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Abstract  1 

The well-documented significance of microorganisms to the function of virtually all 2 

ecosystems has led to the assumption that more information on microbiomes will 3 

improve our ability to understand and predict system-level processes. Notably, the 4 

importance of the microbiome has become increasingly evident in the environmental 5 

sciences and in particular ecosystem ecology. However, translating the ever-6 

increasing wealth of information on environmental microbiomes to advance 7 

ecosystem science is proving exceptionally challenging. One reason for this 8 

challenge is that correlations between microbiomes and the ecosystem processes 9 

they influence are often reported without the underlying causal mechanisms. This 10 

limits the predictive power of each correlation to the time and place at which it was 11 

identified. In this paper, we assess the assumptions and approaches currently used 12 

to establish links between environmental microbiomes and the ecosystems they 13 

influence, propose a framework to more effectively harness our understanding of 14 

microbiomes to advance ecosystem science, and identify key challenges and 15 

solutions required to apply the proposed framework. Specifically, we suggest 16 

identifying each microbial process that contributes to the ecosystem process of 17 

interest a priori. We then suggest linking information on microbial community 18 

membership through microbial community properties (such as biomass elemental 19 

ratios) to the microbial processes that drive each ecosystem process (e.g. N -20 

mineralization). A key challenge in this framework will be identifying which microbial 21 

community properties can be determined from the constituents of the community 22 

(community aggregated traits, CATs) and which properties are unable to be 23 

predicted from a list of their constituent taxa (emergent properties, EPs). We view 24 
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this directed approach as a promising pathway to advance our understanding of how 25 

microbiomes influence the systems they inhabit. 26 

Current approaches in linking microbial characteristics and ecosystem 
processes 
 

Recently there has been a broad call, including the National Microbiome Initiative 27 

led by the executive branch of the United States Federal Government, for a 28 

coordinated effort to evaluate the role of microorganisms in all environments1,2 . 29 

Coordinating efforts to explore microbiomes and their functioning across such a 30 

broad range of systems is exciting and ambitious and holds the potential to transform 31 

societies approach many of the most important challenges we currently face3. 32 

However, advances in this direction require an assessment of our progress to date 33 

and an attempt to identify the most promising paths forward. 34 

 In most ecosystems, many processes are carried out primarily by microorganisms, 35 

and virtually all processes are influenced by microorganisms. Therefore it is common 36 

to apply high-resolution analytical techniques to better describe microbial 37 

communities, assuming that greater resolution of the community, (including its 38 

associated transcripts, proteins, and metabolic products) should lead to better 39 

predictions of ecosystem processes. However, such justifications assume that 40 

microbial metrics (e.g. 16S rRNA gene libraries, metagenomes, enzymatic activities) 41 

will improve our ability to understand, model, and predict ecosystem processes. This 42 

assumption may not necessarily be valid, because microbial information may not 43 

provide additional explanatory power for understanding ecosystem process rates 44 

beyond what can be predicted by environmental factors alone4,5 . In addition, when 45 

correlations between microbial information and an ecosystem process are identified 46 

the underlying causal associations may remain difficult to resolve and may not be 47 

causal at all—e.g. the microbiome and the ecosystem may be responding in concert 48 
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to a common underlying driver; limiting the predictive ability of each result across 49 

additional systems. 50 

Two recent meta-analyses suggest that the current research approach at the 51 

intersection of ecosystem and microbial ecology has the potential to be better 52 

focused to more effectively achieve the anticipated insights into how microbiomes 53 

influence ecosystems6,7. The first meta-analysis evaluated studies that related the 54 

relative abundance of protein encoding gene copy or transcript abundance to 55 

associated biogeochemical processes6. Of 416 identified studies that attempted to 56 

address the correlation between the relative abundance of a protein-encoding gene 57 

(or transcript) and an ecosystem process, only 56 measured both genes or transcript 58 

copy number and the corresponding process. Within these 56 studies, 14% of the 59 

observations showed a significant negative correlation between gene copy number 60 

and process rate, 38% had a significant positive relationship, and 48% had no 61 

significant relationship. Thus, the effect size for the relationship between gene copy 62 

number and process rate had an approximately normal distribution with a mean near 63 

zero6.  The second meta-analysis evaluated links between microbial community 64 

composition and ecosystem processes in response to an experimentally-induced 65 

disturbance in the environment (e.g. drought, warming, nutrient addition) 7. Whereas 66 

