependent and composition-independent components. The estimated 

composition changes matched well with the previous observations. The delineation of 

the composition-dependent component from gene expression suggested that cell-type 

composition explained about 25% of the total expression variance, and greatly 

contributes to the age-related expression pattern in brain. Meanwhile, although to a 

lesser extent, the composition-independent component also significantly contributes 

to age-related expression pattern. More interestingly, distinct expression properties, 

functions and potential regulators of genes with age-related changes in the 

composition-dependent and independent components were observed, implying the 

diverged functional contributions of these two components in the human brain. 

Additionally, although not as the primary force in shaping the age-related expression 

pattern in human brains, genes with age-related changes independent of composition 

changed their expression in autism, a neurodevelopmental disorder characterized by 

patterns of behaviors and impaired social communication and interaction, which 

further suggested their important functions in brains.  
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Results 

Cell type composition estimation in simulated data and RNA-seq data of human 

cortical layers 

To obtain the gene expression information of cell types in human brains required for 

transcriptome deconvolution, we used the published human brain single cell RNA-seq 

data 17 and estimated the expression level of 14054 protein-coding genes in eight main 

cell types in human brains. Meanwhile, 1491 cell type signature genes were identified 

by requiring at least ten-fold higher expression level in one cell type comparing to any 

of the remaining, including 319 signature genes for astrocytes, 288 for endothelial 

cells, 224 for microglia, 99 for oligodendrocytes, 71 for oligodendrocyte progenitor 

cells (OPC), 166 for adult neurons, 92 for fetal quiescent neurons, and 232 for fetal 

replicating neurons (Supplementary Table S1). 

To estimate the brain cell type composition given the bulk brain tissue RNA-seq data 

based on the human brain cell type expression profiles, we tried two different methods: 

quadratic programming (QP) based deconvolution and diffusion ratio (DR) based 

deconvolution. In brief, the QP-based deconvolution modeled the expression of a cell 

type signature gene in the bulk tissue as a linear combination of its expression in 

different cell types according to the unknown cell type mixing proportion. This 

method has been widely used for deconvolution in transcriptome data 19,20. The 

DR-based deconvolution, on the other hand, was based on the simple assumption that 

the expression of a cell type signature gene in the bulk tissue can be seen as its 

expression in the cell type scaled by the cell type’s mixing proportion. Simulations 

suggested that both methods provided good estimations regarding cell-type 

composition, while the QP-based deconvolution surpassed the DR-based 

deconvolution (Supplementary Fig. S1). 

To test the application to real-world data, we applied both deconvolution methods to 

an RNA-seq data set representing the transcriptome of human cortical layers 

(SRP065273) which were known to have varied cell type constitutions 23. Both 

methods provided similar cell type composition patterns across the cortical sections, 

each of which represents parts of one cortical layer or the mixture of two layers (Fig. 

1a). The estimated composition patterns were concordant with the known composition 

difference, e.g. the high abundance of oligodendrocytes and low abundance of 

neurons in the deep layers. On the other hand, the DR-based deconvolution resulted in 

better exactness than the QP-based deconvolution (Methods, Fig. 1b), indicating more 

robustness of DR-based deconvolution in the noisy data set which was processed and 

normalized separately. 
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Composition changes in brains across the human lifespan 

To investigate the temporal cell type composition changes across lifespan in human 

brains, we applied the deconvolution procedure to the age series RNA-seq data set of 

the human prefrontal cortex (PFC) consisting of 40 postnatal human brain samples 

aged from two-day old to 61.5 year-old (age-DS1) 8. Both the QP-based and 

DR-based deconvolution provided similar composition patterns (Fig. 2a and 

Supplementary Fig. S2). Another unpublished RNA-seq data including 72 samples 

aged from 0 days old to 98 years old (age-DS2) resulted in similar estimations as well 

(Supplementary Fig. S2). The estimated composition changes were consistent with 

previous studies, e.g. the elimination of fetal neurons soon after birth accompanying 

with the increase of adult neurons 24, and the increase of oligodendrocytes with the 

decrease of OPC which may due to the myelination process 12. The remaining cell 

types including astrocyte, endothelial cells and microglia did not show significant 

changes across the lifespan. The comparison between the two estimated compositions 

using two different deconvolution methods suggested the better reproduction of the 

bulk tissue gene expression for the DR-based deconvolution, which was similar to the 

observation in the cortical layer data (Supplementary Fig. S2). 

