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Abstract

Microbes growing in animal host environments face fluctuations that have elements of both randomness and predictability. In the
mammalian gut, fluctuations in nutrient levels and other physiological parameters are structured by the animal host’s behavior, diet, health
and microbiota composition. Microbial cells that are able to anticipate these fluctuations by exploiting this structure would likely gain a
fitness advantage, by adapting their internal state in advance. We propose that the problem of adaptive growth in these structured changing
environments can be viewed as probabilistic inference. We analyze environments that are “meta-changing”: where there are changes in
the way the environment fluctuates, governed by a mechanism unobservable to cells. We develop a dynamic Bayesian model of these
environments and show that a real-time inference algorithm (particle filtering) for this model can be used as a microbial growth strategy
implementable in molecular circuits. The growth strategy suggested by our model outperforms heuristic strategies, and points to a class
of algorithms that could support real-time probabilistic inference in natural or synthetic cellular circuits.
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Introduction

Outside the laboratory, microbes are faced with rich and
changing environments. To improve their chances of sur-
vival, single microbial cells must adapt to fluctuations in nu-
trients and other environmental conditions. The mammalian
gut, home to prokaryotic and eukaryotic microbes [1,2], is a
striking example of a changing environment with elements
of both randomness and order. Nutrients and metabolites
may fluctuate stochastically in the gut, but these changes
are structured by the host’s physiology, diet and behavior
[3,4,5]. Cells that exploit this noisy structure and anticipate
changes in their environment would likely gain a fitness ad-
vantage.

It remains unclear what the information processing ca-
pabilities of microbial populations are in such changing en-
vironments. To what extent are cells able to learn from their
environment’s history and use this information to predict fu-
ture changes? How sophisticated are the resulting computa-
tions, and in what environments will they lead to increased
fitness? Insight into these questions would shed light on the
type of environments cells were selected for and may guide
the search for molecular mechanisms that implement adap-
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tive computation. This direction could also inform how mi-
crobes become pathogenic. The yeast C. albicans, for ex-
ample, can turn from a harmless human gut commensal to
a pathogen depending on the host environment and its nu-
trient composition [6,7,8]. A better understanding of how
microbes like C. albicans perceive and adapt to their envi-
ronment may suggest ways of manipulating the environment
to control pathogenic growth.

Progress on these questions requires analysis at mul-
tiple levels of abstraction, as outlined by David Marr [9]
for information-processing in the nervous system. First, the
computational task solved by cells has to specified. For mi-
crobial adaptation, this would mean characterizing the space
of possible changing environments and identifying the cellu-
lar strategies that would result in optimal growth in each en-
vironment. Second, the algorithms and representations that
cells need to execute the growth strategy would have to be
described. Finally, at the implementation level, we have to
give an account of how molecular interactions give rise to
the algorithm and the necessary representations. A complete
account of microbial adaptation would ultimately integrate
the three levels.

There has been much work on understanding the
molecular and genetic determinants of microbial growth in
changing environments (e.g., using experimental evolution
[10,11]), but less on defining the abstract computational
problem that microbes face when adapting to such envi-
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ronments. In this work, we focus on the computational and
algorithmic aspects of adaptive growth in changing environ-
ments. We computationally characterize a set of structured
dynamic environments, where fluctuations are driven by an
unobservable mechanism (“meta-changing” environments),
and derive an adaptive strategy for optimal growth in these
environments. Our focus is on changing nutrient environ-
ments, since nutrient metabolism can serve as a model for
microbial information-processing more broadly.

Nutrient metabolism as a system for studying microbial
information-processing

A natural context in which to study the microbial re-
sponse to changing environments is metabolic adaptation to
nutrients. Because of its strong effect on growth, the way
cells adapt to nutrients is a highly selectable trait, either ge-
netically in long-term changing environments (as shown by
experimental evolution studies [12,13]) or epigenetically in
environments that change on shorter time scales [14,15].

While the control of nutrient and carbon source
metabolism has been studied extensively in yeast and other
microbes [16], there is generally no simple mapping be-
tween the environment’s nutrient composition and microbial
cell state (such as the choice of which metabolic pathway
to upregulate, or the rate at which to grow). The elabo-
rate molecular machinery for nutrient sensing and uptake
suggests that the mapping may be quite complex.

Some of the complexity arises from the fact that mi-
crobes prefer to consume some nutrients over others, and
that distinct nutrients require different and sometimes mutu-
ally exclusive pathways to be expressed. Glucose is gener-
ally the preferred sugar and its presence inhibits the expres-
sion of pathways required to metabolize alternative sugars
like galactose [17]. In yeast, distinct glucose transporters
are upregulated depending on glucose levels in the environ-
ment, which are sensed by dedicated glucose sensors Snf3
and Rgt2 [18,19,20]. Additionally, many promoters in di-
verse yeast species were shown to be responsive to the pres-
ence of different carbon sources in the environment [21].
It has also recently been shown that in environments con-
taining multiple nutrients, cells might be sensitive to com-
plex functions of nutrient levels. Yeast cells decide to turn
on the machinery necessary to metabolize galactose (GAL
pathway) based on the ratio of glucose to galactose levels
in their environment [22].

In addition to molecular complexity of nutrient signal-
ing, there are also memory effects at play in the nutrient re-
sponse. For example, prior exposure to galactose in yeast al-
ters the rate at which the GAL pathway will be induced upon
subsequent galactose exposures [14], and a similar memory
phenotype has also been observed for lactose in glucose-
lactose switching environments in bacteria [23]. The envi-
ronment’s nutrient history can also affect single-cell varia-
tion in gene expression. Biggar and Crabtree showed that
depending on whether previously grown in glucose or raf-
finose, populations can exhibit single-cell variation in GAL
pathway levels when switched to an environment containing
a mixture of glucose and galactose [24]. Other lines of the-

oretical and experimental work showed that single-cell vari-
ation can be a form of “bet-hedging” that leads to increased
fitness under certain conditions [25,26].

Taken together, the intricate molecular machinery un-
derlying nutrient signaling, the effects of nutrient memory,
and single-cell variability in response to fluctuations suggest
that microbes process information about their environment
[27], and take into account both the environment’s history
and their internal cell state in making a decision.