40% of published papers reported concomitant changes in microbial community 67 

structure and ecosystem function, only about a third of those cases (only 12% of 68 

total studies) attempted to identify a statistical relationship between community 69 

composition and an ecosystem process. Interestingly, many of the studies that did 70 

not measure both community composition and a corresponding ecosystem process 71 

still framed their study in the microbial structure-ecosystem function framework7. 72 
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These meta-analyses illustrate that links between microbial characteristics and 73 

ecosystem processes are often assumed to be present but are rarely tested. When 74 

linkages are explicitly tested, connections between microbial structure and 75 

ecosystem processes are more often than not weak or non-existent6. These findings 76 

suggest that our current approach to linking microbial metrics to ecosystem function 77 

should be refocused with more attention paid to empirically identifying explicit 78 

linkages between microbial characteristics and the ecosystem processes that they 79 

influence. 80 

Linking microbial characteristics and ecosystem processes 
 

A key challenge in linking microbial information to an ecosystem process is that 81 

conceptual research frameworks often do not align directly with the available 82 

methods or the data they generate. For example, environmental factors act on the 83 

physiology of individual organisms, which alters their competitive ability, relative 84 

abundance, collective physiology, and ultimately their contribution to ecosystem 85 

processes (Figure 1a). However, designing an observational study or experiment 86 

from this conceptual framework (Figure 1a) assumes that environmental metrics can 87 

be empirically linked to measureable microbial characteristics across multiple 88 

categories of ecological organization (i.e. individuals, populations, and communities) 89 

at the appropriate temporal and spatial scales. Yet in nature, relationships between 90 

environmental variables and microbial characteristics are dynamic and non-linear8, 91 

simultaneously affected by a plethora of biotic and abiotic variables9,10 and 92 

decoupled in both time and space7. Each of these aspects of microbial-environment 93 

interactions obscures the relationships among microbial characteristics collected at 94 

each level of ecological organization and the ecosystem processes they affect 95 

(Figure 2b). To address this challenge we propose a framework that explicitly 96 
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identifies the ecosystem process of interest and how it relates to microbial 97 

characteristics. The proposed framework illustrates the relationship among different 98 

categories of microbial characteristics and conceptually defines their contribution to 99 

ecosystem processes. 100 

Identifying the Ecosystem Process The first step to understand how microorganisms 101 

influence an ecosystem process is to define each of its sub-processes, the set of 102 

constituent reactions that combine to dominate the net flux of the ecosystem process 103 

of interest. Ecosystem processes are defined as a change in a pool size or a flux 104 

from one pool to another (e.g. NH4
+ to NO3

-
, or dissolved organic matter 105 

mineralization to CO2). Few, if any of these processes are carried out by a single 106 

physiological pathway or a single organism. Rather, ecosystem processes are 107 

aggregate processes consisting of complementary or antagonistic sub-processes 108 

carried out by a breadth of phylogenetically diverse microorganisms11. For example, 109 

net ecosystem productivity (NEP) is the balance between C-fixation and C-110 

mineralization. Each sub-process of NEP can be further partitioned into a series of 111 

metabolic pathways (e.g. heterotrophic fermentation and aerobic respiration or 112 

chemoautotrophic nitrification and photoautotrophic C-fixation). Partitioning each 113 

ecosystem process in this hierarchical manner can continue until the sub-process 114 

maps directly to specific microbial metabolic pathways (e.g. acetoclastic 115 

methanogenesis). Subsequently each of these metabolic pathways can be 116 

categorized as either broad or narrow12. Broad processes are phylogenetically 117 

common (i.e. widely distributed among taxa), whereas narrow processes are 118 

phylogenetically conserved (i.e. limited to a specific subset of taxa). For example, 119 

denitrification is broad, while both methanogenesis and methanotrophy are narrow 120 