We next applied the DR-based deconvolution to the human embryonic developmental 

brain RNA-seq data obtained from Allen Brain Atlas (Fig. 2a). A large proportion of 

fetal replicating neurons was observed in samples before 12 post conception weeks 

(pcw) but decreased dramatically since 12 pcw. This observation, coupling with the 

increase of fetal quiescent neurons, well matched with the neuronal proliferation that 

occurred during four pcw to 12 pcw 11. Intriguingly, the estimated compositions, 

especially those of fetal and adult neurons, presented a successive pattern with the 

postnatal composition changes estimated above, which further indicated the reliability 

and robustness of the composition estimation. 

Cell type expression calibration and estimation of composition component 

variance 

Despite of the reliable composition estimation, we noticed a huge discrepancy 

between the observed and predicted bulk tissue gene expression based on cell type 

expression and estimated composition. We hypothesized several reasons, including 

batch effect between the bulk tissue RNA-seq and the single-cell RNA-seq data, and 

the intrinsic molecular profile change across the lifespans. Such discrepancy had to be 

corrected for proper decomposition of gene expression variance into variance due to 

cell type composition. Therefore, we adopted the second deconvolution based on 

quadratic programming to calibrate cell type gene expression. Applying the method to 

age-DS1 with the DR-based composition resulted in calibrated cell type expression 
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which was concordant with the cell type expression by the single cell RNA-seq (Fig. 

2b), with fidelity factor 0.125 (permutation test, P<0.001). The discrepancy between 

the observed and predicted bulk tissue gene expression was eliminated significantly 

when the calibrated cell type expression was used (Fig. 2c). 

Based on the estimated cell type composition and the calibrated cell type expression, 

we decomposed the bulk gene expression into the composition-dependent and 

composition-independent components. Their contributions to the overall gene 

expression variance were estimated. On average, the composition component 

explained 22.6%-26.4% of the total variance in the human postnatal age series data 

(Fig. 3a). This proportion was much larger in the human cortical layer data 

(47.2%-54.3%, Supplementary Fig. S3), where the cell type composition had been 

known to be varied 23. Focusing on the 5,119 genes with age-related expression 

(referred as age-related expressed genes, age test BH-corrected FDR<0.05), the 

composition-dependent component contributed 29.7%-34.7% of the total variance 

which was significantly higher than the other genes (Fig. 3b, permutation test, 

P<0.001). 

To further investigate the roles of the composition-dependent and independent 

component in shaping the temporal gene expression pattern, we calculated the 

variances explained by age (age-explained variance) for each of the two components 

separately. Interestingly, the relative contribution of age-explained variance from the 

composition component (55.8%) was much larger than the proportion of composition 

variance among total variance (29.7%-34.7%) for age-related expressed genes, while 

the difference was much smaller for the non-age-related expressed genes (27.8% vs. 

19.3%-22.1%) (Fig. 3b). 

Additionally, the proportion of age-explained variance in the composition-dependent 

component was dramatically higher for the age-related expressed genes than for other 

genes (median=66.4%, permutation test, P<0.001, Fig. 3b); meanwhile for the same 

genes, a moderate but significant increase of age-related variance proportion was 

observed for the composition-independent component (median=28.9%, permutation 

test, P<0.001, Fig. 3b). Altogether, these observations implied that the change of the 

composition-dependent component, i.e. the cell-type composition changes, was the 

main power shaping the observed temporal expression in human brains. Notably, 

however, the composition-independent changes, some of which may represent the 

changes of molecular features in one or several cell types, also participate in shaping 

the temporal transcriptome in human brains. 

The age-related changes in the composition-dependent and independent 

components 
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To better understand the biological significance of the age-related changes in the 

composition-dependent and composition-independent component explicitly, we 

applied age tests to each of the two components, to identify genes with significant 

age-related changes in either component. 8,156 and 1,455 genes were found with 

age-related changes in the composition-dependent and independent component, 

respectively (Fig. 4a). Both of the two gene sets were largely overlapped with the 

age-related expressed genes (Fisher’s exact test, P<0.0001). However, no significant 

overlap was observed between them (Fisher’s exact test, P=0.216, odds ratio = 0.932), 

implying the independent contribution of the two components to the temporal 

transcriptome in human brains. 