Changing discrete environments and inference-based adap-
tation

To ask how the environment’s history influences mi-
crobial decision-making, a number of theoretical and exper-
imental studies have used changing discrete environments
[25,23,14]. A discrete environment is shown in Figure
1A (top), where there are two alternating nutrients. Al-
though natural environments are far more complex, discrete
switches have been experimentally useful for uncovering
mechanisms of nutrient memory [23,14]. Also, in interact-
ing with a host environment, microbes may sense some
fluctuations as effectively discrete. For example, en route
from the external environment to the gastrointestinal tract,
microbes experience sharp shifts in temperature (Figure
1A). Once in the gastrointestinal tract, microbes can face
distinct pH regimes, ranging from acidic environment of the
stomach (pH 1.5-5) to the intestinal duodendum (pH 5-7),
jejunum (pH 7-9) and ileum (pH 7-8) to the colon (pH 5-7)
[1]—these fluctuations are shown schematically in Figure
1A. The gut lumen also contains an oxygen gradient [28],
and experimentally induced oxygenation or oxygenation as
part of medical procedures (such as ileostomies) result in
sharp shifts in oxygen levels that reversibly alter microbiota
composition [29,28]. Thus, both discrete and continuous
features contribute to the gut environment, and discrete
environments are a useful approximation for studying the
response to environmental change.

In early theoretical work on changing environments
[30], Richard Levins argued that the statistical relations
between signals in the fluctuating environment are central
to adaptation. While distinct cell populations or strains may
have different costs associated with each environmental
state—e.g., distinct yeast strains exhibit different “prepara-
tion times” when switched from a glucose to a galactose
environment [31]—the statistical properties of the environ-
ment remain informative for adaptation regardless of these
costs.

Here, we develop a computational framework for char-
acterizing the statistical structure of changing discrete en-
vironments and the adaptive strategies that support optimal
growth in these environments. We focus on environments
that are characterized by a blend of randomness and order,
of the sort one would expect in rich natural environments
like the gut or other microbial ecosystems. We propose that
adaptation to changing environments can be framed as in-
ference under uncertainty [32]. Although we illustrate our
results in terms of glucose-galactose adaptation in yeast, our
framework applies broadly to microbial adaptation in other
types of fluctuating environments.
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Fig. 1. Discrete changing environments and cellular adaptation
to change as inference. (A) Examples of discrete changing envi-
ronments (time in arbitrary units). Top plot indicates sharp fluc-
tuations in two nutrients. Remaining plots show changes thought
to be experienced by microbes when interacting with host gut,
which include changes in temperature (25°C in external environ-
ment, 27°C on human skin, 37°C in gut), pH and oxygen levels
(see main text). (B) Schematic of interaction between cell and
changing environment in our framework. Cells sense dynamic en-
vironment over time, make inferences about the future state of the
environment and use these predictions to take action (e.g., upreg-
ulate genes required to metabolize a nutrient).

Results

Growth advantage of using the environment’s probabilistic
structure

We first asked whether an adaptive strategy, which ex-
ploits the probabilistic structure of the environment, would
pay off in terms of growth compared with a non-adaptive
strategy. We considered a class of Markov nutrient envi-
ronments that fluctuate between two nutrients, glucose and
galactose, where nutrient changes follow a Markov model.
The probabilistic structure of these environments is deter-
mined by two parameters: the probability of transitioning
from glucose to glucose (0gju—clu) and the probability of
transitioning from galactose to glucose (6gai—gu), as shown
in Figure 1A. (Equivalently, the model can be parameterized

by 06lu—cal and Ogai—ciu, since Ogy—scal = 1 — Ocu—Glu-)
Intuitively, the higher g, ), and the lower 0y — gy, the

more likely we are to encounter glucose in the environment.
Different settings of the transition probabilities can produce
qualitatively different environments (Figure 2A). We also
assume that one nutrient (in this case, glucose) confers a
higher growth rate than alternative nutrients, which is typi-
cally the case.

In our framework, the behavior of a cell population is
determined by a policy: a mapping from the environment’s
past state to a future action. We compared the performance
of two policies in Markov environments: a posterior pre-
dictive policy, in which cells tune to the most probable nu-
trient (based on 6gj,—, gy and 8ga—ciu), and a non-adaptive
strategy in which cells are constitutively tuned to the pre-
ferred nutrient, glucose. The quantity of interest in the poste-
rior predictive policy is the posterior predictive distribution,
which is the probability of a nutrient at the next time step
given the previously observed nutrients: P(Cyy1 | Co.t),
where Cy; 1 denotes the nutrient at time ¢ 4+ 1 and Cy.; de-
notes the environment’s nutrient history up until ¢. The pos-
terior predictive policy chooses the nutrient that maximizes
this probability (see Methods for details).

To compare the fitness difference between these poli-
cies, we simulated population growth with each policy us-
ing a highly simplified growth model, similar to one used in
[25]. In this model, we assume that cells respond to changes
in the environment with a delay, or “lag”. Cells tune to a
nutrient at time ¢ and incur a change in growth rate as a con-
sequence of this decision at a later time ¢ 4+ k, where k is
the lag parameter (we assume here that £ = 1). For growth
kinetics, we assume that: (1) cells grow exponentially when
their nutrient state matches the environment’s state, (2) there
is no switching cost for cells between nutrient states, and
(3) when cells are “mismatched” to their environment—i.e.,
tuned to a nutrient that is not present—their growth rate is
zero (this assumption is supported by the observation that
cells lacking Gal4, a transcription factor required to activate
the GAL pathway, cannot grow in galactose alone [22]).
Altogether, our growth assumptions represent extreme con-
ditions, but they serve as a useful starting point for seeing
when an adaptive strategy is beneficial to population growth.

Given these growth assumptions, we plotted for each
Markov environment the ratio of expected growth rate us-
ing the posterior predictive policy to the expected growth
rate under the glucose-only policy in Figure 2B (the detailed
calculation of these ratios is described in Methods.) To con-
strain our choice of growth rates, we analyzed growth mea-
surements of 61 yeast strains cultured with different sug-
ars as primary carbon sources from [31] (see Methods for
details). As expected, median growth rate in glucose was
higher than in other sugars (Figure S1A). Across strains,
growth rate in glucose was on average ~1.5 fold higher than
in galactose and in some strains over 3-fold higher (Figure
S1B).