(with some notable exceptions13). 121 
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The second step is to identify the controls or constraints on each constituent sub-122 

process. For example, kinetics of a given metabolic pathway in a model organism 123 

may help understand the rate limiting steps of a narrow process, but insights from 124 

model organisms are much less likely to be useful for a broad process where 125 

phenotypic variation among phylogenetically diverse organisms should be much 126 

greater. Defining the ecosystem process, its critical sub-processes, and the known 127 

phylogenetic distribution of the metabolic pathways that drive those sub-processes in 128 

this manner creates an explicit conceptual pathway that directly links the ecosystem 129 

process to the microorganisms that influence them. Once this conceptual pathway 130 

has been identified a concerted empirical approach can be applied to investigate 131 

how the microbiome influences the ecosystem process of interest. 132 

Understanding the relationship between categories of microbial 133 

characteristics 134 

Categories of microbial characteristics At present, researchers are measuring a wide 135 

variety of characteristics of microbial communities (e.g. sequence or relative 136 

abundance of genes, transcripts or proteins, enzyme expression, and process rates). 137 

Much of that work does not clearly articulate how these measurements differ in their 138 

specificity, precision, or linkage among each other or how they inform the microbial 139 

contribution to ecosystem processes. We propose that by categorizing microbial 140 

characteristics into three distinct categories, 1) microbial processes, 2) microbial 141 

community properties, and 3) microbial community membership (Figure 2), we can 142 

frame how different metrics interact with each other and how they can elucidate the 143 

microbial contribution to an ecosystem process.  144 

Microbial Processes  Microbial processes are the collective physiology of the 145 

microbial community that drives changes in pools and fluxes of important elements 146 
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or compounds14 (Figure 2). They are the level of microbial information that can most 147 

readily be incorporated into ecosystem-level models because many of these 148 

processes are the sub-processes that contribute to an overall pool or flux. Examples 149 

include nitrogen fixation, denitrification, nitrification, phosphorus uptake and 150 

immobilization, primary production, respiration, and carbon use efficiency. The rates 151 

of many microbial processes can be estimated through physiological assays, and 152 

while they do not open the “black box” of the microbial community, they do directly 153 

quantify the microbial contribution to the transformation of substrates moving through 154 

the box. 155 

However, physiological assays to estimate microbial processes are often 156 

logistically challenging, require experimental manipulations that inevitably deviate 157 

from the in situ conditions, and often depend on the environment in which they were 158 

measured. For example, the relationship between microbial process rates and 159 

temperature vary across geographical temperature gradients15 (enzyme activity) and 160 

among seasons16 (phosphorus use efficiency, PUE). Thus observations of the effect 161 

of temperature on either enzyme activity or PUE are time and place dependent. 162 

Therefore, without an underlying physiological mechanism, to accurately quantify the 163 

microbial process the relationship between temperature and community physiology 164 

must be measured through a direct assay at each location and at each time. 165 

Because of these limitations, a microbial community property that can be measured 166 

in situ or collected and preserved in the field for later analysis in the laboratory has 167 

several advantages over using bioassays to directly measure microbial processes. A 168 

community property may include characteristics of community biomass such as 169 

elemental ratios (biomass C:N or C:P ratios) that estimate potential to mineralize or 170 

immobilize limiting nutrients, or the relative abundance of genes that encode for an 171 
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known physiology or physiological response (such as the relative abundance of cold 172 

shock proteins to estimate cold tolerance)17. We refer to these in situ measurements 173 

that allow estimation of microbial processes as microbial community properties 174 

(hereafter community properties, Figure 2). Community properties represent an 175 

integrated characteristic of the extant microbial community that has the potential to 176 

estimate the microbial process of interest. 177 

Microbial Community Properties 178 

Microbial community properties can be separated into two categories, emergent 179 

properties (EPs) such as biofilm thickness, which cannot be determined from the 180 

properties of their constituent populations18, and community aggregated traits 181 

(CATs) such as nitrification potential, which can be estimated from community 182 

membership or at least characteristics such as relative gene abundance (e.g. 183 

AmoA), of those members17.  184 

The potential importance of EPs to influence ecosystem processes was 185 

demonstrated in series of experiments conducted in flow-through flumes that 186 

mimicked development and metabolism of stream biofilms19. Both transient storage 187 

(i.e. an increase in residence time of the water and its solutes near the biofilm 188 

relative to the flow around it) and the biofilm community’s ability to use arabinose 189 

relative to glucose increased as the microbial biofilm density increased and porosity 190 

decreased. Microbial biofilm thickness and density are both EPs that affected the 191 

important ecosystem processes of hydrological transient storage and substrate use 192 

specificity19. In this case biofilm thickness was affected by physical factors (i.e. flow) 193 

but biofilm thickness may also be influenced by other environmental characteristics 194 

such as P availability20. 195 
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While EPs are powerful metrics for understanding ecosystem processes (Figure 2, 196 

