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During transcription, RNA polymerase competes for space on the DNA with other
DNA binding proteins and higher order DNA structures acting as roadblocks.
Though it is known that individual polymerases often slow down when forcing
roadblocks, the effect of crowding on transcription as a whole is not clear. Based
on quantitative theoretical modeling, we show that interactions with roadblocks
induce a strong Kkinetic attraction between polymerases, causing them to self-
organize into pelotons. Peloton formation explains observed nucleosome and
polymerase density profiles close to the initiation site on highly transcribed genes,
and how these densities depend on induction levels. At termination, pelotons
translate into transcriptional bursts that dispaly the same characteristics as those
observed in vivo. Our model thus unifies common spatial and temporal
transcription patterns as arising from a non-specific interaction between
roadblocks and polymerases. The generality of our model suggests that peloton
formation might be ubiquitous in systems where molecular motors interact with
dynamic roadblocks.
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Introduction

On every scale, motility is a hallmark of life (Chowdhury et al., 2005; Hoyt et al., 1997). On the
smallest scales, directed motion through the densely packed interior of cells is crucial for biogenesis,
morphogenesis, and the delivery of vital cargo to distant parts (Howard, 2001). This motion is often
carried out by large molecular complexes, powered along tracks by internal chemical reactions:
polymerase and helicases move along DNA and RNA, ribosome along RNA, myosin along actin
filaments, and dynein and kinesin along microtubules, to name but a few. The time requirements on
these processes are in some cases so detailed that even fluctuations in activity appear molded by
natural selection (Raj and van Oudenaarden, 2008). On top of the general scarcity of free space in the
cell (Goodsell, 2009), many of the molecular machines driving translocation also have to deal with
large amounts of obstacles along their path (Finkelstein and Greene, 2013) (Figure 1 A-D). Strikingly,
over 80% of the DNA in eukaryotes is covered by nucleosomes (Lee et al,, 2007), and it is then hardly
surprising that overall transcription levels correlate negatively with nucleosome densities on genes
(Cole et al., 2014; Lee et al., 2004, 2007; Shivaswamy et al., 2008). More surprising might instead be
the fact that local polymerase and nucleosome densities correlate positively along heavily transcribed
genes lacking promotor-proximally stalled polymerases: for the first few hundred base pairs after
initiation, both the densities of nucleosomes and polymerases increase (Cole et al, 2014;
Shivaswamy et al., 2008; Weiner et al,, 2010). Though transcription lies at the heart of molecular
biology (Crick, 1970), it is still not clear how this dynamic process is shaped by the most basic,
ubiquitous, and non-specific interactions with the crowded environment of the cell.

With the aim to understand the effects of non-specific crowding interactions for transcription in
dense environments, we construct a general theoretical model that quantitatively describes
stochastic motors interacting with dynamic roadblocks. We show that roadblocks induce motors to
gradually reorganize into pelotons through a phenomenon loosely analogous to drafting in racing
sports (Trenchard, 2015). Relying on non-specific interactions alone, our model gives a parsimonious
explanation for how nucleosome and polymerase densities can be globally anti-correlated, and still
increase together along heavily transcribed genes (Cole et al., 2014). Additionally, the model offers a
kinetic explanation for the clustering of polymerases seen in Miller spreads (Albert et al., 2011;
Harper and Puvion-Dutilleul, 1979; Laird and Chooi, 1976; Mcknight and Miller, 1979). Roadblock
induced peloton formation during the elongation phase also gives rise to a so-far unrecognized type
of transcriptional bursts (Golding et al, 2005), which captures the experimentally observed
dependence of burst parameters on transcription levels in Escherichia coli (So et al, 2011).
Nucleosomes could similarly induce transcriptional bursts in eukaryotes (Kaern et al., 2005), and to
facilitate future experimental testing we give quantitative predictions of how nucleosome and
polymerase densities, as well as transcriptional burst parameters, depend on translocation rates,
gene lengths, initiation rates, and nucleosome turnover times. As our model is based on general
principles, it might also be describe motor and obstacle interactions in many other biological systems
(Figure 1 C and D).

Results

The theoretical modeling of stochastic and driven molecular traffic on one-dimensional tracks has a
long history in biology, starting almost half a century ago with the introduction of the Totally
Asymmetric Simple Exclusion Process (TASEP) (MacDonald et al.,, 1968). The TASEP is defined as
motors hopping stochastically along a one-dimensional lattice, moving only if the track just ahead is
empty. Coupling this simple bulk rule to injection and extraction of motors at the boundaries gives
rise to rich dynamical behavior, and the model has been modified and extended to describe a wide
range of physical and biological systems (Blythe and Evans, 2007; Dobrzynski and Bruggeman, 2009;
Klumpp, 2011; Klumpp and Hwa, 2008; Kunwar et al, 2004; Parmeggiani et al, 2004;
Schadschneider et al,, 2011).
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A minimal model of motors interacting with roadblocks

To capture motor and roadblock interactions, we consider a system (Figure 1 E) for which: i) motors
move stochastically in one direction along a track, ii) motors cannot overtake each other, iii)
roadblocks dynamically appear and disappear from the track, iv) roadblocks immediately ahead of a
motor impede the motion of the motor, and v) a passing motor temporarily removes a roadblock. A
range of biological systems, a few of which are illustrated in Figure 1 A-D, likely satisfy the model
criteria i)-v) under certain conditions.

The Bus-Route Model (BRM) (Loan et al., 1998) (Figure 2 A) is a simple idealized model realizing the
above criteria on a circular track and with motor and roadblock sizes equal to the motor step size.
The BRM has been solved in the mean-field limit (Loan et al., 1998), but this solution does not apply
to the physiologically more relevant situation with large motor and roadblock sizes compared to the
motor step, and motors that enter and leave the track at specific sites. As any microscopic model will
at best approximate the biological system studied, we will lose little precision by taking a heuristic
approach to understanding the dynamics. Instead, taking such an approach allows us to capture the
dominant behavior of the wide class of systems satisfying condition i)-v). To this end, let T be the
roadblock-DNA binding equilibration time, and 6, and J,, be the footprint of roadblocks and motors

respectively, both measured in units of the motor step. To build intuition for the phenomenology of
motor-roadblock-track interactions, we first investigate the dynamics in the bulk of the track, far
away from boundaries.

A hierarchy of TASEPs controls the dynamics

The roadblock occupancy varies depending on the roadblock binding dynamics and motor-roadblock
interactions. Consider the two limits of rare and ubiquitous roadblocks: in the former limit, the
dynamics should approach that of the TASEP with the motor hopping rate set by the rate of hopping
into empty sites; in the latter limit, the dynamics should approach that of a TASEP with a motor
hopping rate set by the rate of hopping into a site occupied by a roadblock. In either limit, the exact
solution of the TASEP (Derrida et al., 1993) gives a geometric distribution of gap sizes g between

adjacent motors (see Equation (7) in Materials and Methods). In Figure 2 B and C we show
kymographs and gap-size distributions generated by Monte Carlo simulations (see Materials and
Methods) of the BRM (Loan et al., 1998). As expected, ubiquitous (left panel Figure 2 B and C) or
sparse (right paned Figure 2 B and C) roadblocks result in gap-sizes distributions that are
approximately geometrical.