We find that in environments where glucose yields a
significantly larger (~2-4 fold) growth rate than galactose,
the posterior predictive policy outperforms the glucose-only
policy only in specific regimes of the space of possible
Markov environments (red regions in Figure 2B). For a wide
range of environments, the non-adaptive policy is equal to
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or better than the adaptive policy. As expected, when the dif-
ference in growth rate between glucose and galactose gets
smaller (Figure 2B, left to right), the payoff from using the
posterior predictive policy is greater. However, as our analy-
sis of growth rates in yeast strains showed, glucose typically
confers a substantially higher growth rate than galactose.

This idealized calculation shows the importance of the
probabilistic structure of the environment in assessing where
an adaptive strategy would pay off. This suggests that in or-
der to highlight the advantage of adaptive strategies, specific
types of environmental fluctuations will have to be used.

Adapting to meta-changing environments with real-time in-
ference

Our analysis of Markov nutrient environments above
doesn’t capture several key aspects of adaptive growth in
changing environments. First, our environment’s changes
had a simple “flat” structure describable by only two param-
eters, whereas natural environment may be generated by far
more complex underlying mechanisms. Second, our com-
parison of the adaptive and glucose-only strategies assumed
that the transition probabilities governing the environment,
OGlu—clu and Oga1— G, are known and can be used by cells.
In reality, if this information can be used by cells, it has to
be learned from the environment and cannot be assumed as
given. Third, such information has to be learned in real-time
as cells must respond to the environment while it is chang-
ing. We now address each of these aspects in turn.

Changes in complex environments may be governed
by dynamic processes that are unobservable to cells. Some
environments may oscillate between noisy regimes, where
the nutrient switches are less predictable, and stable regimes
where the nutrient switches are either rare or more pre-
dictable. Such environments can be thought of as “meta-
changing” in the sense that there’s a change in the way
they fluctuate: the probability of being a specific state of
the environment (e.g., where a nutrient is available) changes
through time, depending on an unobserved condition, such
as whether we’re in a noisy or stable regime. The transition
from noisy to stable regimes might itself be governed by
another time-varying mechanism. As an intuitive example
of meta-changing environments, consider the eating routine
of animals like us. During feeding, bursts of nutrients that
are otherwise scarce may become available in the gut. The
fluctuations in nutrient levels within a feeding period will
depend on what and how much is being consumed. The sep-
aration between meals is also subject to randomness, but
can still be predictable, depending on how consistent we are
in our eating schedule. This high-level structure can be ex-
ploited by adaptive systems to anticipate future changes and
to separate noisy fluctuations in nutrients from signals of
feeding periods.

To understand the adaptive strategies that may be used
for effective growth in such environments, we developed a
dynamic Bayesian model of meta-changing environments.
In our model, we assume a fixed number of hidden “switch
states” that correspond to regimes in the environment, and
these states are used to generate the fluctuations in nutri-
ents (Figure 3A—see Methods for full model description.)

The switch states and their dynamics are not observable, and
therefore have to be learned from the environment. To do
this, our model has a prior distribution over the dynamics of
the unobservable switch states and the nutrient transitions
in the environment (Methods). Through experience with the
environment, these priors are updated using Bayesian infer-
ence to learn the dynamics that drive nutrient fluctuations.
Formally, the goal is to compute the posterior predictive dis-
tribution over nutrients, P(Cy11 | Co.¢), which depends on
the nutrient history Cj.; and on the hidden switch state Sy 1:

P(Ci1 | Coit) = D P(Crar | Ci, Se1 = ))P(Ses1 | Coxe)
St
M

For an inference-based strategy to be biologically plau-
sible, it has to be carried out in real-time since cells respond
to the environment while it is changing. To compute the pos-
terior predictive distribution (Eq. 1) in real-time, we use a
particle filtering algorithm [33] (described in detail in Algo-
rithm S1 and Methods). Rather than naively “memorizing”
the environment’s history, in particle filtering a representa-
tion of the posterior distribution is continuously updated as
the environment changes (Methods). The uncertainty of the
distribution is represented by a set of “particles” (which can
be thought of as samples from a distribution). Each particle
corresponds to a configuration of the hidden states of our
system. For our model, each particle p is a set {s,S,C},
where s corresponds to the value of the hidden switch state,
S is a transition matrix that tracks the frequencies of transi-
tions between switch states and C is a transition matrix that
tracks the frequency of transitions between nutrients (Meth-
ods).

The particle filtering algorithm can be understood by
analogy to evolution through mutation and selection. Ini-
tially, all particles are weighted equally. Before the envi-
ronment changes, particles are probabilistically assigned to
new configuration based on our model of the environment
(“mutation” step). When a new state of the environment is
observed, the particles are re-weighted by their fit to this ob-
servation and probabilistically resampled using the updated
weights (“selection” step). This process repeats as the envi-
ronment continues to change. Particles that represent more
probable states of the environment will get “selected” for
through time, while the “mutation” and resampling steps en-
sure that diversity is brought into the particle population. As
each particle p goes through this process, the hidden state
and nutrient state configurations in its trajectory are counted
by updating the transition matrices S and C. Since the parti-
cles are propagated through this process in parallel, particle
filtering takes what naively would be a serial computation
(requiring the complete nutrient history) and converts it to a
parallel one that can be performed in real-time. This prop-
erty may make particle filtering amenable to implementation
by molecular circuits, as discussed later.

Signatures of Bayesian adaptation in meta-changing envi-
ronments

Our model makes a number of predictions about the
dynamics of adaptation by systems that represent hidden
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Fig. 2. Fitness benefit of exploiting the probabilistic structure of Markov nutrient environments. (A) Discrete Markov nutrient
environments, characterized by two parameters: the transition probability from a glucose state back to glucose state (fgju—ciu) and from
galactose state to glucose state (6gai—ciu). Environment assumed to switch from fixed levels of glucose to galactose, visualized as rectangles
(collapsing the y-axis from nutrient environment such as one shown in Figure 1A). (B) Comparison of expected growth rates using the
posterior predictive compared with the glucose-only strategy. Heat maps show fold-change in expected growth using posterior predictive
strategy relative to glucose-only expected growth rate, as a function of the transition probabilities (Ogju— iy and Oca—ci) that parametrize
the environment (see Methods for detailed calculation). From left to right, increasing galactose growth rate (uca) with fixed glucose

growth rate (giu)-

environmental states. In Figure 3B, a meta-changing envi-
ronment is shown that switches between two regimes: one
with periodic switches between glucose and galactose, and
another where glucose is constant. The posterior predictive
probability of glucose in the next time step, P(Cy11 | Ct),
as it gets updated by real-time inference, is plotted along the
environment (Figure 3, top).