Letter F or H) they cannot, by definition, be estimated from a list of constituent taxa 197 

or characteristics of those taxa (Figure 2, Letter E) and thus must remain as an 198 

intermediary between environmental drivers such as flow or P availability (Figure 2, 199 

Letter C) and ecosystem processes. 200 

Unlike EP’s CATs can be estimated from characteristics of their constituents and 201 

provide one pathway to link microbial community membership to the community 202 

properties that drive ecosystem processes17 (Figure 2, Letter E and F). Microbial 203 

community biomass stoichiometry (e.g. biomass C:N or C:P) is one example of a 204 

putative CAT that has been shown to be a useful predictor of nutrient immobilization 205 

or mineralization during litter decomposition21, and can predict both respiration and 206 

N-mineralization better than microbial biomass alone22. In a study of soil microcosms 207 

amended with organic carbon and reactive N, the relationship between the resource 208 

C:N and microbial biomass C:N was able to better predict whether C would be 209 

respired or immobilized relative to microbial biomass alone22. Biomass stoichiometry 210 

has been shown to differ among phylogenetically different organisms. For example, 211 

at the broadest level microbial biomass C:N differs between fungi and bacteria24, and 212 

has been shown to be variable among a wide range of taxa grown on the same 213 

media25,26. Thus community biomass stoichiometry has the potential to be empirically 214 

deconstructed into the biomass stoichiometry of its constituent taxa27, linking 215 

community membership and a community property (e.g. biomass C:N) with the 216 

power to estimate an important microbial process (e.g. N-mineralization).  217 

Microbial Community Membership  218 

Although analysis of community membership by sequencing phylogenetic marker 219 

genes provides organism identity, the direct coupling of microbial phylogeny to its 220 
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physiology and ecology is often weak28 (Figure 2, Letter G). For example, most 221 

organic carbon molecules can be metabolized by a phylogenetically diverse suite of 222 

organisms and denitrification is also a phylogenetically broad process. The result is 223 

that with the exception of some specialists (e.g. nitrifiers), we can infer very little 224 

about the function of microbial communities from a list of their constituent taxa. 225 

Whereas it is clear that microbial populations are non-randomly distributed in space 226 

and time29 and some microbial traits appear to be conserved at coarse taxonomic 227 

scales30,31,32 the underlying physiological mechanisms for phylogenetic sorting 228 

across environmental gradients is often unknown. This prevents an explicit link 229 

between the organism’s relative abundance and their role in the collective 230 

community physiology that influences ecosystems. The paucity of associated 231 

physiological data that accompanies phylogenetic sequence data in most studies 232 

limits the ecological insight from phylogenetic analyses and constrains our ability to 233 

attribute microbial processes to community membership even of well-defined 234 

consortia. 235 

In addition to the paucity of ecological inference provided by an analysis of 236 

community membership, community analysis using current methods has two 237 

exceptional challenges that need to be addressed in order to gain insight from 238 

community membership to drivers of ecosystem processes. First, bulk extraction of 239 

DNA from environmental samples, often the first step in analysis of microbial 240 

communities, may or may not represent the extant and active microbial community at 241 

the time of sampling. In microbial ecology, unlike in plant or animal ecology, the 242 

number, biomass, and identity of different populations cannot be assessed with 243 

confidence33,34. When DNA is extracted from the environment the presence or 244 

relative abundance of a given sequence is not necessarily proportionate to the 245 
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absolute abundance or biomass of that organism within the community. One reason 246 

for this is that the extracted nucleic acid may not have been contained within a 247 

microbial cell at the time of extraction. This idea has been well established35 and the 248 

proportion of extracellular DNA is known to vary among ecosystems36 (e.g. there 249 

may be more DNA in sediment than the water column). It is clear that a portion of 250 

sequences derived from any environmental sample are not from intact cells37,38,39. 251 