For intermediate roadblock densities, the situation is subtler. Motors that are slowed down by
roadblocks induce trailing traffic jams, while the gap to the motor ahead increases. With a gap
opening up ahead, the motors grow more likely to encounter roadblocks deposited in the gap, and
the jams stabilize into moving pelotons. Defining a peloton as being a group of motors with no
interspersing roadblocks, a peloton can split at any position due to the binding of a roadblock, and
the rate at which this happens should be roughly proportional to peloton size. Pelotons can also
merge, but with a rate largely independent of peloton size. In the steady state, when the merging and
splitting rates balance, we therefore expect pelotons to have a well-defined typical size. Furthermore,
the merging and subsequent splitting of pelotons can be seen as an effective steric repulsion between
pelotons, much like the interaction between motors in the original TASEP. The steady-state system
can therefore be taken to be a superposition of two steady-state TASEP models: the intra-peloton
TASEP (ipTASEP) originating from motor dynamics within pelotons, and the trans-peloton TASEP
(tpTASEP) originating in the dynamics of the pelotons themselves. This hierarchical picture is
confirmed in the middle panels of Figure 2 B and C, where we show a kymograph and a double-
geometric gap distribution (one geometric distribution for each TASEP) for intermediate roadblock
coverage in the BRM.
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Stable pelotons and a heuristic solution of the TASEP hierarchy in the bulk

Due to the finite size and equilibration time of roadblocks, there is a region without roadblocks

behind every moving motor. We will refer to this region as the roadblock shadow, and estimate its

bulk bulk

size as A=v""7 + 8, (Figure 2 A). The term v**z, with v** being the average motor velocity in

the bulk, captures the average distance traveled by a motor during the equilibration time of
roadblocks, and &, accounts for that a roadblock must first fit physically between motors before it

can bind. We define gaps between pelotons as being filled with roadblocks, and thus to typically be
larger than the roadblock shadow. Conversely, we take gaps within pelotons to be devoid of
roadblocks, and thus they are typically smaller than the roadblock shadow. We denote the effective
motor hopping rate into gaps without roadblocks as the intra-peloton hopping rate &, , and the rate

of hopping into gaps with roadblocks as the trans-peloton hopping rate k. In Materials and

bulk
m

Methods we show that knowing the density of motors along the track p,™* we can predict the

dynamics state of the system as long as (k,, /k,)" is large, which we refer to as the stable peloton

regime (SPR). The condition for the stable pelotons can intuitively be seen as combining the strength
of the interaction between motors and roadblocks (k,,/k,) and its range (A). Due to the SPR

conditions exponential dependence on the roadblock shadow size, we expect physiological systems
where the roadblock size is substantially larger then the motor step to always be in the SPR.

In Figure 3 we illustrate the relationships derived for various observables and check our arguments
against simulations of the BRM. In Figure 3 A-D we show the effect of varying the trans-peloton
hopping rates for long roadblock equilibration times. As predicted by our analytical arguments (see
Materials and Methods), up to a critical motor density p, the velocity remains approximately

constant (Figure 3 A), and the total current of motors grows linearly with the motor density (Figure
3B), while the roadblock occupancy decreases linearly with motor density (Figure 3 C). At the
critical density, and long before the track is completely covered by motors, all roadblocks are evicted.
For motor densities above the critical density, the velocity and motor current follows the relationship
for the TASEP without roadblocks (the ipTASEP) (for details see Materials and Methods) (Figure 3
A and B). In Figure 3 D we plot the typical peloton size up to the critical density, after which whole
system acts as one large roadblock-excluding peloton. In Figure 3 E-H we vary the roadblock
equilibration times. For rapid roadblock equilibration (red curves Figure 3 E-H) the roadblock
shadow is small, gaps are largely filled with roadblocks, and the system is well described by a single
TASEP with roadblocks in every gap (the tpTASEP) (dashed line in Figure 3 E). In this regime, the
total density of roadblocks decreases weakly with motor density (red curve Figure 3 G), as
roadblock shadows are small and the motor footprints are all that excludes the roadblocks. For
intermediate roadblock equilibration times (the blue curves in Figure 3E-H) the roadblock shadow
is larger, resulting in peloton formation, a velocity that is less sensitive to motor density, and a
system that is better at evicting roadblocks. The breakdown of our predictions for roadblock
densities and peloton size in the case of fast roadblock binding (red and blue curves in Figure 3 G
and H) is not surprising given that we here have small enough roadblock shadows to push the system
outside the SPR.

Motor and roadblock reorganization close to the initiation site

In transcription, initiation generally controls transcription levels (Cooper, 2000) and the state of the
system in the beginning of the gene has the potential to influence the overall transcription levels
(Jonkers and Lis, 2015). To describe this situation with our model, we consider open systems at low
enough motor densities that initiation controls the overall flux of motors on the track. We also here
consider the SPR, where pelotons are stable, and two motors that meet, practically stay together
indefinitely.

For eukaryotic transcription, the initiation site is kept free of nucleosomes when a gene is active (Lee
et al, 2007; Yuan, 2005). We also assume the initiation site in our model to be devoid of roadblocks,
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and that motors attempt to initiate with rate k.. As they initiate, some of the motors will have

roadblock just ahead of them, and some will not. Motors unhindered by roadblocks catch up with
motors slowed down by roadblocks (see schematic kymograph in Figure 4 A upper panel), and
motors collect into pelotons. As motors are absorbed into pelotons, the average velocity goes down,
and as a consequence the motor density goes up (Figure 4 A lower panel), all while simultaneously
also leaving more room available for roadblocks as roadblock shadows start to overlap. After the
initial pelotons are formed, these will continue to evolve towards the bulk peloton size through a
merging process described by diffusion-limited coagulation (Murthy and Schutz, 1998). Relaxation in
such systems slows down drastically over time (referred to as aging in the physics literature), and we
do not expect to see any appreciable evolution of the initially formed pelotons over a finite track
(such as a gene). In Materials and Methods, we show that when initiation controls the overall level
of motor activity, the average number of motors in the peloton grows over the initial portion of the
track as

G, () = (" = (¢m) =1)e™ ()

Here x" is the typical distance over which the pelotons are formed, and (np)* is the average number
of motors in a fully formed peloton. The formation of pelotons drives the evolution of motor and
nucleosome densities, as well as motor velocity, over the distance x* . In Materials and Methods we
give the general relations for (np)* and x" in terms of the microscopic model parameters, but for

simplicity we here give the physiologically relevant limit where initiation rates are low enough that
the system is initiation limited and motors do not interact much until they collect into pelotons,

- T kT
(/ky,—1/ky) In(1+1/k, %)

(n)y =l+k, &, T=Alk,=T+8,/k,, x (2)

tp?

