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Abstract:  In the human brain, spontaneous activity during resting state consists of rapid transitions 

between functional network states over time but the underlying mechanisms are not understood. We 

use connectome based computational brain network modeling to reveal fundamental principles of 

how the human brain generates large-scale activity observable by noninvasive neuroimaging. By 

including individual structural and functional neuroimaging data into brain network models we 

construct personalized brain models. With this novel approach, we reveal that the human brain 

during resting state operates at maximum metastability, i.e. in a state of maximum network 

switching. In addition, we investigate cortical heterogeneity across areas. Optimization of the 

spectral characteristics of each local brain region revealed the dynamical cortical core of the human 

brain, which is driving the activity of the rest of the whole brain. Personalized brain network 

modelling goes beyond correlational neuroimaging analysis and reveals non-trivial network 

mechanisms underlying non-invasive observations. Our novel findings significantly pertain to the 

important role of computational connectomics in understanding principles of brain function. 
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INTRODUCTION 

“When we take a general view of the wonderful stream of our consciousness, what strikes 

us first is the different pace of its parts. Like a bird's life, it seems to be made of an 

alternation of flights and perchings.” William James 1 

 

Survival remains the perhaps most important problem faced by brains and a key challenge is how to 

segregate and integrate relevant information over different timescales when faced with hostile, often 

constantly changing environments 2. Reconciling different speeds of information processing, from 

fast to slow, is especially important, and could be key to the relative evolutionary success of 

mammals whose sophisticated brains are able to combine prior information from past memories 

with current stimuli to predict the future and to adapt behaviour accordingly 3-5.  

 

This was recognized well over a century ago by William James, generally acknowledged as one of 

the fathers of modern cognitive psychology 1. Speaking of this problem using the apt metaphor of 

the stream of consciousness, James noted that there is a different pace to its parts, comparing it to 

the life of a bird whose journey consists of an “alternation of flights and perchings”. In the language 

of today’s dynamical systems, the flights are akin to fast, segregative tendencies and the perchings 

to slower, integrative tendencies of the dynamic brain in action 2,6,7. In addition, motivated by recent 

experimental and modelling work of other labs 8,9, we investigate cortical heterogeneity across 

areas. By optimizing the spectral characteristics of each local brain node (in the coupled network), 

this allowed us to discover a dynamical core of the brain, i.e. the set of brain regions, which through 

their oscillations are driving the rest of the brain. Furthermore, with regards to balancing the 

different speeds of processing, a large body of psychological research has focused on what is known 

as dual process theories 10,11, identifying competing fast and slow systems which have to co-exist 

and function on multiple time-scales in order for the brain to efficiently allocate the resources 

necessary for survival 12,13.  

 

Yet, the temporal dynamics and underlying neural mechanisms of this temporal processing on 

multiple timescales are poorly understood. Here we aim to provide a better understanding of the 

dynamics using computational brain network modelling which has emerged as a powerful tool for 

investigating the causal dynamics of the human brain, when carefully constrained by functional 

(FC) and structural connectivity (SC) obtained from empirical neuroimaging data 14-18. This 
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theoretical framework has been largely successful in explaining the highly structured dynamics 

arising from spontaneous brain activity in the so-called resting-state-networks (RSN) 19-21, even if 

the resting brain never truly rests 20. Efficient task-related brain activity has been shown to rely on 

metastability of spontaneous brain activity allowing for optimal exploration of the dynamical 

repertoire 22 but it is not known if this metastability is maximally metastable 6. Our definition of 

metastability is taken from the work of Shanahan et al. as a measure of the variability of the 

Kuramoto order parameter (synchronization).  

 

We investigated the dynamics of the brain network system through a local node neural mass 

description based on the most general form of expressing both noisy asynchronous dynamics and 

oscillations, namely a normal form of a Hopf bifurcation 23-25. Previous research has shown the 

usefulness, richness and generality of this type of model for describing EEG dynamics at the local 

node level 24,25. This normal form allowed us to fit the model to neuroimaging data over time, i.e. 

not only by fitting the grand average FC but also by fitting the temporal structure of the 

fluctuations, functional connectivity dynamics  26 (FCD, Figure 1A,B). 

 

Figure 1. Methods for measuring fit between simulated and empirical data. A) The fitting of the FC 

is measured by the Pearson correlation coefficient between corresponding elements of the upper 

triangular part of the matrices. B) For comparing the FCD statistics, we collected the upper 

triangular elements of the matrices (over all participants or sessions) and compared the simulated 

and empirical distribution by means of the Kolmogorov-Smirnov distance between them. The 

Kolmogorov–Smirnov distance quantifies the maximal difference between the cumulative 

distribution functions of the two samples. C) We measure the metastability as the standard 

deviation of the Kuramoto order parameter across time. The Kuramoto order parameter measures 

the global level of synchronization of the n oscillating signals. Under complete independence, the n 
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phases are uniformly distributed and thus R is nearly zero, whereas R=1 if all phases are equal 

(full synchronization). For calculating the metastability of the empirical and simulated BOLD 

signals, we first band-pass filtered within the narrowband 0.04–0.07Hz and computed the 

instantaneous phase φk(t) of each narrowband signal k using the Hilbert transform. The Hilbert 

transform yields the associated analytical signals. The analytic signal represents a narrowband 

signal, s(t), in the time domain as a rotating vector with an instantaneous phase, φ(t), and an 

instantaneous amplitude, A(t). Bottom panel visualizes a single example scenario (of many possible 

others) where the model system’s metastability increases as a function of G. We also indicate the 

metastability measured in empirical data. 