The change in the posterior predictive distribution has
a number of characteristic features. Starting with a uniform
probability over the nutrients, the posterior predictive dis-
tribution slowly changes to “learn” the first periodic regime
of the environment (Figure 3B, red line). When the environ-
ment shifts to the constant regime (at ¢t = 20, Figure 3B),
the posterior distribution also updates slowly to reflect this.
However, when the environment shifts again to the periodic
regime (at ¢ = 40), the posterior predictive distribution up-
dates faster to reflect the periodicity. Similarly, when the en-
vironment shifts to the constant region for the second time
(at t = 60), the posterior predictive distribution changes
even more quickly, since the hidden switch state where the
environment is periodic has been seen before. More gener-
ally, our model predicts that the more familiar stretches of
the environment will be adapted to more quickly. By con-

trast, a Markov model with a “flat” structure that only tracks
transition probabilities between glucose and galactose does
not show this behavior (Figure 3B, dotted line). This is one
of several subtle predictions about the dynamics of adapta-
tion one would expect from an inference-based strategy that
uses a representation of hidden environmental states.

Posterior predictive adaptation confers growth advantage in
meta-changing environments

We next asked how beneficial the adaptive patterns that
result from representing hidden environmental states (of the
sort shown in Figure 3) would be for growth. We compared
the inference-based growth policy to other policies in meta-
changing environments. We considered meta-changing en-
vironments that fluctuate between two hidden states: one
where there is periodic switching between glucose and galac-
tose, and another where glucose is constant in the envi-
ronment (Figure 4A). Each hidden state corresponds to a
Markov environment (parameterized by a pair of transition
probabilities, as described earlier). The switching dynamics
between the hidden states are controlled by two transition
probabilities, which we labelled p; and ps in Figure 4A. We
compared the population sizes obtained by using the pos-
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for detailed graphical model. (B) Posterior predictive probability, obtained by particle filtering, of glucose using the full model (red), and
using a Markov model with “flat” structure and no hidden states (dotted black line). In the first transition from the periodic to constant
glucose environment, the posterior predictive probability in the full model updates more slowly compared to the second transition from

periodic to constant environment.

terior predictive policy to that obtained by plastic, random
and glucose-only policies. In the “plastic” policy (described
in [25]), cells tune to the environmental condition that they
experienced last, whereas in the random policy the decision
is made uniformly at random. We found that across different
settings of p; and ps, the posterior predictive policy gener-
ally results in substantially larger population sizes compared
with other policies (Figure 4B).

A bet-hedging growth policy based on real-time inference

While all the policies we have considered so far act
at the population-level, bet-hedging has been proposed as
an adaptive strategy in fluctuating environments [26]. With
bet-hedging, different fractions of the population are tuned
to different environment conditions, and these cellular states
can be inherited through several generations through epige-
netic mechanisms [26]. Previously, a bet-hedging policy was
shown in simulation to give increased fitness when the bet-
hedging proportions matched the frequencies of the environ-
ment’s fluctuations [25] (in that study, bet-hedging was re-
ferred to as “carry-over”). However, as we discussed above,
there is no way for a population of cells to know these
probabilities in advance. Our real-time inference scheme
lends itself to a bet-hedging policy where the fraction of
cells devoted to an environmental state is determined by
the posterior predictive probability of this state, which is
learned in real-time. Using a growth fitness simulation in

the same meta-changing environments, we found that a bet-
hedging posterior predictive policy performs similarly to its
population-level counterpart and outperforms a random bet-
hedging policy (Figure S3). Real-time probabilistic infer-
ence therefore gives us a principled approach for adaptively
setting bet-hedging proportions.

Adapting to multi-nutrient meta-changing environments

In natural nutrient environments, unlike in most labo-
ratory conditions, multiple nutrients that can be metabolized
by cells may be available. We next asked how distinct growth
strategies would do in such multi-nutrient environments.

We analyzed Markov environments with three
nutrients—glucose, galactose and maltose—that many yeast
strains can grow on as primary carbon sources (as shown
in Figure S1). Three qualitatively distinct environments
generated by varying the transition probabilities that con-
trol these environments are shown in Figure 5A. The first
environment has “persistent” stretches of each of the nutri-
ents, the second is a mixture of periodic glucose-galactose
switches and persistent maltose states, and the third is
one where the presence of glucose signals an upcoming
stretch of galactose, while galactose signals an upcoming
persistent maltose stretch (Figure 5). Even with only three
nutrients, qualitatively rich environments such as these can
be constructed.

For fitness comparisons of growth policies, we consid-
ered meta-changing environments that switch between the
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Fig. 4. Fitness of growth policies in meta-changing environ-
ments. (A) Meta-changing environment with two hidden states:
a periodic environment and a constant environment. The hidden
state transitions are parameterized by the probability of transi-

tioning from the periodic environment to itself, p1, and from the
constant to the periodic environment, p2. (B) Population sizes ob- 20—
tained by growth using different policies in meta-changing envi-
ronments (mean population size from 20 simulations plotted with
bootstrap confidence intervals as shaded regions). Four environ-

ments shown, each parameterized by different settings of pi, p2 10 - 10 -
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Fig. 5. Fitness of growth policies in multi-nutrient meta-chang-
ing environments. (A) Three multi-nutrient Markov environments
where glucose, galactose and maltose fluctuate. Transition proba-
bility matrices shown as heat maps (left) along with the environ-

second and third multi-nutrient environments shown in Fig-
ure SA. These switches, as in previous meta-changing en-
vironments, are governed by two transition probabilities, p;

and p 2 (Flgur.e ,SB’ tOP) - 1Us Str&,ughtf_orward .to apply the ments they produce starting with glucose as initial state (right). (B)
posterior predictive policy to multi-nutrient environments by Top: a meta-changing multi-nutrient environment that switches be-
running real-time inference using a version of our Bayesian tween the second and third Markov environments shown in panel
model that assumes three rather than two nutrient states. We A. Bottom: population sizes obtained using different policies in
compared the growth performance of this posterior predic- meta-changing environment shown in top, shown for four differ-
tive policy to that of the plastic, random and glucose-only ent settings of p1,p2. Growth rate settings used: pgu was twice
policies for different settings of p; and po (Figure 5B). In all pal and fical = pimal. Mean population size from 20 simulations

cases, the posterior predictive policy produced larger popu- plotted with bootstrap confidence intervals (shaded regions).

lation sizes than other policies.
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Fig. 6. Molecular circuit implementation of a nutrient transi-
tion counter. (A) Network of chemical reactions for implementing
nutrient transition counter. & denotes null species in degradation
reactions. Reaction equations represented by the network are listed
in Table S1. (B) Simulation of circuit component concentrations
(middle, bottom) given the input doses of glucose and galactose
(top). (Concentrations are in A.U.)