The new timescale T=A/ ktp is the time needed for a motor to clear the roadblock shadow. As it is

often easier to experimentally measure relative changes, we report the relative change from
initiation, indicated by the superscript 'in’, to the point where pelotons are fully formed, indicated by
the superscript *,
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From this we see that both the motor and the roadblock density grow along the track, while the
motor velocity decreases. Further we see that all relative changes along the track grow in magnitude
with the initiation rate, but that the effect saturates around k,, ~1/7 for motor-density and velocity

changes, while the roadblock density saturates later, around k;, ~ ¢ /% . Interestingly, we see that

the total shift in motor density and velocity along the track is set solely by the ratio of motor stepping
rates with and without roadblocks ahead.

In Figure 4 B we illustrate how the relative change in motor density is affected by the motor
initiation rate, comparing the expressions derived in Materials and Methods to simulations of the
BRM. For slow initiation (&, 7 <1, green arrow in Figure 4 B), a roadblock typically binds between
every two initiating motors. Therefore, fully formed initial pelotons are typically of size one, giving
only a marginal motor density change along the track (Equation (3) and top density profile of
Figure 4 D). For faster initiation (k7 >1, red arrow Figure 4 B), multiple motors bind before a

roadblock rebinds to the start of the track, fully formed pelotons are larger than one, and we have a
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substantial increase in motor density as we move away from the initiation site (lower density profile
of Figure 4 D). In Figure 4 C we compare our prediction for the distance over which pelotons form,
x*' to estimates extracted by fitting an exponential relaxation to the density profiles generated by

simulations of the BRM. It is striking that our at times crude approximations still capture the
simulated data quantitatively without any adjustable parameters.

From pelotons to bursts

The peloton-forming dynamics of our model will manifest as burst of motor activity if viewed from a
specific position. In Materials and Methods we relate the bursts of motor activity in our microscopic
model to the phenomenological two-state model usually used to describe transcriptional bursts
(Figure 4 E) (Golding et al., 2005). In the two-state model, the system switches between an on-state
with production rate k_, and an off-state where nothing is produced. The off-state switches to the

on-state with rate k_, and back again with rate k_g . Though we present the full form of how the

effective burst parameters depend on microscopic parameters in Materials and Methods, we here
give the physiologically relevant limit where the motors are large compared to the motor step size,
and the initiation rate is low compared to the motor stepping rate,

Tk
k:km‘[ r 1

Ztp ktp
Co k8, "

= ——, and k=
1+k,T 0,

. (4)

=

While the apparent on rate is independent of the induction level, and the production rate in the on-
state is insensitive to the initiation rate at high induction, the off rate decreases indefinitely with the

initiation rate. It should also be noted that as long as the track is longer than x (which should be the
case for transcription), Equation (4) applies, and the burst characteristics does not depend on the
length of the track. Equation (4) gives the quantitative dependence of the effective burst parameter
on the systems microscopic properties, and is therefore well suited for testing our model against
experimental data (see Discussion).

Transcription on heavily transcribed inducible genes

Now that we understand the general effects of non-specific interactions between motors and
roadblocks, we proceed to analyze our model with microscopic parameters estimated for inducible
genes in eukaryotes. The considerations are complicated by that nucleosome assembly and
disassembly are not single step processes, as a tetramer and two dimers come together to make the
full histone octamer contained in the nucleosome core particle. In vitro studies have shown that a
single polymerase only removes the histone dimer (Angelov et al., 2006; Belotserkovskaya et al,,
2003; Kireeva et al,, 2002), while a second polymerase can dislodge the remaining hexamer (Kulaeva
et al,, 2010). These in vitro results broadly agree with the in vivo observations that the density of
histone dimers decreases strongly with transcription intensity genome wide, while an increased
exchange and depletion of all core histones is only observed on highly transcribed genes (Cole et al,,
2014; Dion et al.,, 2007; Jamai et al., 2007; Kristjuhan and Svejstrup, 2004; Lee et al., 2004; Rufiange
et al, 2007; Thiriet and Hayes, 2005). As we are only expecting pelotons to form when several
polymerases occupy the gene simultaneously, we compare our model to the experiments tracking
highly expressed genes (see Table 1). Importantly, we do not model the situation where
transcription is paused by promoter-proximally paused polymerases, but only genes where initiation
is both active and non-paused (Core et al., 2008). Being interested in highly transcribed genes, we
also assume that the roadblocks consist of histone hexamers that get dislodged by a passing
polymerase.

As the bulk dynamics will never be reached over a finite gene length (see Material and Methods),
we compare the predictions of our theory near the initiation site to simulations of the open system in
Figure 5. In our simulations we assume that the motors are only impeded at the nucleosome dyad,
since this forms the largest obstacle for RNA polymerase (RNAP) II translocation (Hodges et al,
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2009). We consider the initiation rates k;, =0.6 pol/min and k;, = 3.0 pol/min, where both rates

correspond to highly induced genes, and the highest rate is chosen to match the maximal estimate of
initiation rates on yeast genes (Pelechano et al,, 2010). It is known that histones redeposit after the
passages of RNAP on a sub minute time scale (Schwabish and Struhl, 2004), and as it takes about a
minute to clear space for a roadblock (see Table 1), this indicates that the nucleosome shadow is
dominated by the roadblock size, and we take A =4, in the analytical theory.

Note how our theory captures the dynamics quantitatively without any free parameters, and utilizing
only a small set of microscopic input parameters. As predicted by Equation (1), we see that pelotons
grow over the first few hundred base pairs after initiation (Figure 5 A and C). The peloton growth in
turn means that the density of RNAP and nucleosomes near the initiation site is lower than further
into the gene, while the velocity decreases as we move away from initiation (Figure 5 B and D). After
this point, the RNAP and nucleosome densities, as well as RNAP velocities, remain virtually constant
throughout the bulk of the gene. In Table 2 we give an overview of the predicted values of several
observables, including burst parameters.

Discussion

With the aim of describing transcription in the crowded environment of the cell, we have introduced
a general model that potentially captures a large class of systems where molecular motors interact
with dynamic roadblocks (see for example Figure 1 A-E). Based on a physical mechanism
reminiscent of drafting in racing sports, we show how the most basic and non-specific interactions
between motors and roadblocks give rise to an effective kinetic attraction between motors. This
attraction induces the motors to spontaneously reorganize into pelotons as they move into the track,
and when the motors reach the terminus, they do so in bursts.