Even when specific phylotypes can be empirically linked to intact cells (e.g. using in 252 

situ hybridization), the viability and metabolism of that cell typically remains 253 

unknown. Because of this, the presence of a sequence within a “community” does 254 

not indicate the associated organism is participating in the microbial process of 255 

interest, and if active, it does not indicate that that the organism’s contribution is 256 

proportionate to the relative abundance of its DNA sequence. While these facts are 257 

readily acknowledged, they can be very challenging to address, and therefore are 258 

often overlooked or ignored as a problematic but non-addressable constraint, 259 

something of an inconvenient truth of microbial ecology. 260 

The second major challenge in linking relative abundance of microbial populations 261 

with microbial processes is that the diversity, growth rate, and metabolic complexity 262 

of environmental microorganisms are orders of magnitude greater than all other 263 

organisms. The result is that when scaling from individuals through populations to 264 

microbial communities, the obfuscating factors described in Figure 1b introduce and 265 

ultimately accumulate more uncertainty at higher levels of ecological organization, 266 

relative to the same analyses applied to macroorganism-ecosystem linkages. This 267 

uncertainty is further confounded because community composition and processes 268 

are routinely measured at different spatial scales40. Translating microbial 269 

measurements to an ecosystem flux typically requires linking measurements from 270 
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microbial physiology (10-12 m), to microbial process measurements (10-1 or 10-2 m), 271 

to ecosystem process measurements (m to 103 m). This enormous scale (15 orders 272 

of magnitude) over which to interpolate data, raises challenges analogous to 273 

mechanistically analyzing the global carbon cycle, i.e. linking experiments on grams 274 

of carbon in soils (e.g. g C per g dry weight) to global fluxes of Petagrams (1015 g). 275 

However, unlike global C cycle research, microbial-to-ecosystem research often 276 

addresses these in a descriptive manner using correlative approaches, without the 277 

rigor and quantitative modeling approaches typically applied to global 278 

biogeochemical cycles41. Each of these challenges must be effectively addressed in 279 

order to rigorously incorporate the growing wealth of information on microbiomes to 280 

system level processes. 281 

A Way Forward at the Intersection of Microbial and Ecosystem Science 282 

The conceptual diagram presented here (Figure 2) provides a road map for 283 

organizing and linking the diverse suite of microbial characteristics that are 284 

commonly measured. Ecosystem ecology has traditionally been confined to the 285 

interactions depicted within the horizontal arrow, moving from environmental 286 

parameters to ecosystem processes (Letter A, Figure 2). As the role of the 287 

microbiome has come to the forefront of environmental sciences it is clear that 288 

microbial ecology has a great deal to contribute. However, microbial ecology has 289 

traditionally been confined to interactions depicted within the vertical arrow, moving 290 

from individuals (microbial community membership) to process rates (microbial 291 

processes) of populations or more recently communities (Figure 2). The excitement 292 

to integrate microbial metrics into ecosystem science has led to a range of novel 293 

approaches of linking characteristics on the microbiome to ecosystem processes. 294 

Direct connections between microbial community membership and ecosystem 295 
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processes (Figure 2, Letter J) or community properties and ecosystem processes 296 

(Figure 2, Letter I) are almost exclusively correlative in nature. Whereas many of 297 

these results are intriguing, the relationships discovered across these pathways, in 298 

the absence of the defining physiological mechanism, are often restricted to the time 299 

and place they are identified. Because of this, moving from correlative, 300 

phenomenological approaches to a causative and mechanistic understanding is a 301 

challenging but necessary step for microbiome science. 302 

Because microbial processes can be estimated by community properties (e.g. N 303 

mineralization and biomass C:N), understanding the drivers of community properties 304 

is a way to more explicitly link environmental microorganisms with the ecosystem 305 

processes they control. We propose that identifying which community properties best 306 

describe microbial processes (Figure 2, Letter F), then identifying whether or not the 307 

community properties that best describe each process are a CAT (Letter E, Figure 2) 308 

or an EP (Figure 2 Letter C) provides clear pathway to understand whether 309 

environmental drivers or microbial drivers dominate ecosystem processes. Currently, 310 

many microbial community properties are EPs (i.e. cannot be predicted from their 311 

constituent members or their characteristics). Understanding when community 312 

properties can be predicted by membership is an important and open research 313 

direction. Distinguishing which community properties represent aggregated traits 314 