Molecular circuit design for inference-based adaptation

Our results suggest that cell populations that use a prob-
abilistic inference-based growth strategy can achieve greater
fitness, but it’s not clear how such a strategy can be realized
in molecular circuits. We next asked if the particle filtering
algorithm can guide the design of molecular circuits that
implement the posterior predictive strategy.

In order to implement the posterior predictive strategy,
we need a way to encode the inference algorithm’s represen-
tation of the environment in molecules. Our particle filtering
algorithm uses a minimal representation of (Markovian) en-

vironments that a circuit that performs inference in real-time
would have to track. This representation consists of the hid-
den switch state s, and a pair of transition matrices S and C
that track hidden state and nutrient state transitions, respec-
tively (as described above and in Methods). When the envi-
ronment changes, these representations are updated. At the
molecular level, binary state such as the hidden switch state
s can be represented easily using phosphorylation, protein
dimerization or other known molecular switches. The more
challenging part of implementing inference is keeping track
of the environment’s changes. As the environment changes,
our inference algorithm tracks the number of times the envi-
ronment transitioned from one nutrient state to another, ef-
fectively keeping a counter. Recall that the Markov environ-
ments we analyzed can be parameterized by the frequency
of transitions from glucose to galactose, and from galactose
to glucose. Therefore, our circuit would have to distinguish
glucose-to-galactose from galactose-to-glucose switches and
“count” these switches as the environment fluctuates.

We constructed a molecular circuit that implements
such a nutrient transition counter. The eight-component cir-
cuit is shown in Figure 6A and its reaction equations are
listed in Table S1 (all parameters used in reactions are given
in Methods). The circuit consists of sensors that are acti-
vated by sugars, activators that are produced downstream
of the sensors, and proteins that count glucose-to-galactose
and galactose-to-glucose transitions. In the left branch of
the circuit, glucose catalytically activates a galactose sensor
(Figure 6A). When galactose is present, the galactose sensor
reversibly forms a galactose activator (Gal_Sensor + Gal =
Gal_Activator). Similarly, in the right branch of the circuit,
galactose catalytically activates a glucose sensor, which in
the presence of glucose reversibly forms a glucose activator
(Glu_Sensor + Glu = Glu_Activator). The glucose activator
triggers the production of a glucose-to-galactose transition
counting molecule, while the galactose activator produces a
galactose-to-glucose transition counting molecule. The tran-
sition counting molecules are assumed to have a very slow
degradation rate, and this rate determines the stability of the
counter’s “memory”.

We simulated the behavior of this circuit in an envi-
ronment that switches between glucose and galactose (Fig-
ure 6B, top). The glucose sensor is active during galac-
tose pulses and the galactose sensor is active during glu-
cose pulses. When the environment first switches from glu-
cose to galactose (at ¢ = 50, Figure 6B), the galactose
activator is formed and triggers a spike in the glucose-to-
galactose counter (Figure 6B, bottom). When the environ-
ment switches from galactose to glucose, the galactose-to-
glucose counter spikes (at ¢ = 100). The counter molecules
are highly stable, so their level forms the “memory” of these
two transitions. When the environment switches from glu-
cose to galactose for the second time (at ¢ = 150), the
glucose-to-galactose counter spikes again to a level roughly
twice that of the galactose-to-glucose counter, while the
galactose-to-glucose counter is unaffected. After all nutri-
ent switches, the circuit retains that 2 glucose-to-galactose
and 1 galactose-to-glucose transitions have been observed.
This information can be used downstream to implement an
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inference-based adaptive strategy, like the posterior predic-
tive strategy.

A key feature of this circuit architecture is that sen-
sors associated with one nutrient (e.g., glucose) get activated
by other nutrients (such as galactose). This “crosstalk™ be-
tween the two arms of the pathway enables the environmen-
tal change tracking that is needed for inference. While a true
digital counter is unbounded, this molecular counter’s dy-
namic range and reliability is limited by the degradation rates
and dynamic ranges of the molecular components involved
(such as the sensors and counting molecules in Figure 6A).

This gives a proof of concept design of the core ma-
chinery needed for real-time inference in our probabilistic
model, but a full implementation would require integration
with the basal glucose/galactose signaling network and care-
ful analysis of the circuit’s robustness and precision.

Discussion

Fluctuations in complex environments can be driven by
mechanisms that cells cannot sense directly. Growth strate-
gies that represent these hidden environmental features and
use inference to predict future changes give cells a fitness
advantage. An important future direction would be to test if
signatures of adaptation by inference (such as those in Fig-
ure 3B) can be observed experimentally in glucose-galactose
switching with yeast [14] or glucose-lactose switching with
bacteria [23].

Although we assumed in our fitness simulations that
the goal is to maximize population-level fitness, other
goals—like minimizing the probability of population ex-
tinction [35]—can be more relevant in some environments,
especially for small population sizes, and these should be
investigated further. Another limitation of our analysis is
the assumption that environmental fluctuations follow a
Markov process; an assumption violated by many natural
time-varying processes. However, dynamic Bayesian mod-
els similar to the one presented here have been extended to
handle non-Markov environments [36]. It will be fruitful
to experiment with these models and compare their as-
sumptions to the statistical properties of natural microbial
environments.

Another future challenge is to link the continuous fea-
tures of the environment (which can be clearly sensed by
microbes) to more abstract discrete structure like that of
meta-changing environments. Elegant work by Sivak and
Thomson derived optimal enzyme induction kinetics for the
noisy statistics of an environment with continuously vary-
ing nutrients [37]. This suggests that in an ideal adaptive
system, principles of optimal inference are at work at mul-
tiple layers—from the abstract computational problem of
anticipating the next nutrient to the quantitative decision of
how much of the relevant enzymes to induce. More work is
needed to link abstract computations to these lower mecha-
nistic levels.