 

We further explored if the optimal working point where FC and FCD are fitted corresponds to a 

dynamical region where the global metastability of the whole brain is maximized 6. In addition, 

motivated by recent experimental and modelling work of other labs 8,9, we investigate cortical 

heterogeneity across areas. By optimizing the spectral characteristics of each local brain node (in 

the coupled network), this allowed us discovering a dynamical core of the brain, i.e. the set of brain 

regions, which through their oscillations is driving the rest of the brain. As such this investigation 

was designed to provide an empirical, scientific footing for James’ metaphorical speculations of the 

flights and perchings of human brain dynamics, and to demonstrate the potential of sophisticated 

brain network computational modelling to provide new insights into the causal mechanisms of 

neuroimaging results.  
 

RESULTS 

The results arose from using personalized brain network computational models for the analysis of 

empirical neuroimaging data characterising the functional and structural connectivity of 24 healthy 

human participants acquired using standard MRI techniques 17 (see Methods). In particular, we were 

able to gain new insights on the emergence of transiently spatiotemporal structured networks among 

segregated brain regions by examining a whole-brain network model using a very general neural 

mass model known as the normal form of a Hopf bifurcation (also known as Landau-Stuart 

Oscillators), which is the canonical model for studying the transition from noisy to oscillatory 

dynamics 23 (Figure 3). Here, we extended previous research on local node dynamics 24,25 by 

studying the whole-brain network dynamics, i.e. by investigating how those local noisy oscillators 

interact, and how the emerging whole-brain network activity relates to fMRI resting state dynamics. 

Within this model, each node of the network is modeled by a normal Hopf bifurcation, with an 

intrinsic frequency ωi in the 0.04–0.07Hz band (i=1, …,n). The intrinsic frequencies were estimated 
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directly from the data, as given by the averaged peak frequency of the narrowband BOLD signals of 

each brain region (see Methods). The state of each node i is determined by its phase, φi(t), and the 

interaction between nodes depends both on the structural couplings and the phase difference 

between the nodes. The model has only two types of control parameters, namely: one single global 

parameter, G, that represents the global scaling of the anatomical connectivity matrix, and the 

bifurcation parameters for each node (see Figure 3 and methods for the general structure and 

strategy of the brain network model). 

 

 

Figure 2. Construction of individual brain network models. A) The brain network model was based 

on individual structural connectivity (SC) matrices from 24 participants derived from tractography 

of DTI (left) between the 68 regions of the Desikan-Kahilly parcellation (middle). The control 

parameters of the models were tuned using the grand average FC and FCD derived from fMRI 

BOLD data (right). B) For modelling local neural masses we used the normal form of a Hopf 

bifurcation, where depending on the bifurcation parameter, the local model generates a noisy 

signal (left), a mixed noisy and oscillatory signal (middle) or an oscillatory signal (right). It is at 

the border between noisy and oscillatory behaviour (middle), where the simulated signal looks like 

the empirical data, i.e. like noise with an oscillatory component around 0.05 Hz. 

ja
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Maximal metastability at the optimal working point of model 

Using the Hopf model, we were able discern the dynamical properties of the optimal working point 

of the system that is able to fit the characteristics of the empirical fMRI data. We were able to 

distinguish the origin of resting activity between the two hypothesized scenarios, namely: 1) noisy 

excursions at the edge of a critical bifurcation 19,20,27,28 or 2) metastable oscillations 16. The first 

scenario refers to the entrainment of noisy dynamics through the underlying anatomical 

connectivity matrix, i.e. inducing correlations of the local noise because of the underlying SC 

connections. The second scenario refers to the structuring of metastable cluster synchronizations of 

the underlying local oscillatory dynamics through the underlying anatomical SC connections. We 

define metastability as the standard deviation of synchrony at the network level described by order 

parameter R(t), where R(t) measures the phase uniformity and varies between 0 for a fully 

desynchronized network and 1 for a fully synchronized network (see methods and Figure 1C) 29. 

The present model is able to describe both types of dynamics, and the smooth transitions from one 

to the other, i.e. the transition from noisy to oscillatory dynamics (Figures 2). In order to 

distinguish the dynamical scenario, we investigated the capabilities of the model for fitting the 

grand average FC and also the time dependent characteristics of the RSN as reflected in the FCD in 

the different dynamical working regions (i.e. as a function of the control parameters). The grand 

average FC describes the mean spatial structure of the resting activity, whereas the FCD captures 

the statistical characteristic of the temporal structure of those spatial correlations (see Methods and 
26).  

 

Figure 3 shows that the best fit to the empirical data of Hopf model is found at the brink of the 

Hopf bifurcation. We equalized all local bifurcation parameters to a common value i.e. , in 

order to reduce the investigations to just two parameters, namely global bifurcation parameter (a) 

and global coupling strength (G). Figure 3 shows how the empirical data are fitted in the Hopf 

model for different working points. The right column of Figure 3 shows the level of fitting of the 

FC, FCD and metastability. As can be seen, the best fitting of the three measures is obtained at the 

region on the brink of the Hopf bifurcation, i.e. for bifurcation parameter a, at the edge of zero on 

the negative side, such that the oscillators remain damped still. In this region not only the 

correlation between the empirical and simulated FC is maximized, but also the statistics of the rapid 

switching between FC(t) across time (FCD) is minimized in Kolmogorov-Smirnov sense, and the 

level of metastability of the data is reproduced. The fitting of the FC was measured by the Pearson 

correlation coefficient between corresponding elements of the upper triangular part of the matrices 

ja a=
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(see Figure 1 and Methods). For comparing the FCD statistics, we collected the upper triangular 

elements of the matrices (over all participants or sessions) and compared the simulated and 

empirical distribution by means of the Kolmogorov-Smirnov distance between them (see Methods). 