Peloton formation has been observed in vivo

There was early evidence from Miller spreads suggesting polymerases might cluster on genes (Albert
et al, 2011; Harper and Puvion-Dutilleul, 1979; Laird and Chooi, 1976; Mcknight and Miller, 1979),
and during the review process of this manuscript there emerged direct real-time evidence of
polymerase ‘convoys’ on HIV-1 and POLR2A genes in HeLa cells (Tantale et al.,, 2016). As we predict,
the typical distance between polymerases within such a convoy is too small for a nucleosome to bind,
the distances between convoys are geometrically distributed, and the convoys include several
polymerases (see Table 2). The excellent agreement between our predictions and these
experimental observations suggests that peloton formation of polymerases through interactions with
nucleosomes could be the underlying mechanism driving the formation of the observed polymerase
‘convoys'.

Predicted density profiles agree with observations on heavily transcribed genes in yeast

Our model also gives parsimonious explanations for several recent in vivo experimental observations
pertaining to density profiles of polymerases and nucleosomes along inducible genes. For highly
transcribed genes without promotor-proximally paused polymerases, both polymerase and
nucleosome densities are depleted for the first few hundred base pairs after initiation (Cole et al,,
2014; Core et al, 2008). Though there are many specific interactions that could give rise to
nucleosome and polymerase depletion in the beginning of genes (Jonkers and Lis, 2015), the fact that
this is a general property of heavily transcribed genes (Cole et al., 2014; Dennis et al,, 2009) suggests
a non-specific mechanism. Indeed, our model accurately predicts the occurrence and extent of such
depletion without evoking any specific interactions (see Equation (2) and (3), as well as Figure 5
and Table 2). Though already correctly predicting a pausing-index (relative polymerase density
within the promotor-proximal region compared to the bulk) below one for highly transcribed genes
(Core et al,, 2008), our model could be further tested by correlating changes in the pausing-index
with changes in the microscopic parameters entering into Equation (3).
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Interestingly, a nucleosome-free region at the start of genes (Cole et al., 2014; Shivaswamy et al,,
2008; Weiner et al,, 2010) has been suggested to increase the accessibility of transcription factor
binding sites close to the initiation site, thereby increasing the potential for transcriptional regulation
(Shivaswamy et al., 2008; Weiner et al., 2010). Our model thus suggests that nucleosome depletion
could be a transcriptional epiphenomenon that has been coopted/adapted to allow for a greater
regulatory response.

The predicted increase of the polymerase density along the gene coincides with a decrease in the
elongation rate (see Figure 5 B and D). Genome wide GRO-seq experiments on active genes, on the
contrary, have shown that the elongation rate increases over the first 15 kbp (Danko et al., 2013). The
velocity increase in these GRO-seq experiments was likely caused by elongation factors, cooperation
of polymerases, and/or histone modifications (Danko et al., 2013)—mechanisms not included in this
model. Though it would be interesting to see how such mechanisms modulate the formation of
pelotons, the observed increase of the elongation rate takes place over distances much longer than
the few hundred base pairs over which pelotons form (see Table 2), and we do not expect our
quantitative results to change close to the promoter.

Characteristics of crowding induced transcriptional bursts agree with in vivo observations

Though bursts in RNA production has been observed in both prokaryotes (Chong et al., 2014; Golding
et al, 2005) and eukaryotes (Chubb et al., 2006; Raj et al., 2006), the origin is unclear, and usually
modeled phenomenologically as depending on a promoter that turns on and off (Li et al., 2011; Raj
and van Oudenaarden, 2008). Our model, on the contrary, quantitatively predicts that under
conditions of molecular crowding, transcriptions should always be expected to be bursty on heavily
transcribed genes—even if the promoter is constantly on. Several properties of the predicted bursts
agree quantitatively with experimental observations. First, the pelotons are completed over a few
hundred base pairs, which is shorter than the most genes. Therefore the predicted burst size is
independent of gene length, agreeing with observations in yeast (Zenklusen et al., 2008). Secondly,
the predicted time between production is on a sub-minute time scale (see Table 2), which falls
within the experimentally observed range (Zenklusen et al.,, 2008). It is interesting to note that multi-
scale bursting was recently reported (Tantale et al., 2016), which could very well originate in a
premotor turning on and off on long timescales, while pelotons still form during elongation, giving
rise to bursting on shorter timescales. Thirdly, our model predicts that only the apparent burst
duration should be sensitive to transcription intensity at high induction (see Equation (4)), agreeing
with the behavior reported for transcriptional bursting in Escherichia coli (E. coli) (So et al., 2011).

Though there are many DNA binding proteins in E. coli (Luijsterburg et al., 2008), another interesting
candidate for producing bursts is DNA supercoiling. Due to the helicity of DNA, transcribing
polymerases are known to induce positive supercoils ahead and negative supercoils behind (Liu and
Wang, 1987). Such supercoils slow down the RNAP (Chong et al., 2014), and will in the steady state
extend some finite distance in front and behind a polymerase. As negative supercoils spontaneously
annihilate with positive supercoils, any DNA between two close by polymerases will have a lower
supercoiling density the closer together the polymerases are (Figure 1 B). With a lower supercoiling
density ahead, a trailing polymerase will move faster than a leading polymerase, and all the
conditions for peloton formation as described by our model (Figure 1 D) are fulfilled. Our general
mechanism of burst generation is thus connected to the mechanism suggested as a source of
transcriptional bursting observed in bacteria, where a buildup of supercoils in torsional constrained
plasmids was shown to lower transcription levels until the supercoils were released (Chong et al,,
2014). Importantly though, our model does not require the DNA to be torsional constrained as the
supercoiling density around RNAP is set by the supercoils diffusivity (van Loenhout et al., 2012) and
a balance between supercoil creation and release.
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Transcriptional bursts and polymerase backtracking

To our knowledge, there are only two previous theoretical studies suggesting that bursts are created
during elongation (Dobrzynski and Bruggeman, 2009; Voliotis et al.,, 2008). In both cases, intrinsic
polymerase pausing through backtracking (Shaevitz et al, 2003) was suggested as the source.
However, backtracking is unlikely to produce bursts, as it does not induce an effective attraction
between polymerases, but rather an effective repulsion: interaction with a trailing polymerases is
known to help terminate backtracks of a leading polymerase, and so speeds it up; interaction with a
leading polymerase increases the chance of pausing in a trailing polymerase (Jin et al., 2010; Kulaeva
et al, 2010), and so slows it down. Polymerases thus dynamically repulse each other, and jams
induced by backtracks are unstable, and should typically dissolve before termination. Instead, we
have shown that the interaction with roadblocks induces a persistent effective attraction between
polymerases, resulting in a fast buildup of stable pelotons as polymerases move through the gene,
terminating in bursts.