To represent the structure of meta-changing environ-
ments, our model posited a finite number of hidden states
that drive nutrient fluctuations. The number of hidden states
was fixed in advance, but nonparametric dynamic Bayesian

models offer a principled alternative [38,39]. In these mod-
els, the number of hidden states is learned from observation.
Recent work in computational linguistics [40] proposed a
particle inference algorithm for a nonparametric dynamic
Bayesian model of word segmentation, a task that, like nutri-
ent adaptation, has to be performed in real-time. It would be
interesting to investigate whether molecular kinetics can im-
plement such nonparametric Bayesian inference procedures.

While we have focused on glucose-galactose environ-
ments, our framework generally applies to environments that
change too quickly for mutation and natural selection to
take hold. This is distinct from cases where natural selection
(e.g., through experimental evolution, as in [12,13]) rewires
circuits genetically to better respond to the predictable struc-
ture of the environment.

It remains open how inference-based adaptive strate-
gies that apply on short timescales can be implemented at the
molecular level, either in natural or engineered cellular cir-
cuits. The molecular mechanisms needed to implement these
strategies are likely to be epigenetic, based in chromatin
[14] or stable protein inheritance [15]. Recent work argued
compellingly for developing methods that “compile” ab-
stract computational problems, like probabilistic inference,
to molecular descriptions that are physically implementable
[41]. In this work, a scheme was proposed for solving exact
inference for probabilistic graphical models using chemi-
cal reaction networks, with DNA strand displacement as the
physical instantiation [41]. This choice of substrate is im-
plausible as a mechanism for cellular computation, however
(and striving for exact as opposed to approximate inference
may be too restrictive for many computational problems).

In a different approach, an intracellular kinetic scheme
that implements a real-time probabilistic decision procedure
for a simple continuously changing environment was pro-
posed [42]. An open challenge is to extend these schemes to
handle structured environments, such as the meta-changing
environments we have considered, and to define the molec-
ular components would be needed to build these circuits in
vivo. We have outlined an implementation of one critical
part of such a circuit, but more work is needed to understand
the precision and reliability of such circuits in the presence
of gene expression variability and cell division.

Real-time inference algorithms, such as particle filter-
ing, have the potential to guide the construction of synthetic
cellular circuits that adapt to rich changing environments.
Since particle filtering algorithms rely on noise, these pro-
cedures point to areas where biochemical noise (in gene ex-
pression or protein interactions) would not only be tolerated,
but would be required for inference to work. These algo-
rithmic constraints may inform the design of synthetic cir-
cuits that implement probabilistic computation out of noisy
molecular parts.

Methods
Growth rate measurements

Growth rates for 61 yeast strains were taken from
[31]—cultures were prepared as described therein. Briefly,
OD600 growth measurements were log-transformed, fit by
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splines and the region with maximal derivative in the spline
fit (“exponential phase”) was used to calculate the growth
rate (defined as doublings per hour). Each strain was mea-
sured in duplicate and the average growth rate was used in
Figure S1.

Optimal policies in Markov environments with two nutrients

In Figure 2, the ratio of the expected growth rate ob-
tained by following a posterior predictive policy (where the
most probable nutrient under the posterior is chosen in the
next step) to expected growth rate using a glucose-only pol-
icy is shown. Below, we describe in detail how this ratio was
calculated.

To compare the growth rate differences between a
glucose-only policy and the posterior predictive policy in
two-nutrient Markov environments, we assumed an ideal-
ized case where the transition probabilities g, g and
0Gal—clu are known. The “optimal” policy relative to an en-
vironment is one that maximizes the expected growth rate.
The expected growth rate is dependent on the environment’s
transition probabilities, the growth rates afforded by each
of the nutrients, as well as the cost of being “mismatched”
to the environment (i.e. being tuned to a nutrient that isn’t
present in the environment.)

In our Markov nutrient environment, there are two en-
vironment states (glucose or galactose) and two possible ac-
tions for the cell population, each associated with a different
growth rate. Notation for these states and parameters is as
follows:

e Environment states: the state of the environment at time
t is represented by the random variable C, which takes
on one of two values, ¢; = Glu, ¢y = Gal.

e Transition probabilities: Oy Giu, OGal—Glu

e Actions: tuning to glucose (ar; = Glu) or tuning to galac-
tose (ap = Gal)

e Growth rates associated with each action and environment
state:

- When tuned to glucose in glucose environment: V7,

- When tuned to glucose in galactose environment: V7o
- When tuned to galactose in galactose environment: V5o
- When tuned to galactose in glucose environment: Va3

A policy 7 is a mapping from an environment’s state to an

action. We can now write down the conditional growth rate

associated with a particular policy, R(w | Cy—1), which is
the growth rate given the previous environment state Cy_1.

Let 7; and 75 correspond to policies that constitutively tune

to glucose or galactose, respectively. The conditional growth

rates for these policies are:

R(mi | Ci—1) = Vi1P(Ct = c1 | Ci—1) + Vi2 P(Ct = c2 | Ci—1)
R(ma | Ct—1) = Voo P(Ct = c2 | Ct—1) + Va1 P(Cy = c2 | Ce—1)

For simplicity, we assume that the growth rate is zero when
the internal state of the cells is mismatched to the environ-
ment, i.e. V1o = Vo1 = 0. The conditional growth rates then
simplify to:

R(Wl | Ct—l) = V11P(Ct =C1 | Ct—l)
R(M | Ct—l) = V22P(Ct = C2 | Ct—l)

10

To get the expected growth rates, we sum over the possible
states of the environment at time ¢ — 1, yielding:

R(m1) = Vi1 [fciuciu + Ocal—ciu]

R(m3) = Vaz [(1 = feiuscin) + (1 — Ocai—ciu)|
R
The policy m; is optimal when (m1) > 1.
R(’]TQ)

Unlike the glucose-only or galactose-only policy, the
posterior predictive policy chooses the next action based
on the transition probabilities Og)y— g and Oga—giu- This
policy, denoted 73, chooses the most probable nutrient as a
function of the environment’s previous state Cy_1:

ay  if Ogu_gu > 0.5 . -
. if Cy_1 =cq,
(Cy1) g otherwise
’]Tr _ =
s\t o1 if Oguseu > 0.5 .
. if thl = C2,
a9 otherwise

We can now write the expected growth rate for the posterior
predictive policy by analyzing each of the cases involving
the transition probabilities Ogy— g and Ogai—Giu:

Vi10cu—aiu + Vi18cai—alu,
if Oclu—Gius fcal—clu > 0.5

Vi10cu—ciu + Va2 (1 — fcai—ciu),
if 0GIu—>GIu > 0.5 and 0Ga|—>G|u <05

R(az) =
Va2 (1 = Oglu—ciu) + Vi1bcal—Giu,
if Oglu—ciu < 0.5 and dgai—clu > 0.5
Vaa (1 — Ogu—ciu) + Va2 (1 — fcai—aiu),
if eGlu%Glm 9GIu~>GIu <0.5
R(r
The ratio (m3) is shown in Figure 2 as a function of
R(my)

Oclu—ciu and Oga— g for different values of each nutrient’s
growth rate (V11 and Vao).