 

 

Figure 3. Fitting of the empirical data by the brain network Hopf model for different working 

points. A) Level of fitting of the FC, FCD and metastability as a function of the global scaling 

parameter G for three different bifurcation parameters a=[-0.2 0 0.2], namely at the noisy 

oscillatory region, at the edge of the bifurcation and at the oscillatory regime. B) The three 

measures for assessing fitting between simulated and empirical data are shown color-coded as a 

function of bifurcation parameter a and global scaling parameter, G. The best fitting of the three 

measures is obtained for a region at the brink of the Hopf bifurcation, i.e. for bifurcation parameter 

a, at the edge of zero on the negative side. In this region not only the correlation between the 

empirical and simulated FC is maximized (upper panel), but also the statistics of the rapid 

switching between FC(t) across time (FCD) is minimized in Kolmogorov-Smirnov sense (middle 

panel), and the level of metastability of the data is perfectly reproduced (bottom panel). 

 

 

Furthermore, the results showed that only in the region at the border between noisy and oscillatory 

behaviour, is where the signals resembles the data, i.e. like noise with an oscillatory component 

around 0.05 Hz (Figure 2). The first three columns of Figure 3 show the dependence of those 

measurements as a function of the global scaling parameter G for three specific values of the 

bifurcation parameter a, namely at the noisy region, at the edge of the bifurcation and at the 
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oscillatory regime. Clearly, the best results are obtained for the second column (at the edge of the 

bifurcation). The same panel shows that the FCD is the best constraining measure. There is a broad 

range of G where the FC and the metastability is well fitted, but only a relative narrow range where 

the FCD statistics is minimal, i.e. maximally fitted. In other words, the spatiotemporal structure of 

the FC is more informative than the grand average of the FC (i.e. the “classical” RSN). This is 

important, because until now, brain network models have always been fitted with the grand average 

FC - but see also 26.  

 

We would like to remark that Figure 3 characterizes some of the bifurcation behaviour of the whole 

system. Indeed, the metastability for example serves as a network metric and characterizes the 

variability of this global synchronization as a function of those two control parameters. All three 

parameter spaces in Figure 3B, in conjunction, present a full picture of the spatiotemporal 

organization of the system. The three metrics characterize computationally the bifurcation 

properties of the full network dynamics. 

 

Perhaps most importantly, as shown in Figure 3, the brain network model shows maximal 

metastability at the optimal working point of the model (a=0 and G=2.85), where the metastability 

is reflecting the variability of the synchronization between different nodes, i.e. the fluctuations of 

the states of phase configurations as a function of time 29. Further characterisation of these results is 

shown in Figure 4 which shows the optimal working point at the edge of the Hopf bifurcation (i.e. 

bifurcation parameter a=0), the FC, FCD and FCD statistics for three levels of global coupling G 

namely low, optimal and large. For comparison, the same matrices and distributions are plotted on 

the rightmost column for the empirical data (Figure 4B). Only the FCD and its statistics (bottom 

row) are constraining enough for optimizing the working point. Please note that for low G the FCD 

statistics does not show any switching between states in the RSN and that for very large G there are 

too much switching between states.  
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Figure 4. Fitting to the grand average FC is a necessary but not sufficient condition for best 

empirical fitting. A) The figure shows the result of fitting the model to the empirical as a function of 

the global coupling parameter, G, at the optimal working point at the edge of the Hopf bifurcation 

(i.e. bifurcation parameter a=0). Three different coupling points were selected (low, optimal and 

large in the three columns) and we show the resulting FC correlation, FCD correlations and FCD 

histogram. Note that for low G the FCD statistics does not show any switching between RSN and 

that for very large G there are too much switching between states. B) For comparison, the same 

matrices and distributions are plotted for the empirical data. Note how only the FCD (row 2) and 

its statistics (row 3) are constraining enough for optimizing the working point the model to fit the 

empirical data (compare the distributions in row 3 and compare plots for FCD and FC fitting in 

row 1). 
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Dynamical core: contribution of individual brain regions to dynamics 

In order to obtain information about the dynamical characteristics of each single brain area and to 

generate a heterogeneous brain network model (i.e. with different dynamics at each node), we 

optimized each single bifurcation parameter  independently by fitting for each value of global 

coupling G the spectral characteristics of the simulated and empirical BOLD signals at each brain 

area (see Methods). The main results are plotted in Figure 5, where Figure 5a shows the evolution 

of the fitting of the FC and FCD statistics as a function of G. For large enough value of the global 

coupling a good fitting of both is obtained, i.e. large correlation between the empirical and 

simulated grand average FC and low difference in the statistics of the empirical and simulated FCD 

(Kolmogorov-Smirnov distance). Please note that Figure 5a is generated in a different way than 

Figure 4A (which uses only the optimum fit a=0 for all regions and G=2.85). Instead, in Figure 5A, 

for each G we optimize the bifurcation value, a, for each region (shown in Figure 5b). As can be 

seen at a critical value of G, the bifurcation values remain the same, only scaled. Thus the FCD fit 

in Figure 5A will asymptote as G increases. 