Conclusion and outlook

Our model points to a single source for a wide range of observed phenomena, and has the potential to
reshape our understanding of how transcribing polymerases and nucleosomes organize spatially and
temporally in physiologically crowded environments. Only by first understanding this organization
will it be possible to fully understand the action of elongation factors and other important cellular
responses acting on the elongation phase of transcription. It would therefore be interesting to further
test our model against dedicated experiments. Confirmation could be sought by expanding on the
experiments reporting polymerase ‘convoys’, manipulating/screening the limited set of effective
parameters that controls the spatial and temporal evolution of the system (Equation (3) and (4)).
For example, the parameter that controls the saturation ( &, 7 ) could be manipulated by changing the

transcription initiation rate, or through histone modifications that change the nucleosome-rebinding
rate to DNA. Further, the parameter that controls the magnitude of change in both density and

velocity profiles (ktlD / kip) can be controlled by various elongation factors (Jonkers and Lis, 2015), or

histone modifications (Bintu et al., 2012) that change the nucleosomes affinity to DNA. Only through
further experiments will it be possible to determine the extent to which the non-specific interactions
we consider unify the spatiotemporal organization of nucleosomes and polymerases during
transcription.
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Materials and methods
We here give the derivations and arguments left out in the Results section. For brevity we will here

only keep the “b” of “bulk” in the subscript, for example writing VP instead of pPulk .

Heuristic solution for of the hierarchical TASEP model

The average TASEP motor velocity
For the TASEP, gap sizes g are geometrically distributed as (Derrida et al., 1993),

PTASEP(g;a):(l_a)ag’ (5)

for some constant a < 1. Unless a motor is blocked by another motor (g =0 ), it will hop forward with

rate k ,and the average velocity of motors can be calculated as

vP :kZPTASEP (g;a):ka. (6)
g=1

From this it follows thata =v" / k , and we can write
Prasip (80" 1K) =(1=v" 1 )(V" /). (7)

Intra- and trans-peloton gap sizes

The inclusion of dynamic roadblocks will split the motor dynamics into an intra-peloton and a trans-
peloton TASEP describing gap sizes below and above the roadblock shadow A. In line with our
heuristic argument, we assume there to be no roadblocks within a peloton. Apart from the leading
motor, all motors within a peloton thus attempt to hop forward with rate k;,. The pelotons

themselves are controlled by the leading motor, which faces a trans-peloton gap filled with
roadblocks and thus attempts to hop forward with rate k,. Assuming that the gap-size distribution

is geometric both below and above the roadblock shadow, we can now write our normalized
heuristic gap-size distribution for the intra- and trans-peloton regimes as

4
Pip(g;vb/kip)A(lv(bi]jjc))g(1—vb/kip)(vb/kip)g+0{(vb/kip)A} g<A
vk,
i (8)
. (vb/ktp)g b b g-A
P (g:v /ktp):m:(l—v /ktp)(v /ktp) , g>A.
v /ktp
g=A

The above equations are valid when (k,, /k,)* is large, which we refer to as the stable peloton regime

(SPR). The condition for the SPR can intuitively be seen as combining the strength of the attraction
between motors and roadblocks (&, /k,, ) and its range (A ). Due to the SPR conditions exponential

dependence on the roadblock shadow size, we expect physiological systems where the roadblock size
is substantially larger than the motor step to always be in the SPR. In this limit, we have

10
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P (gV° 1 k)= Praspp(&v" / Kyy), g <A, and  B(gv" k)= Pragep(g— A" k), g2 A (9)

With these conditional distributions, we can now calculate the average gaps sizes for both regimes

ks b hd b
b ..b __V b _ ..b _ v
(€)= gPrasep(g1v )= (€)% =D gPrasp(g— Ay Tk =A+-——, (10)
g=0

ip g=A tp -V

Defining pb as the probability of a gap in the bulk being a trans-peloton gap, we can write the

average gap between motors as (g)° =(1—pb)(g);+pb(g)tbp. Taking the average motor size into

account, the average motor density is the inverse of the typical distance between the fronts of
neighboring motors,

S S 1
o= e+, (1= )@ + p(e) +0,,

(11)

The relative fraction of trans peloton gaps

Combining the intra- and trans-peloton distributions we can write the complete gap-size distribution
of the hierarchical TASEP as

(1_pb)PTASEP(g;vb/ki ), g<A
PhTAsEp(g;Vb/kip,vb/ktp,A): p - (12)

pbPTASEP(g— ApV° )/ ktp), g2A

In steady state, the probabilistic flow from intra- to trans-peloton gaps (a peloton is split in two) and
from trans- to intra-peloton gaps (two pelotons merge) should balance. The motor ahead of a gap of
size A—1 hops with an average rate v and extends the gap to size A, inducing the mean-field

probabilistic flow vbPhTASEP(A—l;vb/kip,vb/ktp,A)zvb(l—pb)PTASEP(A—l;vb/kip). In turn, a motor
behind a gap of size A hops forward with an average rate ktp and decreases the gap to size A—1,
inducing the probabilistic flow ktpPhTASEP(A;vb/kip,vb/ktp,A)zktppbPTASEP(O;vb/ktp). In the steady

state these two flows should balance, and equating these rates gives

b
A
e (&), — Al . (13)

[(g), — Al+(g)}, (1:5)

Taken together, Equations (10), (11), and (13) relate the average density in the system to the
velocity and the microscopic model parameters. In Figure 2 C we compare the gap-size distribution
resulting from our heuristic arguments (solid lines) with ones generated through simulations of the
BRM (dots) at different motor densities. In (Supplementary file 1) we also discuss how our general
heuristic solution relates to the existing mean-field solution of the BRM (Loan et al., 1998).

Observable bulk quantities

In addition to the motor density, there are other interesting observables that can be calculated if we
know the average velocity in the bulk. Among them are the current of motors, J = p°v", and the

11
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average number of motors in a peloton, (np)b =1/ pb . Further, only gaps between pelotons are filled

with roadblocks, and then typically only beyond the roadblock shadow. If we let p;} be the

equilibrium roadblock occupancy in the absence of motor activity, we can estimate the average
roadblock occupancy as

o _ P8, Al
prb prb <g>b + 5m (14)

In Figure 3 we plot the motor velocity, the current of motors, roadblock occupancy, and the average
number of motors in a peloton as a function of the total density of motors on the track.

Asymptotic behavior in the SPR

We here show how Equations (10), (11), and (13) can be solved explicitly in terms of the motor
density rather than velocity in the limit SPR. For notational convenience we introduce the average

excess trans-peloton gap (gN):’p and the critical density p, to write Equation (13) as

A

(@np vP 1 [

b tpl”0 ~\b b

P=—g — (&),=(g), A= s Po=al | - (15)
1+(&) p, v d k,=v"" 0 (e | K,

In the SPR, the transition density p,, is very small by definition. In the limit p0<g>$p > 1, pelotons are

small and pb is close to one, and Equation (3) can be written as
1/p, =8, =g, (16)

Here we have a system controlled by the tpTASEP. In the limit po(g)t’p <1, pelotons are large, pb is

small, and Equation (11) can be written as
1/py =8, = (), +(&)y (&) + D)Py.- (17)

If the first two terms on the right hand side dominate, we have the standard ipTASEP. If the last term
dominates, we have a composite system. Taken together, there are three limits given by

(g):’p =1/p) =6, p.<p,

i 1
(&), = . PSP, <P =

1
b

(18)
popm <g>}jp + 6“‘

<g>§;z1/p:1_5m’ p1<<p:1'

In the middle regime (é):’p is large, and the average velocity (see Equation (10)) is close to ktp,

vb:ktp(l—M). (18)

Using Equations (18) and (18), all observables can be written to leading order in 1/ p,, as

12
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ki, T+,
1 ’ b b b ki —k (k o
=, <np>b: pm’ pg}; Zl—pm, p0: pk tp[ktpj (19)
popm pO prb p] tp ip

In this regime, (p, < p,, < p, ), the average bulk peloton size is large, and that is why we refer to this

k
b _ b _ b _
y = k[p’ <g>ip - kip fk[p ’ <g>lp =

as the stable peloton regime.