Bayesian model for meta-changing nutrient environments

Here we describe in detail the dynamic Bayesian
model used to adapt to meta-changing environments. This
model is in the family of dynamic probabilistic models,
also called “switching state space models”, that have been
widely used in artificial intelligence, robotics and machine
learning [43,44]. In our model, there are K-many hidden
switch states that are used to produce one of J-many “out-
puts”. The outputs are the different nutrients and the switch
states correspond to stretches of the environment such as
the “periodic” or ‘“constant” regions shown in Figure 4.
Each switch state represents a transition matrix that is used
to generate nutrient fluctuations. The nutrient produced at
time ¢, Cy, depends on the value of the switch state S
and the previous nutrient C;_;. The next switch state Sy 1
is generated conditioned on S; based on a separate set of
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switch state transition probability, then Cy; 1 is generated
conditioned on S;y; so on.

The transition probabilities associated with each switch
state, as well as the probabilities of transitioning between
switch states, all have to be learned from the environment.
We therefore place a prior on these transition probabilities.

The full graphical model including hyperparameters is
shown in Figure S2 using plate notation [34]. Formally, a
switch state takes on one of 1,..., K values. The initial
switch state S; is drawn from a probability distribution on
the initial switch state values, m,,. Since 7, is unknown,
we place a prior on it using the Dirichlet distribution, i.e.:

ms, ~ Dirichlet(as, )
Sy | ms, ~ Multinomial(rs,, 1)

which means P(S; =i | 75,) = ng), where ng) denotes

the ith entry in ,,. For clarity, we will sometimes omit
the explicit value assignment for a random variable, and
write P(S; = i | 7y,) as simply P(S; | 7, ). The switch
states at later time points are generated as follows: each
switch state ¢ € {1,..., K} has an associated probability

vector 7;, whose jth entry 771-0 ) determines the probability

of transitioning from switch state ¢ to j. The probability of
the switch state at time step ¢ > 1 therefore depends on
the previous switch state’s value S;_; and the switch state
transition probabilities:

m; ~ Dirichlet ()
St | St—1 =i ~ Multinomial(m;, 1)

Similarly, each nutrient state can take one value i €
{1,...,J}, and the initial nutrient state Cy is drawn from
a probability distribution, 7., which is in turn drawn from
a Dirichlet prior distribution:

e, ~ Dirichlet(a, )
Co | mey ~ Multinomial(r,,, 1)

The probability of a nutrient output at time ¢t > 0 depends
on the previous nutrient C;_; and on the switch state at time
t. The switch state value indexes which transition proba-
bility distribution to use for the outputs, and as before, the
transition probabilities are drawn from a Dirichlet prior:

m; ; ~ Dirichlet(a.)

Ct | Ct—l = i, St = j ~ Multinomial(ﬂ';j, 1)
The posterior predictive distribution, P(Cy1, | Co.t), is the
main quantity of interest (we assume k = 1 as in all of our
simulations). This distribution can be calculated recursively
in dynamic probabilistic models, a property that we will use
in a later section to derive a real-time estimation procedure
for this distribution using particle filtering. (For an accessi-
ble introduction to recursive estimation of Bayesian poste-
riors and to particle filtering, see Ch. 1 in [44], Ch. 1-3 in
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[45] or [33]). We derive the posterior predictive distribution
in steps. First, consider the posterior distribution over the
switch state at time ¢ given the environment history up until
and including time ¢, P(S; | Co.¢), called the filtering pos-
terior distribution, which is obtained by marginalizing out
the switch state S;_1:

P(St | C();t) X

P(Cy | St) Z P(S¢ | Si—1)P(Si-1 | Co:t—1)
Si—1

Note that the third term is the filtering posterior over the
switch state at time ¢ — 1, which can be rewritten as we did
above in terms of the filtering posterior at ¢t — 2, and so on—
this shows that the posterior can be computed recursively.
The base case of the recursion is given by our prior distribu-
tions over the initial nutrient state Cy and the initial switch
state S7 (as shown in Figure S2).

The posterior predictive distribution P(Cyy1 | Co.t)
can then be written as a product that uses the filtering pos-
terior, marginalizing out the hidden switch states:

P(Ciy1 | Cot)
> P(Cisr | Coy Se41)P(Seva | So)P(St | Coun)

St St+1

The distributions that the filtering posterior decomposes to
depend on parameters that are unobserved, such as the transi-
tion probabilities. Since Dirichlet-Multinomial distributions
are conjugate [46], we can analytically integrate out these
parameters. For example, the transition probabilities 7 for
the switch states can be integrated out:

P(St+1 | St = Z) = /P(St+1 ‘ St = ’L',’]Ti)P(’]TZ' | as)dm

Similarly, the probability of observing a nutrient given the
previous nutrient and the switch state, P(Cy11 | Ct, St41),
can be computed while integrating out the nutrient transition
probabilities 7} ;:

P(Ciy1| Cy = j, Stq1 = i) =
/P(Ct+1 | Cy = j, Se1 = iﬂT;,j)P(W;,j | ac) d”é,j

We discuss in detail how to estimate these distributions from
observations in the section on particle filtering.

Values of hyperparameters: In all analyses, we set hy-
perparameters o, , (i, ¢ to all 1’s vector. The hyperpa-
rameter on switch state transitions v, was set such that self-
transitions get the hyperparameter value 2, i.e. for the ¢th
switch state, agz) = 2, and all other entries in « are set to
1. This encodes a weakly “sticky” prior that slightly favors
self-transitions for hidden switch states.
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Real-time inference using particle filtering

We estimate the posterior predictive distribution above
in real-time using particle filtering [33] as outlined in Algo-
rithm S1. Particle filtering for our model is implemented in
the particlefever library (available on Github.) We used 200
particles for all simulations with particle states initialized
from the prior.