 

Figure 5. Spectral characteristics of the dynamical core of the human brain. To generate a 

heterogeneous brain network model (i.e. with different dynamics at each node), we optimized each 

single bifurcation parameter  independently by fitting for each value of global coupling G the 

spectral characteristics of the simulated and empirical BOLD signals at each brain area. A) The 

evolution of the fitting of the FC and FCD statistics as a function of G. For large enough value of 
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the global coupling a good fitting of both is obtained, i.e. large correlation between the empirical 

and simulated grand average FC and low difference in the statistics of the empirical and simulated 

FCD (Kolmogorov-Smirnov distance). B) The evolution of the single values of the local 

bifurcations parameters  as a function of the global coupling G. For low values of G 

homogeneous local bifurcation parameters  around zero are obtained. When the level of fitting 

improves for larger values of G a more heterogeneous distribution of  is obtained. C) The local 

bifurcation parameters for each region for the uncoupled network (i.e. G=0) and for the optimal 

coupling (G=5.4). If the network is uncoupled, each single brain area fitted the spectral 

characteristics of the empirical BOLD signals in a very homogeneous way by local bifurcations 

parameters at the edge of the local Hopf bifurcation, i.e. at zero. D) When the whole-brain network 

is coupled, we can discover the “true” intrinsic local dynamics that fits the local empirical BOLD 

characteristics and the global quantities FC, FCD and metastability.  

 

For optimizing aj values, we use a greedy optimisation strategy, where we iteratively increase or 

decrease the aj value according to the local power of the signal in a given region j. Greedy 

algorithms exploit local optima, but often approximate optimal solutions well in reasonable time 

and produce good results as shown in Figure 5. The local bifurcation parameters for each region for 

the uncoupled network (i.e. G=0) and for the optimal coupling (G=5.4) can be seen in Figure 5c. If 

the network is uncoupled, each single brain area fitted the spectral characteristics of the empirical 

BOLD signals in a very homogeneous way by local bifurcations parameters at the edge of the local 

Hopf bifurcation, i.e. at zero. When the brain network is coupled, the “true” intrinsic local dynamics 

for the profile of optimal local bifurcation parameters observed at that point that fit the local 

empirical BOLD characteristics and the global quantities FC, FCD and metastability (Figure 5d).  

 

Brain regions, for which best predictions were achieved in an oscillatory mode, i.e. with bifurcation 

parameters a > 0.1 are visualised in Figure 6. We found that the dynamical core within this 

parcellation consisted of eight lateralised brain regions: medial orbitofrontal cortex, posterior 

cingulate cortex and transverse temporal gyrus in the right hemisphere, and caudal middle frontal 

gyrus, precentral gyrus, precuneus cortex, rostral anterior cingulate cortex and transverse temporal 

gyrus in the left hemisphere. Those nodes working at the edge of the bifurcation are highlighted as a 

"dynamical core" whose perturbations can propagate in an optimal way to the rest of the network. 
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Figure 6. Dynamical core in the human brain. The figure shows the dynamical core regions on the 

edge of bifurcation (location of neural masses shown in light blue and transparent blue for the full 

region). These are the nodes with the ability to react immediately to changes in the predicted input 

and thus likely to drive the rest of the brain networks. The eight regions are clearly lateralised; and 

in the right hemisphere encompass medial orbitofrontal cortex, posterior cingulate cortex and 

transverse temporal gyrus, while in the left hemisphere include caudal middle frontal gyrus, 

precentral gyrus, precuneus cortex, rostral anterior cingulate cortex and transverse temporal 

gyrus. Interestingly, some of these regions are part of the default mode network (medial 

orbitofrontal cortex, posterior cingulate cortex and precuneus cortex) while others have been 

implicated in memory processing (parahippocampal and transverse temporal gyrus), auditory 

processing (transverse temporal gyrus), selection for action (rostral anterior cingulate cortex and 

caudal middle frontal gyrus) and motor execution (precentral gyrus).  
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DISCUSSION 

We provide mechanistic explanations of the complex spatiotemporal dynamics of brain function 

arising from James’ early speculations 1 to much more detailed scientific enquiry 2,30-32. This 

confirms that brain results from complex interactions in a system of non-linearly coupled, non-

linear oscillatory processes which display dynamical system phenomena such as multiple stable 

states, instability, state transitions and metastability, of which the latter has been proposed to form a 

core dynamical description of coordinated brain and behavioral activity 6.  

 

In the 1980s the physicist Hermann Haken suggested to mechanistically interpret brain processes of 

segregation and integration as a sequence of semistable states, so-called saddle states 33. He 

proposed to view the complex integrative and segregative tendencies as expressions of emergent 

lower-dimensional behavior of collective variables, which he termed ‘order parameters’. Scott 

Kelso popularized this concept using the term ‘metastability’ based on his brain-behaviour 

experiments and drawing inspiration from other researchers including Rodolfo Llinás and Francisco 

Varela 31,32. He generalized metastability to include the oscillatory states of brain processes found in 

between complete synchronization and independence 30,34. Later research has formalized these 

concepts more rigorously, e.g. via the heteroclinic channel 35,36 and Structured Flows on Manifolds 

(SFM) 37,38. 