Initiation limited dynamics

Without roadblocks, and if the initiation rate k is limiting, the density and the distribution of

motors at the start of the lattice are the same as in the bulk (MacDonald et al,, 1968). With the
inclusion of roadblocks, the microscopic organization among motors and roadblocks can change from
the start of the lattice to the bulk. Here we assume that the density of motors is low enough, such that
once a motor is initiated it is only slowed down by other motors when it encounters a peloton. This
condition means that once the initiation site is cleared, motors step away much faster at the
beginning of the lattice than a new motor typically initiates. We will refer to this regime as the slow
initiation regime, and we detail its extent below.

The formation of pelotons

A schematic kymograph for the TASEP with roadblocks and open boundary conditions is shown in
Figure 6. At the start of the lattice, the time gaps between newly initiated motors are exponentially

distributed with average time 1/, . As the motors move into the system, those motors that

happened to have a roadblock bound ahead will start inducing peloton-forming traffic jams. For
convenience we here call these jams proto-pelotons, and they will grow until all motors between
roadblocks are absorbed into one peloton. Once all motors are collected into pelotons, we will refer
to these as the fully formed pelotons. We here set out to determine the nature of this peloton
formation, and what effects it has on both motor and roadblock density profiles.

In all the expressions below, the superscript ‘in’ refers to the first site after the initiation site for
which x=0. For a roadblock to bind to the first site after a motor just left, the motor first has to take
O, steps and then a roadblock has to bind, all before another motor initiates. Considering the
splitting probabilities for each step, we can write the probability of a roadblock binding between two
motor initiation events as

‘Srb
i 1 1
in _ i ) (2 0)
l+k T | 1+k,T
Here Tri:l‘ is the average time it takes a motor to take a step at the start of the track,

) 1— in in

oL P (21)
k. k
p tp

The definition of the slow initiation regime implies Tri;‘ < 1/k, , and Equation (20) can be simplified

as

m”in

Stk
. b
in e

= (22)
1+k 7T
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n

Equation (21) and (22) can be used to solve for p™™ explicitly in the steady state,

i k. T —k, Sk,
p'"zAlW(—‘“ 5, Ae "m‘sfb”‘m} A:[i—ijl, (23)

1+km7 ktp kip T

where W is the Lambert W function. In the limit of low initiation rates we can write

in 1
~

- 1+k T

P T=T+6,/k,. (24)

*

p
typical distance that the proto-peloton back end moves between two motors joining (Figure 6).
From the geometry of typical times and distances sketched in the kymograph of Figure 6, we can

Next we calculate the typical time it takes for n, motors to aggregate into a peloton. Let Ax be the

write
Atk = Ax
A k
1
(gn=—o0 = Ax= _5.. 25
b kip =Ky ki, T A & (2°)
(11K, +8,, 1k + Aty = Ax+8, + ()i

where A is given in Equation (23). In the last step above, we used the fact that we are considering

the slow initiation regime, k, < kip,ktp. Proto-pelotons grow as more and more motor catch up, and

again ignoring correlations, the final size n; of a proto peloton is geometrically distributed as

Pn))=p"(1-p")" " = (n)=1/p" (26)

Here the first factor in the probability function accounts for the probability of having a roadblock in a
gap, and the following factors accounts for the probability of having no roadblocks in the preceding

n; —1 gaps. The probability that a proto-peloton is still growing at position X, or equivalently the

probability that n; >x/ Ax, is then given by

in in n—1 inyx/Ax
P (0= > pa-pm T =1-p™T (27)
np*>x/Ax

Letting (np(x)) be the size of the average proto-peloton at a distance x from the initiation site, we
can now write down the discrete evolution equation (np(x+Ax)) = (np(x))+1‘ P o » With (np(O)) =1,

giving

row ’

x/Ax . )
(= X (1= p™)"+ (O = Gy =[ ) =1 ], x" =—Aw /1n(1- p™). (28)

n=1

Though strictly only true for x in multiples of Ax, we take the above equation to be valid for any
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position x 20.

The macroscopic effects of peloton formation

We now turn to calculate how the gradual growth of the proto pelotons impacts the motor density
and velocity. The motor number density p_(x) at any position x is defined as the fraction of time
that a site is occupied by (say) the front of a motor. The proto-peloton size at position x tells us that
the fraction (np(x))pin motors take an average time l/ktp to step, while the rest take l/kip, giving the

average stepping time

_ (my@)p" 1= (0pp"

ktp kip

, 7, (0)=1" (29)

7, (%)

The total time T between the seeding of two pelotons (Figure 6) averages over peloton sizes to
<T>=<np>(1/kin+5mr;§). (30)
The fraction of time that the track is occupied by motors at position x is then

T )
(T 1/ ky +68,70

P (X) =pp+ (P —pr e (36)

where the p:n denotes the motor density where the proto pelotons have fully formed. The average

motor hopping rate can similarly be written as
_ _in _ in ¥ in_ g* —x/x"
k. (x)=p (np(x))ktp +(1-p (np(x)))kip =k +(k" -k )e . (31)

Though true for the TASEP, that here the average motor hopping rate (Equation (31)) is typically

not the same as the average velocity v(x)= Tr_nl (x) in our system. With the velocity defined this way,

it satisfies the standard relation J = p_ (x)v(x) where J = (np)* /{T) is the flux of motors.