In particle filtering, a distribution of hidden state values
(in our model, the hidden switch states) is represented using a
set of particles. Each particle corresponds to a configuration
of the hidden states (configurations are typically assigned
from the prior distribution at time ¢ = 0). The particles are
assigned weights that are initialized to be uniform. Starting
with time t, the particle filtering algorithm works by first
predicting hidden state values particles ¢t 4+ 1. When a data
point at time ¢+ 1 is observed, the weight of each particle is
updated to be proportional to the likelihood of the new data
point given the particle’s hidden state configuration. This
process is repeated as data points are observed. To prevent
particle degeneracy (a case where particles get weights that
are too low), a resampling step is used where particles are
sampled in proportion to their weights and the weights are
reset to be uniform.

‘We now turn to the representation of our state space that
is encoded in each particle. As discussed above, because of
the conjugacy of Dirichlet-Multinomial distributions [46],
we can analytically integrate out the transition probabilities
in our model. This means that these transition probabilities
don’t have to be represented in our particles. Instead, the
sufficient statistics’ for our model are simply: (1) a matrix
of counts S where S(7) is the number of times hidden
switch state ¢ transitioned to hidden state j in the particle’s
trajectory, and (2) a three-dimensional array of counts C
where C(%7-%) is the number of times nutrient i transitioned
to nutrient j under switch state k. The predict/update cycles
for a particle p = {s¢, S, C}, where s is the particle’s hidden
state at time ¢, are:

Prediction step: For each particle p we draw a new
switch state for ¢ + 1, sg11 ~ P(Siy1 | St = si). By
conjugacy, the switch state transition probabilities 75, can be
integrated out, yielding the posterior predictive distribution
for a Dirichlet-Multinomial:

Qg + S(5t75t+1)
S (s + SGek)

P(Si+1 = 8141 | St = 8¢)

which can be sampled from.

Updating step: When a nutrient c;4; is observed, we
update the weight w of our particle p = {s;41,S,C} in
proportion to P(Ci11 | Ct, Siq1):

w o< P(Ciy1 = ciq1 | Ci = ct, St+1 = 5t+1)
Integrating out the nutrient transition probabilities 7, ., 2
this also gives the Dirichlet-Multinomial posterior predictive
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distribution:

Qe+ Clet,cet1,5641)
Zk(ac + C(ct,k,stﬂ))

w X

See Algorithm S1 for remaining details.
Fitness simulations

We simulated growth with different policies using a
simple model of exponential growth. Cells were assumed
to grow exponentially with a growth rate determined by
the environment’s nutrient state. The initial population size
and the time duration of each environment simulated are as
described in figure legends. All code for fitness simulations
is available in the paper’s Github repository.

Molecular implementation of nutrient transition counter

The nutrient transition counter model was drawn in
CellDesigner (version 4.4) [47], serialized as an SBML file,
and simulated in Python using libRoadRunner. SBML file
for the model is available at 10.6084/m9.figshare.3493994.
A detailed report of the chemical reactions and rate param-
eters was generated by SBML2IATEX [48] and is available
at 10.6084/m9.figshare.3492185.
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Fig. S1. Growth rates of 61 yeast strains on different sugar carbon sources. (A) Data from [31]. Mean growth rates (doublings per
hour) from two replicate cultures grown with different sugars as primary carbon source. (B) Distribution of the ratio of glucose to galactose
growth rate for 61 yeast strains.

Algorithm S1 Particle filtering algorithm for real-time inference in meta-changing environments.

initialize N particles P := pq,...,py from prior
each p; = {s;,S;, C;}, where s; is switch state value, S; switch transition matrix, C; nutrient transition array
initialize particle weights W = wy, ..., wy uniformly, w; = %
while next nutrient C; do
for each particle p; do
weigh particle by likelihood of observed nutrient, w; :== P(C} | Cy—1, S = s;,S;, C;)
update nutrient transition array C;
resample particles by weights, P := RESAMPLE(P, W)
reset weights, w; = %
for each particle p; do
sample new particle state for ¢t + 1, p; := P(S;41 | St, S;)
update particle switch transition matrix S;
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—_ ==
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J outputs

K switch states

Fig. S2. Dynamic Bayesian model for meta-changing environments in graphical model notation. All random variables and hyperpa-
rameters shown. Model drawn using plate notation [34]. (This model is similar to an Autoregressive HMM.)

16


https://doi.org/10.1101/065243
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/065243; this version posted July 22, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

= Plastic = Random (BH)
= Posterior pred. (BH)

p;y=0.10,p, =0.10 p1=0.10,p,=0.95

40
30 — 30
20 — 20 —
10 - 10 -

T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100

p1=0.95,p,=0.10 40 p1=0.95,p,=0.95

30 - 30 -
20_% 209
10—I 10 -

1T T 1T T T 1T
0 20 40 60 80 100 0 20 40 60 80 100

Population size (log)

Time

Fig. S3. Fitness of bet-hedging policies in meta-changing environments. (A) Meta-changing environment (same as Figure 5A). (B)
Population sizes obtained using different growth policies in meta-changing environment shown in (A). “Posterior pred. (BH)” indicates a
bet-hedging policy where fraction of population tuned to a nutrient is set by the real-time estimate of the posterior predictive probability
of the nutrient, “Random (BH)“ indicates a bet-hedging policy where fraction of population tuned to nutrient is set randomly. “Plastic”
policy is a non-bet-hedging policy plotted for reference (same as Figure 5B.) Mean population size from 20 simulations plotted with
bootstrap confidence intervals (shaded regions).
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1 Glu — @

2 Gal — o

3 Glu_Sensor — &

4 Gal — Glu_Sensor + Gal

5 Gal_Sensor — @

6 Gal_Sensor + Gal = Gal_Activator

7 Glu — Gal_Sensor + Glu

8 Gal_Activator — Glu_To_Gal + Gal_Activator
9 Glu_To.Gal — @

10 Gal_-To.Glu — @

11 Glu_Activator — Gal_To_Glu + Glu_Activator
12 Glu_Sensor + Glu = Glu_Activator

Table S1
Reaction equations for molecular implementation of transition counters. Equations with all rate parameters are available in

10.6084/m9.figshare.3492185.
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