We further grouped the 8,719 genes with age-related changes in at least one of the two 

components into three categories: G1 – genes with age-related changes in both 

components; G2 – genes with age-related changes only in the composition-dependent 

components; and G3 – genes with age-related changes only in the 

composition-independent components. Interestingly, these three groups of genes 

showed distinct temporal expression patterns (Fig. 4b). G1 and G2 genes, and 

especially the latter gene, showed higher expression levels in early postnatal 

development, while G3 genes were highly expressed in the adult stages. Different 

groups of genes were also enriched in different cell types: G1 – adult neuron, G2 – 

fetal quiescent neuron, fetal replicating neuron and adult neuron, and G3 – astrocyte 

and endothelial cells (Fig. 4b). 

More importantly, the three groups of genes showed distinctive functional 

enrichments (DAVID 25, Supplementary Table S2). In brief, G1 genes were enriched 

for synapse and translation-related functions. G2 genes were enriched in transcription 

regulation, protein degradation, and cell cycle. Lastly, G3 genes were significantly 

involved in extracellular regions and metabolism. These results indicated the distinct 

biological significance of the age-related composition dependent and independent 

changes. 

The expression of these three groups of genes should have been modulated by certain 

regulatory mechanisms, such as transcription factors (TFs). To test this, we estimated 

the enrichment of TF binding motifs in the promoter regions of genes in each category. 

We observed significant excess of enriched TF binding motifs (hypergeometric test, 

P<0.1) in the G2 and G3 genes (permutation test, P<0.001) (Fig. 4c). In addition, the 

expression of representative TFs of the enriched TF binding motifs in groups showed 

significantly better correlation (Wilcoxon test, P<0.05) with their targets in the 

respective groups than expected by chance (permutation test, P<0.001) (Fig. 4c). TFs 

with TF binding motifs enriched in G2 genes, e.g. CUX1 and E2F1, were mostly 
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negatively correlated with their targets and had been shown to be relevant to cell 

migration, cell cycles and neuronal development and maturation 26-28. On the other 

hand, most of the TFs with binding motifs enriched in G3 genes, e.g. SMAD3, 

SREBF1 and NR2F2, were positively correlated with their G3 target genes, many of 

which had been reported participating in signal transduction and metabolism of 

astrocytes 29-31. 

Significance of composition-independent component in autism pathogenesis 

Autism spectrum disorder (ASD) is a common neurodevelopmental disorder. In the 

previous study based on microarray technology 32, 444 genes have been reported with 

differential expression in autistic brains (ASD-DE genes), 343 of which were detected 

in both the single-cell RNA-seq and age-DS1 data. Among them, 158 genes showed 

increased expression level in autistic brains, while 185 showed decreased expression 

level. Intriguingly, we observed strong enrichment of genes with decreased expression 

in autistic brains in G1 (Fisher’s exact test, odds ratio=4.00, P<10-10), and in contrast, 

enrichment of genes with increased expression in autistic brains in G3 (Fisher’s exact 

test, odds ratio=2.776, P=0.0002). Although with distinct functions, these ASD-DE 

genes were enriched for genes with age-related changes in the 

composition-independent component rather than in the composition-dependent 

component. This result indicated the important functions of genes with age-related 

changes in the composition-independent component. It also implied that the molecular 

pathology of autism alters the regulatory machinery regulating the molecular profiles 

of certain cell types instead of main cell type composition, and harms the cell-cell 

communications in brains. 
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Discussions 

In this study, we refined and implemented a two-step transcriptome deconvolution 

procedure to estimate cell type composition and its contribution to the sample 

variance. With the gene expression of eight main cell types in human brain estimated 

using the human brain single cell RNA-seq data 17, we applied the deconvolution 

procedure to the human postnatal age series RNA-seq data 8, which resulted in 

composition patterns consistent with the prior studies. On the other hand, however, we 

also noticed that our estimated proportion of total neurons in the adult samples 

reached around 70%, which was much higher than the estimation based on cell 

counting 33,34 or DNA methylation deconvolution 22. We suspected the primary cause 

to be the close-to-two-fold as much as RNA content in neurons than glia cells, as 

reported previously 35. 

Based on the variance analysis, we regarded the composition change to be the main 

source of the age-related expression change in human brain. This was a consistent 

conclusion drawn by previous studies based on DNA methylation 22. The proportion 

of variance explained by cell types, on the other hand, was smaller: only about 30% 

for the age-related expressed genes, while it was around 50% for the DNA 

methylation. Although the influence of sampling and measurement noise could not be 

ruled out, such observation may imply the additional regulatory signal that showed 

age-related manner and independent from the DNA methylation, which might be an 

interesting focus for further study. 