 

We shed new causal light on the mechanisms underlying RSNs by extending previous research 

which has demonstrated the existence of RSNs, i.e. brain networks correlated within the grand 

average FC during resting state 21,39,40. FC has become routinely used as a biomarker in various 

clinical applications, even though its predictive value holds only for group analyses, and not 

currently for the individual 41. This problem arises most likely from the lack of taking time into 

account, i.e. the non-stationary nature of the resting state dynamics 42,43. Hansen and colleagues 

demonstrated that the grand average FC is more closely linked to the SC and linear models of FC 26. 

When non-linearities are considered in the network models, the spatiotemporally dynamic repertoire 

of the network is significantly enhanced and the resting state dynamics shows the non-stationary 

FCD, which expresses itself as the switching dynamics of the FC. While Hansen and colleagues 

proposed FCD as a novel biomarker and demonstrated that all known RSNs can be derived from the 

non-linear network dynamics of FCD, they did not fit the model to the empirical functional time 

series data. The patterns in the FCD matrix arise from what is essentially a random process and thus 

different for different measurements. This renders the fitting process for brain network models more 

complex than fitting with the grand average FC, for which a Pearson correlation across empirical 

and simulated FC matrices is sufficient.  
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We have addressed this issue through a systematic fitting approach of the random process in FCD to 

the empirical data. The conjunction of using sophisticated fitting and systematic parameter analysis 

allowed us to test the mechanistic hypotheses underlying the resting state, i.e. whether the brain at 

rest operates close to the edge of a bifurcation and/or occupies a metastable state. Both scenarios 

can be mechanistically realized by non-linearly coupling Hopf bifurcators 23. Hopf oscillators have 

been used previously in connectome-based modelling of resting state dynamics in EEG/MEG and 

fMRI 14, as well as for the modelling of the detailed temporal dynamics in EEG/MEG 24,25. The 

usage here though is different from the previous research, since the Hopf oscillators act as the 

sources of BOLD signal in the connectome based network model. Ghosh and colleagues used the 

Hopf oscillators as the sources of the electrophysiological signal and employed the Balloon 

Windkessel to derive the BOLD signal 44. Given this interpretation, they needed to include all the 

signal transmission delays. In our present approach, the oscillation frequencies are significantly 

slower and thus permit the neglect of the time delays, which simplifies the computational effort of 

the simulation and thus the computational fitting of the models against empirical data. 

 

Our key finding is the demonstration that the optimal operating regime is at the edge of the local 

Hopf bifurcation, i.e. a balance of noisy excursions in the oscillatory state. We not only were able to 

demonstrate that previous findings on the optimal operating point based on grand-average FC hold 

true if we take into account the temporal dynamics of FC, i.e. FCD. We also demonstrated that a 

better way of constraining brain network models is by not only fitting the grand average FC, but by 

also fitting the temporal structure of the fluctuations using the FCD.  

 

Another remarkable and important finding is that high metastability is only present in a narrow 

range of bifurcation parameter when a is close to the edge of the bifurcation. In other words, the 

FCD of the spontaneous resting state, in conjunction with brain network modelling provide 

evidence that the brain at rest is maximally metastable, refining and demonstrating the hypothesis of 

Tognoli and Kelso 6. Note that there is also a region for very small G and positive a (oscillatory 

regime) where a relatively good fitting is obtained. This dynamic regime was previously observed 

with a pure oscillatory Kuramoto model of the BOLD signals at the mesoscopic level 45. 

Nevertheless, the level of fitting for the FC, metastability and even FCD is not as good as the one 

obtained in the region at the edge of the Hopf bifurcation. On the other hand, besides the extreme 

sensitivity of that working point (ultra-narrow regime of optimality) which means that the result is 

not so robust, the qualitative description of the BOLD signals is not realistic in the pure oscillatory 
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regime in comparison with the noisy/oscillatory excursions evidenced in the regime of the 

bifurcation parameter a near zero. 

 

For constructing a heterogeneous brain network model with different local parameter values, we 

took into account the spectral information of the BOLD data. We addressed the question if the 

oscillations at the individual nodes play a mechanistic role for the emergence of FC/FCD. In 

particular, we identified a cortical core of eight brain regions with the optimal fit of bifurcation 

parameter a close to the edge of bifurcation. We propose to call this the dynamical cortical core of 

the brain. Interestingly, three of these regions (the medial orbitofrontal cortex, posterior cingulate 

cortex and precuneus cortex) are part of the default mode network and thus re-experience past 

events and pre-experience possible future events 46,47. In this vein other regions (parahippocampal 

and transverse temporal gyrus) have also been implicated in memory processing and may thus 

perhaps be helping integrate information over different timescales, binding fast and slow processes 

over time 2. This information is always contextual and in the noisy, unpredictable scanner it is 

perhaps not surprising that the brain is attending to the auditory signals (transverse temporal gyrus). 

As such this information processing is available for conflict monitoring and selection for action 

(rostral anterior cingulate cortex and caudal middle frontal gyrus) and motor execution (precentral 

gyrus) 48. Equally, the involvement of the cingulate cortex is interesting given that this region 

recently has been shown to be part of the common neurobiological substrate for mental illness 

across across six diverse diagnostic groups (schizophrenia, bipolar disorder, depression, addiction, 

obsessive-compulsive disorder, and anxiety) based on a meta-analysis of grey matter loss in 193 

neuroimaging studies of 15892 individuals 49. This reinforces the potential use of brain network 

computational modelling for understanding the underlying mechanisms of neuropsychiatric 

disorders 50. The right-handed quality of Figure 6, presumably arises from the specifics of the data 

used to fit the model and we will be exploring its biological validity in subsequent studies with 

larger group sizes. 