(CATs) and which are actually EPs may be an essential link in advancing our ability 315 

to apply microbial information to ecosystem science. This is not a trivial task, 316 

however a suite of existing methods already provides the ability to directly pursue 317 

this challenge. 318 

Applying the proposed framework 319 
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Understanding the principal drivers of community properties will require a series of 320 

complementary approaches applied in concert, including; stable isotope probing of 321 

cultured isolates and mixed communities, single cell methods that can assay cells in 322 

the same physiological state they occur in in the environment, sorting of complex 323 

communities into subsets of populations or consortia for further investigation, and 324 

physiological assays of isolates grown in culture. Studies that use either labeled 325 

substrates or single cell techniques (or both) have been successful in linking 326 

community composition and process rates. One example, stable isotope probing 327 

(SIP, in which an isotopically labeled element (or elements) from a defined substrate 328 

can be tracked into microbial biomass) is a method used to identify which organisms 329 

may be participating in an ecosystem process of interest42. For example, a study of 330 

sulfate reduction in a Scottish peatland revealed that a single species of 331 

Desulfosporosinus was most likely responsible for the totality of sulfate reduction 332 

within the peatland even though it only comprised 0.0006% of the retrieved 333 

sequences43. In this case the Desulfosporosinus species represented the only 334 

known sulfate reducer within the community and thus the kinetics of this organism 335 

seemingly defined the kinetics of sulfate reduction in the entire system. Whereas this 336 

is a single example of using confirmative ecophysiology to link categories of 337 

microbial information (pathway G in Figure 2), there is a suite of culture-free 338 

techniques (such as Raman microspectroscopy (MS), NanoSIMS, or X-ray 339 

microanalysis, XRMA) that complement sequence-based microbiome analysis by 340 

reporting on the physiological and compositional characteristics of individual cells in 341 

situ27, 44,45. All three methods (Raman MS, NanoSIMS and XRMA) can be coupled 342 

with phylogentic labels (in situ hybridization) that can visualize identification of 343 

phylotypes simultaneously with macromolecular (Raman MS), isotopic (NanoSIMS), 344 
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and elemental composition (XRMA). In addition, both Raman MS and NanoSIMS 345 

can trace substrates that are labeled with stable isotopes into cells, providing the 346 

ability to identify populations that are participating in specific metabolic pathways 347 

within complex communities. These powerful approaches applied in concert with 348 

sequence analysis have the potential to empirically link the categories of microbial 349 

information defined here (Figure 2). These methods also have the greatest potential 350 

to begin to unravel, which community properties are EPs, and which are CATs. 351 

In addition to direct visualization of individuals cells from mixed populations or 352 

consortia using single cell approaches, there are abundant examples of 353 

immunocapture (e.g. bromodeosyuridine, BrdU)46 or other labeling and cell sorting 354 

approaches (eg. fluorescent in situ hybridization(FISH) coupled with flow cytometry 355 

cell sorting, FACS)47 that provide powerful tools to constrain the complexity of 356 

microbial communities and link community membership to microbial characteristics 357 

that influence ecosystem processes. Labeling and sorting techniques allow the cells 358 

that incorporate a labeled substrate or can be targeted with a stain or fluorescent 359 

reporter to be separated from the broader community and then assayed for 360 

membership or for biomass composition. For example, a study of a North Atlantic 361 

bacterial community labeled the actively growing component of the community using 362 

BrdU and then separated those populations from the rest of the community using an 363 

immune capture technique46. Similarly, cells can be labeled with phylogenetic probes 364 

(e.g. FISH) that fluorescent at different wavelengths and can be separated from the 365 

general community using a flow cytometry to only select those cells that reported for 366 

the phylogenetic label47. 367 

In addition to these approaches for assaying natural communities, there is a need 368 

for broader representation of cultured taxa that better represent physiologies that are 369 
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similar to those phyla found in the environment. For example, microbial community 370 

carbon use efficiency (the amount of carbon allocated to biomass production relative 371 

to carbon respired or stored) is a central parameter in many ecosystem level carbon 372 

cycling models. Differences in CUE among phyla depend largely on the relative 373 

plasticity of growth rate, carbon storage capacity, and maintenance respiration. E. 374 

coli, the “poster bacterium” for physiological assays is unique both in the plasticity of 375 

its growth rate and its capacity to store energy as organic carbon and thus not 376 

necessarily informative to develop a better understanding of CUE48. Streptococcus 377 