In Figure 6 we indicate the times and positions where there typically are roadblocks in pink. Moving
away from the initiation site, the fraction of time a site is occupied by roadblocks grows because
motors that have not yet caught up with a proto peloton move faster than the proto pelotons
themselves. The moving front of equilibrating roadblocks (intersection of white and pink region in
Figure 6) is typically offset with respect to the last motor of the peloton by a distance J,, (see
dashed square in Figure 6). Taking the offset d,, into account, Equation (27) implies that a fraction
Pgrow (x+6,) of the proto pelotons is still evolving when the front of equilibrating roadblocks is at
position x. The increase of the average time a site at position x (see Figure 6) is occupied by a
roadblock then grows with distance as

by (e A0 = 1 () (1 Ky =1/ Ky JAXB (e 8), 1, (0) =1/ k. (32)

grow

This expression can be summed in the same manner as we previously summed to solve for (np(x)) in

Equation (28), yielding
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1 (= 1k =1/ ke Jae™ (¢ - 1)(1 —e )+ 1k, . (33)

The total fraction of time a site is covered by roadblocks is now

eq L (X) _
b <T>

P(¥)=p P = (P = Pr)e™™ . (34)

Relative changes are often easier to measure experimentally than absolute changes, therefore we
here also give the relative changes in velocity and density at the beginning, and compared to well
after the pelotons are formed

P, —po in ko | v =y iny| Kip
Pm Pm _ (- -—® | - - (- o,
: 1-p" P m 1-p")

: k
P 1p v tp P

— ! . (35)
p" Ax+0, 8, /x°

To have an appreciable motor density and velocity evolution, we need only the typical peloton to
have a size of a few motors. In the limit of low initiation rates, the above can be written as

pm_pm _ kin 1_& Tyt — kin~ E_l prb_p;{)1 — kinf . (35)

p:n 1+kin’L~' kip v* 1+k 7| k p:b eb‘rb/x +k T

Bursts from terminating pelotons

The peloton-forming dynamics of our model will manifest as burst of motor activity if viewed from a
specific position (for example the transcription-termination site). Using the average velocity of the
system, we can translate the average gap-sizes to average time gaps between motors arrivals

_ <g>ip +6m _ <g>1p +6m
= T = .

. ., T,
R v P v

(36)

Letting k, be the rate of reaction when the process is in the on state, k be the rate at which the
system transitions to the off state, and k_, be the rate at which the system transitions back to the on
state, we can relate our first-principles model to the phenomenological two-state model traditionally
used to describe transcriptional bursts (Figure 4 E) (Thattai and Oudenaarden, 2001). As both
models generate double exponentials, we relate them to each other by equating the time constant
and the corresponding relative probabilistic weight. Since we are interested in describing
transcriptional bursts, we here consider the limit where the two-state model gives clearly separated
bursts, ko, <kgtk,. In this limit we have, to leading order in &, ,

k

1 1 k
off off
= 7 =—— and 1_=—|1+2|. 37
pk+ktr Pk +k tpk[ kJ (37)

off off tr on

The relations in Equation (37) can be inverted to give

1- 1
ko=—L, k=L, and k,=—— (38)

0]

T, 7, (I-p),
For the bulk we can in principle calculate the corresponding two-state model using Equation (10),
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though this state is likely never reached. The physiologically more interesting situation is just after
the initial pelotons have fully formed. The relative probability of a gap being between pelotons is
then (see Equation (24))

in _ 1
l+k T

pP=p (39)

Once the initial pelotons have formed beyond x , we know that the average velocity is ktp, and we
have
ke x 1 )

= T. = +- (40)
ki =k, Yok -k Ok

(&)=

The trans-peloton gaps can be written as (see Figure 6)

ip~in k. k

in tp

<T>=Tfp+rfp(<np>*—l) = 1, =(T)-1.k f:[i+5—m

N—

+ 11 k T (41)
k. k —k_ |™
Combining Equations (38)-(41) we have

kT 1 1 1 1+k 7T 1
ktr = lﬂT ~ % koff = ~ % and kon = TT * (41)
I+k,T T, I+k, T, k,T 7

t

S]

In the main text we are interested in the case where motors are large and the initiation rate is low
compared to motor stepping rates. In this limit we have

kT k, 1 &k 1 1
k,=—2 -2 k_ = 2 and k =— = —. 42
CCl+kE8, " 14k, T, "oa, kT 0, T (42)
1+k,7 k,

Here the approximate relation should be valid in the case of transcription through nucleosomes as
here the roadblock are substantially larger than the motors, and 7 is consequently substantially

larger than 6, / kyy -

The bulk state is never reached

With the parameter values in Table 1, the bulk state is given by

5-10%
(2, =04, (g, = o W=3/s, (n)"=5-10%p,,. (43)

From the above it is clear that the average steady-state peloton size (rzp)b is in general enormous

throughout the experimentally accessible range, and that the true bulk-dynamics will never be
reached over a finite gene. Judging by the size of bulk pelotons, polymerases that meet along the gene
stay together until termination—invariably producing bursts of RNA production.
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Monte Carlo Simulations

We validate our heuristic arguments using a random-sequential-update Monte Carlo scheme with
fixed time step dt to simulate our model. During a Monte Carlo step on a lattice of size L+1 there
are L+1 possible events: all the motors on the lattice can make a step forward, bound roadblocks can
unbind, roadblocks in solution can bind to an empty lattice site, and a motor can bind at the start of
the lattice. The time step is chosen small enough that the probability of any event occurring with rate

k in a time dt can be approximated as kdf. In our simulation kip is the fastest rate, and we choose

kipdtz 0.1. We verified that our results are robust towards changes in df. Without roadblocks, the

time to equilibration scales with the system size as ¥ 19, With roadblocks, the time to equilibration
is expected to be larger due to the slow peloton dynamics.

For the simulations with periodic boundary conditions we waited I*/d iterations for the system to

reach steady state and let simulations run a total amount of 1012 / dt iterations, and checked that the
peloton size did not change for longer equilibration times. The velocities presented in Figure 3 and 5
are calculated by averaging over the instantaneous hopping rates of the motors.
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Figures

Figure 1: Examples of systems described by our model. A) RNAP interacting with nucleosomes or
other DNA binding proteins (the example explicitly considered in this paper). B) RNAP interacting
with supercoils. The buildup of positive supercoils ahead of a polymerase (Liu and Wang, 1987) can
substantially slow down the motion of a polymerase (Chong et al,, 2014). For a polymerase following
closely behind another polymerase this effect does not occur, as negative supercoils generated
behind the leading polymerase cancel the positive supercoils generated by the trailing polymerase.
C) Ribosomes interacting with secondary RNA structures that act as dynamic roadblocks (Von Heijne
et al, 1977; Mao et al,, 2014). D) Kinesin transporting cargo along microtubules through the visco-
elastic cellular interior of the cell (here presented as red dots). As a cargo passes, the surrounding
material is pushed out of the way, and relaxes back over a finite timescale. The finite relaxation time
could allow closely trailing cargos to move with less resistance, generating a dynamic attraction. E)
Schematic illustration of model features i)-v) (see text) for motors (ovals) interacting with dynamic
roadblocks (octagons) along a one-dimensional track.
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Figure 2: The hierarchy of TASEPs and its limiting behaviors. A) Schematic illustration of the
rules of the BRM. Microscopic rates are indicated, as well are the roadblock-DNA binding
equilibration time 7, the roadblock shadow A , instances of the peloton size n, , and the gap size for

both trans- and intra-peloton gaps, g;, and g, respectively. B) Kymographs generated through