By decomposing the expression level into the composition-dependent component, i.e. 

expression explained by the cell type composition changes, and the 

composition-independent component which relies on other factors, we reported the 

first attempt to our knowledge to study the age-related transcriptome changes in brain 

in a more comprehensive way. In such a way, we distinguished changes due to cell 

type composition and changes due to other factors, manifesting changes happened in 

transcriptome of one or multiple cell types which were independent from the 

composition. Interestingly, along with the distinct biological implications of the two 

components, genes with age-related changes in the two components showed entirely 

diverged expression properties and functions, implying two independent machineries 

shaping the human brain transcriptome in the age-related manner. 

Interestingly, genes with age-related changes in the composition-dependent 

components showed high expression level in the infant stages, i.e. < 2 years old, with 

significantly enriched expression in the three types of neurons. This suggested that 

although some other cell types such as oligodendrocytes and OPCs presented mixing 

proportion changes in the age-related manner, most of the composition-dependent 
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changes were due to the transition from fetal neurons to adult neurons, i.e. the neuron 

maturation process. This thus implied that the neuron maturation was the primary 

factor creating the age-related expression, especially during the infant stage. 

It is worth noting that, while the cell type composition was apparently the primary 

driving force of the age-related transcriptome change in human brain, especially 

during the early postnatal development, the age-related changes to the 

composition-independent component is appealing. With the major contribution of 

compositional change, these changes were easily overwhelmed when the two 

components remain mixed. Interestingly, unlike the genes with age-related 

composition-dependent changes which mostly expressed highly in the early postnatal 

development, genes with age-related composition-independent changes tended to 

have higher expression in adults. What’s more, these composition-independent 

changes were significantly related to either synapse in neurons (G1), or extra-cellular 

regions and signal peptides in astrocytes and endothelial cells (G3), both of which 

were relevant to the cell-to-cell communications. This is unlikely to be a coincidence. 

As a creative information-processing system, such communications are critically 

important for human brains 36,37, and our results suggest that the complexity growth of 

the communication system not only depends on the increased number of 

computational units, i.e. neurons, but also greatly relies on the enhanced inter-cellular 

communications which are independent from the cell type composition changes 

across lifespan. Such communications may not limit to the synaptic connections 

between neurons, but also include the neuron-glia and glia-glia communications 

which are also critical to the neuronal network functions 38. Additionally, our intuitive 

enrichment analysis of genes with differential expression in autistic brains suggested 

that the composition-independent component was more likely to be the primary 

contributor to the transcriptome alteration in autistic brains, which further supported 

their importance in human brains. However, further analysis of decomposition and 

comparison of gene expression in autistic and healthy brains would be necessary to 

answer this question directly. 

Although our framework paves a way for more exhaustive analyses regarding the 

contribution of cell type composition to the transcriptome changes, we are well aware 

of the limitations of our method. For instance, our analysis failed to squarely pinpoint 

the one or several cell types with the greatest influence on either of the two 

components, though cell-type enrichment analysis was capable to give a glance. Our 

analysis greatly relied on the accurate transcriptome measurement of all or at least 

close to all of the cell types in the bulk tissue, which limits its applications. If nothing 

else, we hope that our attempt to decompose expression into composition-dependent 

and composition-independent components will inspire further studies to elucidate 
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transcriptome changes in a more comprehensive manner.  
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Methods 

Data 

The human brain single cell RNA-seq data was retrieved from SRA (SRP057196). 

The human postnatal age-series brain RNA-seq data with 40 samples was retrieved 

from GEO (GSE51264). All the RNA-seq reads were mapped to the human genome 

hg38 with STAR 2.3.0e using the default parameters. The number of reads covering 

the exonic regions of each protein-coding gene annotated in GENCODE v21 was 

counted and normalized using the R package DESeq2 for each data set separately. The 

two unpublished data sets, including the human cortical layers data set (SRP065273) 

and the other human postnatal age-series brain RNA-seq data set with 72 samples, 

were processed in the same way. The pre-calculated RPKM of the fetal human brain 

samples were downloaded from Allen Brain Atlas 

(http://www.brainspan.org/static/download.html). 