 

Although the bifurcation parameter does not have a direct biophysical correlate, it seems to be 

involved in mediating biophysical effects. We therefore propose that in future both the global 

bifurcation parameter as well as the individual parameters could potentially serve as biomarkers for 

disease. It will be important to explore the changes for different brain diseases, e.g. within a 

standardized framework for connectome-based modelling such as The Virtual Brain (TVB) 51,52, 

and applications such as fitting of TVB’s dynamic regime and TVB Processing pipeline 17.  
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Overall, we have shown that neuroimaging data can be causally analysed by constructing a 

relatively simple brain network computational model using a Hopf bifurcation. This model was 

shown to be maximally metastable at the optimal fitting with the spatiotemporal dynamics of 

spontaneous brain activity. This dynamical regime may well allow for the optimal integration and 

segregation of fast and slow information over different time-scales, the “flights” and “perchings” of 

the stream of consciousness alluded to by William James over 100 years ago. 

 

METHODS 

Ethics Statement 

All participants of this study gave written informed consent before the study, which was performed 

in compliance with the relevant laws and institutional guidelines and approved by the ethics 

committee of the Charité University Berlin.  

 

Empirical MRI Data Collection  

Structural data from DTI and resting-state BOLD signal time series were acquired for 24 healthy 

participants (age between 18 and 33 years old, mean 25.7, 12 females, 12 males). A full description 

of the generation of SC and FC matrices from those data can be found in 17. Here, we provide a 

quick overview of the employed methods. Empirical data were acquired at Berlin Center for 

Advanced Imaging, Charité University Medicine, Berlin, Germany. For simultaneous EEG-fMRI 
53,54, participants were asked to stay awake and keep their eyes closed. No other controlled task had 

to be performed. In addition, a localizer, DTI and T2 sequence were recorded for each participant. 

MRI was performed using a 3 Tesla Siemens Trim Trio MR scanner and a 12-channel Siemens 

head coil. Specifications for the employed sequences can be found in 54. For each participant 

anatomical T1-weighted scans were acquired. DTI and GRE field mapping were measured directly 

after the anatomical scans. Next, functional MRI (BOLD-sensitive, T2*-weighted, TR 1940 ms, TE 

30 ms, FA 78°, 32 transversal slices (3 mm), voxel size 3 x 3 x 3 mm, FoV 192 mm, 64 matrix) was 

recorded simultaneously to the EEG recording.   

 

MRI Data Analysis 

Processing steps executed by the public Berlin automatized processing pipeline 54 comprised 1) 

preprocessing of T1-weighted scans, cortical reconstruction, tessellation and parcellation, 2) 

transformation of anatomical masks to diffusion space, 3) processing of diffusion data, 4) 

transformation of anatomical masks to fMRI space, 5) Processing of fMRI data  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted December 21, 2016. ; https://doi.org/10.1101/065284doi: bioRxiv preprint 

https://doi.org/10.1101/065284
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
17 

Anatomical MRI Data Analysis 

The highly resolved anatomical images are important to create a precise parcellation of the brain. 

For each of those parcellated units, empirical functional data time series are spatially aggregated. 

T1-weighted images are pre-processed using FREESURFER including probabilistic atlas based 

cortical parcellation, here using Desikan-Killany (DK) atlas 55 (Table 1). This generates volumes 

that contain all cortical and subcortical parcellated regions with corresponding region labels used 

for fiber-tracking and BOLD time-series extraction.  

 

 

Table 1. Anatomical labels for the 68 regions in the Desikan-Kahilly parcellation. The two region 

numbers per line refer to right and left hemisphere respectively.  

 

Region number Region name 

1;35 Superior temporal sulcus, banks of 

2;36 Caudal anterior cingulate cortex 

3;37 Caudal middle frontal gyrus 

4;38 Cuneus cortex 

5;39 Entorhinal cortex 

6;40 Fusiform gyrus 

7;41 Inferior parietal cortex 

8;42 Inferior temporal gyrus 

9;43 Isthmus of cingulate cortex 

10;44 Lateral occipital cortex 

11;45 Lateral orbitofrontal cortex 

12;46 Lingual gyrus 

13;47 Medial orbitofrontal cortex 

14;48 Middle temporal gyrus 

15;49 Parahippocampal gyrus 

16;50 Paracentral lobule 

17;51 Pars opercularis 

18;52 Pars orbitalis 

19;53 Pars triangularis 

20;54 Pericalcarine cortex 

21;55 Postcentral gyrus 

22;56 Posterior cingulate cortex 
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23;57 Precentral gyrus 

24;58 Precuneus cortex 

25;59 Rostral anterior cingulate cortex 

26;60 Rostral middle frontal gyrus 

Superior frontal gyrus 
27;61 Superior frontal cortex 

28;62 Superior parietal cortex 

29;63 Superior temporal gyrus 

30;64 Supramarginal gyrus 

31;65 Frontal pole 

32;66 Temporal pole 

33;67 Transverse temporal cortex (primary auditory cortex) 

34;68 Insula 
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Empirical DTI Data Analysis and Tractography 