Monte-Carlo simulations of the BRM for systems (supplementary file Figure2-sourcedatal) with
low roadblock density (left), intermediate roadblock density (middle), and high roadblock densities
(right) for &,z =10. Motors are shown in black, roadblocks in pink and the roadblock shadow is

visible as a roadblock depleted region (white) behind the motors. C) The gap-size distributions
(green dots) corresponding to B) (supplementary file Figure2-sourcedata2), together with our
analytical results (black lines). The left and right panel show a dominating single exponential (note
the log-scales on the y-axes), which corresponds to a single TASEP, while the gap size distribution in
the middle panel shows two exponentials, which suggests that the system can be described as a
hierarchical combination of two TASEPs.
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Figure 3: General model captures bulk dynamics of the BRM. Solid lines are analytical
predictions and symbols are results from Monte Carlo simulations (supplementary file Figure3-
sourcedatal). Within the rows, each color represents the same parameter values, while green
represents the same parameter values across all panels. A-D) Systems in to the SPR: the parameter

values are k,;7=20 for all curves, with k, /k, =08 (red), k,/k,=0.5 (blue), and k,, /k, =0.2
(green). The dashed line in A) is the velocity relation for the ipTASEP. E-H) Sweep from stable to non-
stable pelotons: the parameter values are k, /k;, =0.2 for all curves, and k;,7 =20 (green), k;,7 =10
(blue), k;,7 =2 (red). The dashed line in E) is the velocity relation for the tpTASEP. In A) and E) we

show the velocity, in B) and F) the motor current, in C) and G) the roadblock occupancy and in D) and
H) the peloton size, all as a function of motor density. In the SPR, it only makes sense to talk about

bulk

pelotons when there are roadblocks in the system (p,, <p,), and we only show the burst size as a

function of motor activity for these densities. For small enough roadblock shadows (red and blue line
in Figure E-H) our description breaks down as the system falls outside the SPR.
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Figure 4: Open boundary conditions in the SPR. A) A schematic kymograph showing motors
(black lines) initially not interacting with each other, until they reach the growing peloton. Motors
initiate from the left and then travel into the system, moving through roadblock depleted regions
(white) and roadblock filled regions (pink). If a roadblock is deposited between two motor initiation
events, the last motor propagates with rate k,, and otherwise with rate k;,. After a typical distance
p
B) The dots are values for the relative change in motor density from the start of the lattice to the
point where all the initial pelotons have formed, obtained by fitting an exponential distribution to the

x,a peloton of size n, is formed. Below the kymograph we sketch the corresponding motor density.

peloton forming region (estimated as the first 4x" lattice points) of simulated data (supplementary
file Figure4-sourcedatal). The line represents our theoretical predictions and the green and red

arrows indicate the initiation rates used for Figure D. C) The distance x~ over which pelotons form
as a function of the roadblock equilibration time for &, = 0.1k, - The dots are values for x~ obtained

by fitting an exponential distribution to the peloton forming region (estimated as the first 4 x" lattice
points) of simulated data (supplementary file Figure4-sourcedatal), while the line represents our

—1 -1
theoretical predictions. D) Motor density profiles for (fkip) =0.05,and k, = 0.01kip < (fkip) in the

top panel, and £, :O.IkilD >(fkip) for the lower panel. Blue dots are the result of Monte Carlo

simulations and black lines are our analytical predictions. Note, there are no free parameters in any
of the analytical predictions in B)-D). E) The phenomenological two-state model normally used to
describe bursty transcription. In Equation (4) we report the parameters that would result from
fitting the bursts generated by our model to the two-state model .

26


https://doi.org/10.1101/065268
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/065268; this version posted August 18, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

A 1
©
[0}
£
|_
1000 =
1 2000 1 2000
Position (bp) Position (bp)
B D

W—

prb (10°3/bp) v (bp/s) Pm (103/bp)
{01
prb (107%/bp) v (bp/s) Pm (103/bp)
\ Erm | }

0 0
5 3 goooe000el
lpoeoooosdoe
0 0
1 2000 1 2000
Position (bp) Position (bp)

Figure 5: Predictions for RNAP II transcription on inducible genes in eukaryotes. The
parameter values used are shown in Table 1. A) Kymograph for relatively moderate initiation rates.
An RNAP II evicts a nucleosome when it passes its center (the dyads, indicated by yellow lines).
RNAP II, shown in black, enter the gene and form pelotons over a distance of a few hundred base
pairs. B) The RNAP II density, RNAP II velocity, and nucleosome density corresponding to the
kymograph in A). Simulations (supplementary files Figure5-sourcedatal and Figure5-
sourcedata2) where averaged over the size of a nucleosome and are shown as black dots and our
analytical predictions as red lines. The velocity in the simulations was determined by dividing the
motor flux by the average motor density. C) Kymograph for relatively high initiation rates, resulting
in larger pelotons as compared to A). D) The RNAP II density, RNAP II velocity, and nucleosome
density corresponding to the kymograph in B). Comparing B) and D), we see that larger pelotons give
a visibly stronger density and velocity evolution.
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Time

Position x

Figure 6: A schematic kymograph of the system with open boundary conditions. Motors (grey)
initiate on the left side of the lattice, with an initiation site free of roadblocks. As motors travel into
the system, their speed depends on if there is a roadblock (pink) ahead of them. With a roadblock
ahead, the motor speed is ktp, while without roadblock ahead it is kip. The typical time that a

roadblock at position x is bound before being evicted by the next peloton is given by ¢, (x). The

right figure is a magnification of the region defining Ax, which is the typical distance a motor travels
to catch up with the proto peloton since the last motor caught up
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Tables
Table 1: Parameter values as estimated from the literature and implemented in the simulations.
Microscopic parameter Value Citation
RNAP Il footprint (6,,) 35 bp (Greive and Hippel, 2005)
Nucleosome (147bp) + linker DNA (20 | 167 bp (Brogaard et al, 2012; Luger et al,
bp)= (5., 1997)
Elongation rate on bare DNA (including | 10 bp/s (Bintu et al., 2012; Darzacq et al., 2007)
pausing) (&, )
Elongation rate through nucleosome | 3 bp/s (Bintu et al., 2012)
(ky)
Initiation rate on typical and highly | 0.6-3/min | (Pelechano et al., 2010)
transcribed genes (&, )
Roadblock equilibration time (7 ) = | =0 (Mazurkiewicz et al, 2006; Schwabish

tetramer binding time

and Struhl, 2004; Worcel et al., 1978)
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Table 2: Calculated observables for the physiological parameters in Table 1

kin 0.6 pol/min 3.0 pol/min
in 5.5bp/s 8.1bp/s

J 0.6 pol/min 2.3 pol/min

Pri: 0.002 pol/bp | 0.006 pol/bp

(np)* 1.6 pol 3.8 pol

p;n 0.003 pol/bp | 0.013 pol/bp

x 420 bp 280 bp

ko, 1.1/min 1.1/min

ki 1.8/min 3.8/min

kgt 3.3/min 1.4/min
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