Deconvolution for cell-type composition 

Two different strategies were used for deconvolution for cell-type composition. The 

first method, quadratic programming (QP) based deconvolution, was to model the 

gene expression of each cell type signature genes in the bulk tissue sample as a linear 

combination of its expression in each cell type according to the cell type mixing 

proportion. Thus, the deconvolution problem for each bulk tissue sample was 

represented as a constrained linear least-square problem, which was: 

if
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Here, f was the vector of cell type mixing proportion, and C was the matrix of gene 

expression of the cell type signature genes in each cell type, while x was the known 

expression level of the cell type signature genes. This model was widely used in the 

deconvolution problem 19,20, and can be solved using quadratic programming 39. 

The second method, namely diffusion ratio (DR) based deconvolution, was based on 

the simple assumption that the expression of a cell type signature gene in the bulk 

tissue can be seen as its expression in the cell type scaled by the cell type’s mixing 
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Here, g represented each cell type signature gene of cell type i. After calculating fi for 

all the cell types, f was normalized so that 1=∑i i
f . 

Simulations for composition estimation 

For each cell type, the cell type gene expression level was firstly estimated based on 

each of the 100 times of cell bootstrapping. Assuming the lognormal distribution of 

gene expression, we estimated the mean and standard deviation for the 

log-transformed gene expression (in FPKM) for each gene in each cell type. 

For every simulation, we randomly simulated the mixing proportion of the cell types. 

The simulated bulk gene expression level for each gene was then generated as its 

mean expression across the cell types weighted by the simulated mixing proportion. 

Note that for each gene, its expression level in each cell type was randomly generated 

based on the expression level mean and standard deviation mentioned above. Finally, 

a white noise with standard variance proportional to the average gene expression level 

in all cell types was also added to the simulated expression level. 

To evaluate the accuracy of the deconvolution results, the Pearson’s correlation 

coefficient was calculated between the estimated cell type mixing proportions and the 

simulated cell type mixing proportions. This was done for each simulation, and 

altogether 1000 simulations were run to estimate the performance of the 

deconvolution for composition estimation. 

Deconvolution for cell-type expression profile calibration 

The similar model as the QP-based deconvolution for cell-type composition described 

above was used for the second deconvolution to calibrate cell-type expression profile. 

Similarly, the deconvolution problem for each gene can be seen as a constrained linear 

least-square problem, that is: 

ictsxFc
i

∀≥⎟
⎠
⎞

⎜
⎝
⎛ − ,0..,min

2

. 

Here, c was the vector of calibrated gene expression level in different cell types, and x 

was the vector of gene expression across the bulk tissue samples. F was the 

composition matrix with each row representing the estimated mixing proportion in the 

corresponding bulk tissue sample. This problem was also solved by using quadratic 

programming as described above. 

Measurement of fidelity factor for the deconvolutions 
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Two different measurements of fidelity factor were used for the two deconvolution 

tasks. For the first deconvolution, that is, the deconvolution to estimate cell type 

composition, the difference between the real bulk tissue gene expression and the 

predicted gene expression based on the cell type gene expression level and the cell 

type mixing proportion was used to describe the fidelity factor. In more detail, for 

each gene that was detected in both the bulk tissue data and the human brain single 

cell data, the absolute value of difference between the observed log10-transformed 

FPKM and the predicted log10-transformed FPKM was calculated, and then summed 

up across all the genes. This was used as the fidelity factor of one sample, and the 

overall fidelity factor was estimated as the average fidelity factor of all the bulk tissue 

samples. 

For the second deconvolution, that is, the deconvolution to calibrate cell type 

expression level, and fidelity factor for cell type i was represented as: 

( ) ( )ij
j

iii eecoreecorff ˆ,maxˆ, −=  

Here, ei was the vector of observed log10-transformed FPKM of cell type i, and �� �  

was the vector of calibrated log10-transformed FPKM of cell type i. Using the 

correlation with other cell types’ expression profiles as a control, this value thus 

represented the similarity between the calibrated cell type transcriptome profiles and 

the real one. The mean across different cell types was then used as the proxy of the 

overall fidelity factor. 