Tractography requires binary WM masks to restrict tracking to WM voxels. Upon extraction of 

gradient vectors and values (known as b-table) using MRTrix, dw-MRI data are pre-processed using 

FREESURFER. Besides motion correction and eddy current correction (ECC) the b0 image is 

linearly registered (6 degrees of freedom, DOF) to the participant's anatomical T1-weighted image 

and the resulting registration rule is stored for later use. We transformed the high-resolution mask 

volumes from the anatomical space to the participant's diffusion space, to further use it for fiber 

tracking. The cortical and subcortical parcellations are resampled into diffusion space, one time 

using the original 1 mm isotropic voxel size (for subvoxel seeding) and one time matching that of 

our dw-MRI data, i.e., 2.3 mm isotropic voxel size. During MRTrix pre-processing diffusion tensor 

images that store the diffusion tensor (i.e., the diffusion ellipsoid) for each voxel location are 

computed. Based on that, a fractional anisotropy (FA) and an eigenvector map are computed and 

masked by the binary WM mask created previously. For subsequent fiber-response function 

estimation, a mask containing high-anisotropy voxels is computed. Fibre orientation distributions 

are estimated using constrained spherical deconvolution 56 based on a response function estimated 

in voxels that are expected to contain a single, coherently-oriented fibre bundle (commands 

dwi2response tournier and dwi2fod; see MRTrix Documentation: 

http://mrtrix.readthedocs.io/en/latest/). In order to resolve crossing pathways, fibers are prolonged 

by employing a probabilistic tracking approach as provided by MRTrix. In order to exclude 

spurious tracks, three types of masks are used to constrain tracking: seeding-, target- and stop-

masks. In order to restrict track-prolongation to WM, a WM-mask that contains the union of GM-

WM-interface and cortical WM voxels is defined as a global stop mask for tracking. To address 

several confounds in the estimation of connection strengths (information transmission capacities), a 

new seeding and fiber aggregation strategy was employed developed for this pipeline and described 

in detail in 17. In combination with a new aggregation scheme, it is based on an appropriate 

selection of seed voxels and controlling for the number of generated tracks in each seed voxel. 

Instead of using every WM voxel, tracks are initiated from GM-WM-interface voxels and a fixed 

number of tracks are generated for each seed-voxel. Since a GM parcellation-based aggregation is 

performed, each seed-mask is associated with a ROI of the GM atlas. Along with seeding-masks 

complementary target-masks are defined specifying valid terminal regions for each track that was 

initiated in a specific seed voxel. The capacity measures that we derive between each pair of regions 

are intended to estimate the strength of the influence that one region exerts over another, i.e., their 

SC. In order to improve existing methods for capacities estimation the approach makes use of 
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several assumptions with regard to seed-ROI selection, tracking and aggregation of generated tracks 
17. Upon tractography the pipeline aggregates generated tracks to structural connectome matrices. 

The weighted distinct connection count used here divides each distinct connection by the number of 

distinct connections leaving the seed-voxel (yielding asymmetric capacities matrix). Values have 

been normalized by the total surface area of the GWI of a participant.  

 

Empirical fMRI Data Analysis 

In order to generate the FC matrices, FSL’s FEAT pipeline is used to perform the following 

operations: deleting the first five images of the series to exclude possible saturation effects in the 

images, high-pass temporal filtering (100 seconds high-pass filter), motion correction, brain 

extraction and a 6 DOF linear registration to the MNI space. Functional data is registered to the 

participant's T1-weighted images and parcellated according to FREESURFER's cortical 

segmentation. By inverting the mapping rule found by registration, anatomical segmentations are 

mapped onto the functional space. Finally, average BOLD signal time series for each region are 

generated by computing the mean over all voxel time-series for each region. From the region wise 

aggregated BOLD data, FC matrices are computed within MATLAB using and Pearson's linear 

correlation coefficient as FC metrics. We did not perform global signal regression on data.  

 

Brain Network Model 

The brain network model consists of 68 coupled brain areas (nodes) derived from the parcellation 

explained above. The global dynamics of the brain network model used here results from the mutual 

interactions of local node dynamics coupled through the underlying empirical anatomical structural 

connectivity matrix  (see Figure 2). The structural matrix  denotes the density of fibres 

between cortical area i and j as extracted from the DTI based tractography (scaled to a maximum 

value of 0.2). The local dynamics of each individual node is described by the normal form of a 

supercritical Hopf bifurcation, which is able to describe the transition from asynchronous noisy 

behavior to full oscillations. Thus, in complex coordinates, each node j is described by following 

equation: 

 
!!!
!"
= 𝑧 𝑎! + 𝑖𝜔! − 𝑧!! +  𝛽𝜂!(𝑡)        (1) 

where 

           (2) 

and  is additive Gaussian noise with standard deviation β=0.02. This normal form has a 

ijC ijC

ji
j j j jz e x iyθρ= = +

( )i tη
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supercritical bifurcation at , so that for  the local dynamics has a stable fixed point at 

 (which because of the additive noise corresponds to a low activity asynchronous state) and 

for  there exists a stable limit cycle oscillation with frequency . We insert equation 

2 in equation 1 and separate real part in equation 3 and imaginary part in equation 4. 