Bovis has proven to as a more appropriate organism to study energy cycling in 378 

bacteria48. Physiological studies of isolates from a broader distribution of 379 

representative phyla are key to advancing our understanding of environmental 380 

microbiomes. However, it is unlikely that information about specific phenotypes 381 

estimated in isolation from pure-culture studies can be directly used to estimate 382 

community properties because of the plasticity of organismal physiology and 383 

because of the prevalence of competitive interactions when isolates are grown in co-384 

culture with even one other organism49. Therefore studies of isolates grown in 385 

culture would provide more powerful information if they reported the plasticity of a 386 

given phenotype, rather than only the phenotype under a single set of environmental 387 

conditions. For example, a recent study of 24 freshwater bacterial isolates showed 388 

differences in phenotypic plasticity in the biomass stoichiometry of the taxa studied26. 389 

Some of the taxa had highly variable biomass C:P ratios whereas others 390 

demonstrated a high degree of homeostasis in their C:P ratios. This allowed the 391 

authors to hypothesize how communities or consortia with homeostatic phenotypes 392 

would respond to environmental drivers compared to communities or consortia 393 

composed of populations with more plastic phenotypes.  394 
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Whereas linking microbial membership to system level processes is an exceptional 395 

challenge the tools and approaches to address this challenge already exist. These 396 

existing and established microbiological methods both relatively novel (NanoSIMS) 397 

and foundational in the field (physiological assays of isolates) can be applied in 398 

concert to begin to parse the exceptional complexity of environmental microbiomes.  399 

Designing microbiome research to maximize insights into system-level 400 

processes 401 

The meta-analyses discussed above clearly illustrate that a more directed 402 

approach to microbiome research is necessary. We suggest that rather than looking 403 

for linkages among microbial community membership and system-level processes in 404 

every study, research efforts would benefit from strategically targeting the linkages 405 

and processes for which an a priori understanding of microbial physiology should 406 

allow us to improve our understanding of the ecosystem process. These cases may 407 

be identified first by noting patterns in which environmental factors explain little of the 408 

variability in an ecosystem process, or where system-level responses deviate 409 

significantly from rates that are predicted from environmental factors alone. These 410 

deviations could include spatial or temporal heterogeneity in an ecosystem response 411 

where the environmental characteristics do not have the same level of heterogeneity. 412 

For example, the discovery of novel microbial metabolic pathways (i.e. annamox) 413 

has helped explain otherwise puzzling chemical transformations, such as the 414 

oxidation of ammonium under anoxic conditions50. Such advances are most likely to 415 

be cases where the microbial process of interest can be directly linked to a 416 

phylogenetically constrained group (i.e. a narrow process) and where the system-417 

level behavior of the process reflects the organismal-level physiological controls, 418 

such as N-sensitivity of methane monooxygenase51. 419 
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The framework presented here provides one approach to formalize inquiry across 420 

microbiome science and encourage empirical linkages between the presence of 421 

organisms in a system and the processes that characterize that system. Whereas we 422 

draw examples from environmental microbiomes and the ecosystems they inhabit, 423 

the framework presented here should also benefit the analysis of microbiomes 424 

associated with other systems such as host organisms and those of engineered 425 

environments. We assert that this framework provides an important and 426 

straightforward starting point as the global research community aims to undergo one 427 

of the most exciting concerted efforts in the microbial sciences to date. 428 

 429 
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Figures 

 
Figure 1 Diagram of microbial-ecosystem linkages A) how linkages are commonly 
conceptualized across levels of ecological organization and B) the series of 
environmental filters that create challenges when attempting to link metrics from one 
level of ecological organization to the other. 
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Figure 2 Reframing how we study microbial-ecosystem linkages. Shown is the 
intersection between microbial (vertical) and ecosystem (horizontal) ecology with 
each of the three categories of microbial information (microbial processes, emergent 
community properties, and microbial community membership) as defined in the text. 
We argue for an increased focus on studies that elucidate pathways E, F and H. In 
addition we note that pathways G, J and I are less likely to effectively incorporate 
microbial information into ecosystem science. The delta symbol in each category 
indicates an emphasis on how changes within a category may lead to a change in a 
connected category. 
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