Age test: ANCOVA based on natural spline with variable degree of freedom 

For each gene, with its observed expression level, composition-dependent component, 

or composition-independent component as the response variable, an ANCOVA 

employing the F test was used to compare the null model: a linear model only with 

intercept, to a series of alternative models: the natural spline with degree of freedom 

from two to eight in response to square root transformed ages (sqrt-age). The best 

alternative model was chosen by applying the adjusted r2 criterion 5. Genes with BH 

corrected FDR<5% were considered as genes with its expression, 

composition-dependent or composition-independent component changed in the 

age-related manner. For calculating the proportion of variance explained by age, the 

natural spline model with degree of freedom equaling to eight in response to sqrt-age 

was used. 
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Figures 

 

Figure 1. The cell type composition across human cortical layers estimated using 

quadratic programming (QP) based deconvolution and diffusion ratio (DR) based 

deconvolution method. (a) The estimated cell type proportion of each of the eight 

brain cell types in cortical layers. The dots show the samples’ estimated proportions, 

and the curves show the spline interpolation results. The bars on the bottom show the 

cortical layers assigned to each of the 17 aligned sections, from the left most 

representing the most superficial layer 1 (L1), to the right most representing the most 

deep layer 6 (L6) and the adjacent white matter (WM). (b) The difference of 

deconvolution performance, represented as the discrepancy of predicted bulk tissue 

gene expression from the observed bulk tissue gene expression, between the QP-based 

deconvolution and the DR-based deconvolution. 
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Figure 2. The cell type composition across lifespan in human brain, estimated using 

the DR-based deconvolution. The dots show the estimated proportions of samples, 

and the curves show the spline interpolation results. The left panel shows the cell type 

composition in human fetal brains, based on the human embryonic developmental 

brain RNA-seq data from the Allen Brain Atlas; the right panel shows the cell type 

composition in human postnatal brains, based on the human brain age series data set 1 

(age-DS1). 
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Figure 3. The cell type composition change was the primary driving force of the 

age-related expression. (a) The proportion of gene expression variance explained by 

cell type composition (composition-related variance) in age-DS1. Light grey – genes 

without age-related expression; dark grey – genes with age-related expression. The 

horizontal dash lines show the mean proportion of composition-related variance. (b) 

The relative contribution of the composition-dependent component to the variance 

explained by age (age-explained variance), measured as ratio of age-explained 

variance in the composition-dependent component to the sum of age-explained 

variance in both components. Light grey – genes without age-related expression; dark 

grey – genes with age-related expression. The horizontal dash lines show the mean 

proportion of composition-related variance. (c) The proportion of variance explained 

by ages (age-related variance) in each of the two components of expression: pink – 

the composition-dependent component; green – the composition-independent 

component. The light colors represent the proportions of age-related variance in genes 

without age-related expression changes; the dark colors represent the proportions of 

age-related variance in genes with age-related expression changes. The horizontal 

dash lines show the means of age-related variance proportions. 
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Figure 4. Age-related changes happened in the composition-dependent and 

composition-independent components. (a) The number of genes with age-related 

changes in each component or the observed expression level, based on age-DS1 (blue 

– observed expression level; pink – composition-dependent component; green – 

composition-independent component). (b) The expression properties of genes with 

age-related changes in the composition-dependent or composition-independent 

components. G1 – genes with age-related changes in both components; G2 – genes 

with age-related changes only in the composition-dependent component; G3 – genes 

with age-related changes only in the composition-independent component. Top: 

proportion of genes with highest expression level at each of the three lifespan stages. 

Bottom: expression enrichment in each of the eight cell types for the three groups of 

genes, represented as –log10(P), where P being the p-value of Wilcoxon’s rank test of 

log10-transformed fold change from the particular cell type to the remaining cell 

types, between each of the three groups of genes and all the expressed protein-coding 

genes. The grey octagonal boxes represent –log10(P) equaling to values from ten (the 

outermost box) to two (the inner most box). Strong expression enrichment with 

–log10(P)>10 was presented as ten. (c) Regulation of genes with age-related changes 

in either component by transcription factors (TFs). (Left) the number of TF binding 

motifs enriched among genes within each group. The dark streaked bars represent the 

mean number of enriched TF binding sites expected by chance, calculated by 1000 
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random assignment of the expressed genes into the three groups. (Right) the number 

of TF binding motifs with its representative TF correlated with the targets (correlated 

TF binding motifs) in the same group. The dark streaked bars represent the mean 

number of correlated TF binding motifs expected by chance, calculated by 1000 

random assignment of the expressed genes into the three groups. The asterisks show 

significance of the numbers (* P<0.05, ** P<0.01, *** P<0.001, Bonferroni 

corrected). 
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