Thus, the whole-brain dynamics is defined by following set of coupled equations: 

 

    (3) 

    (4) 

 

Please note that following the literature from physics, the equations are written in Cartesian, rather 

than polar coordinates 57-60, We couple the equations using the common difference coupling, which 

approximates the simplest (linear) part of a general coupling function. These equations are valid in 

the weakly coupled oscillator limit, in which the coupling preserves the periodic orbit of the 

uncoupled oscillators. If the linear coupling (following a Taylor expansion of the full coupling) 

does not exist, the next non-vanishing higher order term should be considered, which is a case we 

do not address here (please see Kuramoto 57 (see Eq 5.3.1) and Pikovsky, Arkady and Kurths 58 (see 

Eq. 8.12) for more detailed analytic treatments of the equations). 

 

In the latter equations, G is a global scaling factor (global conductivity parameter scaling equally all 

synaptic connections). The global scaling factor G and the bifurcation parameters  are the control 

parameters with which we study the optimal dynamical working region where the simulations 

maximally fit the empirical FC and the FCD. We model with the variables  the BOLD signal of 

each node j. The empirical BOLD signals were band-pass filtered within the narrowband 0.04–0.07 

Hz. This frequency band has been mapped to the gray matter and it has been shown to be more 

reliable and functionally relevant than other frequency bands 61-64. Within this model, the intrinsic 

frequency of each node is in the 0.04–0.07Hz band (i=1, …,n). The intrinsic frequencies were 

estimated from the data, as given by the averaged peak frequency of the narrowband BOLD signals 

of each brain region. 
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0jz =
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Grand average FC and FCD matrices 

The grand average FC is defined as the matrix of correlations of the BOLD signals between two 

brain areas over the whole time window of acquisition. In order to characterize the time dependent 

structure of the resting fluctuations, we estimate the FCD matrix 26 (see Figure 1). Each full-length 

BOLD signal of 22 min is split up into M=61 sliding windows of 60 sec, overlapping by 40 sec. For 

each sliding window, centered at time t, we calculated a separate FC matrix, FC(t). The FCD is a 

MxM symmetric matrix whose (t1, t2) entry is defined by the Pearson correlation between the upper 

triangular parts of the two matrices FC(t1) and FC(t2). Epochs of stable FC(t) configurations are 

reflected around the FCD diagonal in blocks of elevated inter-FC(t) correlations. 

 

The grand average FC and the FCD matrices were estimated for the recordings of each of the 24 

participants as well as for 24 simulations of 22 minutes of the computational model. We compared 

the FC matrices of the model (averaged Fisher's z-transformed over the 24 sessions) and the 

empirical data (averaged Fisher's z-transformed over the 24 participants), adopting as a measure of 

similarity between the two matrices the Pearson correlation coefficient between corresponding 

elements of the upper triangular part of the matrices. For comparing the FCD statistics, we collected 

the upper triangular elements of the matrices (over all participants or sessions) and generated the 

distribution of them. Then, we compared the simulated and empirical distribution by means of the 

Kolmogorov-Smirnov distance between them. The Kolmogorov–Smirnov distance quantifies the 

maximal difference between the cumulative distribution functions of the two samples. 

 

Metastability 

Here, we refer to metastability as a measure of how variable are the states of phase configurations 

as a function of time, i.e. how the synchronization between the different nodes fluctuates across 

time 29. Thus, we measure the metastability as the standard deviation of the Kuramoto order 

parameter across time. The Kuramoto order parameter is defined by following equation: 

 

𝑅(𝑡)= 𝑒!!!(!)!
!!! 𝑛      (5) 

 

where φk(t) is the instantaneous phase of each narrowband BOLD signal at node k.  The Kuramoto 

order parameter measures the global level of synchronization of the n oscillating signals. Under 

complete independence, the n phases are uniformly distributed and thus R is nearly zero, whereas 

R=1 if all phases are equal (full synchronization). Thus, for calculating the metastability of the 

empirical and simulated BOLD signals, we first band-pass filtered within the narrowband 0.04–

0.07Hz (as previously explained) and computed the instantaneous phase φk(t) of each narrowband 
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signal k using the Hilbert transform. The Hilbert transform yields the associated analytical signals. 

The analytic signal represents a narrowband signal, s(t), in the time domain as a rotating vector with 

an instantaneous phase, φ(t), and an instantaneous amplitude, A(t), i.e., 𝑠 𝑡 = 𝐴(𝑡)cos 𝜑 𝑡 . The 

phase and the amplitude are given by the argument and the modulus, respectively, of the complex 

signal z(t), given by 𝑧 𝑡 = 𝑠 𝑡 + 𝑖.H 𝑠(𝑡) , where i is the imaginary unit and H[s(t)] is the Hilbert 

transform of s(t). 

 

Local Optimization of Brain Nodes 

The local optimization of each single bifurcation parameter is based on the fitting of the spectral 

information of the empirical BOLD signals in each node. In particular, we aim to fit the proportion 

of power in the 0.04-0.07 Hz band with respect to the 0.04-0.25 Hz band (i.e. we remove the 

smallest frequencies below 0.04 Hz and consider the whole spectra until the Nyquist frequency 

which is 0.25 Hz) 45. For this, we filtered the BOLD signals in the 0.04-0.25 Hz band, and 

calculated the power spectrum  for each node j. We define the proportion, 

         (6) 

and update the local bifurcation parameters by a gradient descendent strategy, i.e.: 

 

       (7) 

until convergence. We used here . The updates of the aj values are done in each optimization 

step in parallel. 
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